# *p*-adic limits of Betti numbers

Steffen Kionke



Geneva, September 2018

## Lück's approximation theorem

Let X be a finite connected CW-complex with  $\Gamma=\pi_1(X)$  and let  $\widetilde{X}\to X$  be its universal covering.

### Theorem (Lück 1994)

Let  $\Gamma_1 \supseteq \Gamma_2 \supseteq \Gamma_3 \supseteq \dots$  be a decreasing chain of finite index normal subgroups of  $\Gamma$  such that  $\bigcap_{n \in \mathbb{N}} \Gamma_n = \{1\}$ . Then

$$\lim_{n\to\infty}\frac{b_j(\widetilde{X}/\Gamma_n,\mathbb{Q})}{|\Gamma:\Gamma_n|}=b_j^{(2)}(X)\in\mathbb{R}_{\geq 0}.$$

# Is there a p-adic analog?

Recall:  $\mathbb{Q}_p$  is the completion of  $\mathbb{Q}$  w.r.t.

$$\big|p^r\frac{a}{b}\big|_p=p^{-r}\qquad (a,b,r\in\mathbb{Z} \text{ with } p\nmid a,b)$$

# Is there a p-adic analog?

Recall:  $\mathbb{Q}_p$  is the completion of  $\mathbb{Q}$  w.r.t.

$$\big|p^r\frac{a}{b}\big|_p=p^{-r}\qquad (a,b,r\in\mathbb{Z} \text{ with } p\nmid a,b)$$

#### Problem:

Let  $X=S^1$ ,  $\widetilde{X}=\mathbb{R}$  and  $\Gamma=\mathbb{Z}.$  The sequence

$$\frac{b_0(\mathbb{R}/p^n\mathbb{Z},\mathbb{Q})}{|\mathbb{Z}:p^n\mathbb{Z}|} = \frac{1}{p^n} \to \infty$$

diverges in  $\mathbb{Q}_p$ .

Let  $(G, \varphi)$  be a virtual pro-p completion of  $\Gamma$ ; i.e.

- lacksquare a profinite group G which is virtually pro-p and
- ullet  $\varphi \colon \Gamma \to G$  with dense image.

Let  $(G, \varphi)$  be a virtual pro-p completion of  $\Gamma$ ; i.e.

- lacksquare a profinite group G which is virtually pro-p and
- ullet  $\varphi\colon\Gamma\to G$  with dense image.

### Theorem (K. 2018)

Let  $G_1\supseteq G_2\supseteq G_3\supseteq \ldots$  be a decreasing chain of open normal subgroups in G with  $\bigcap_{n\in\mathbb{N}}G_n=\{1\}$ . Then

Let  $(G, \varphi)$  be a *virtual pro-p completion* of  $\Gamma$ ; i.e.

- lacksquare a profinite group G which is virtually pro-p and
- ullet  $\varphi\colon\Gamma\to G$  with dense image.

### Theorem (K. 2018)

Let  $G_1\supseteq G_2\supseteq G_3\supseteq \ldots$  be a decreasing chain of open normal subgroups in G with  $\bigcap_{n\in\mathbb{N}}G_n=\{1\}$ . Then

- $\blacksquare \lim_{n\to\infty} b_j(\widetilde{X}/\varphi^{-1}(G_n),\mathbb{F}_\ell) = b_j^{[p]}(X;\varphi,\mathbb{F}_\ell) \in \mathbb{Z}_p \text{ for } \ell \neq p,$

Let  $(G, \varphi)$  be a virtual pro-p completion of  $\Gamma$ ; i.e.

- lacksquare a profinite group G which is virtually pro-p and
- ullet  $\varphi\colon\Gamma\to G$  with dense image.

### Theorem (K. 2018)

Let  $G_1\supseteq G_2\supseteq G_3\supseteq \ldots$  be a decreasing chain of open normal subgroups in G with  $\bigcap_{n\in\mathbb{N}}G_n=\{1\}$ . Then

#### Euler characteristic:

$$\chi^{[p]}(X;\varphi) = \sum_{j=0}^{\dim(X)} (-1)^j b_j^{[p]}(X;\varphi,\mathbb{Q})$$

#### Euler characteristic:

$$\chi^{[p]}(X;\varphi) = \sum_{j=0}^{\dim(X)} (-1)^j b_j^{[p]}(X;\varphi,\mathbb{Q})$$
$$= \lim_{n \to \infty} \chi(\widetilde{X}/\varphi^{-1}(G_n)) = \lim_{n \to \infty} |G: G_n| \chi(X)$$

#### Euler characteristic:

$$\begin{split} \chi^{[p]}(X;\varphi) &= \sum_{j=0}^{\dim(X)} (-1)^j b_j^{[p]}(X;\varphi,\mathbb{Q}) \\ &= \lim_{n \to \infty} \chi(\widetilde{X}/\varphi^{-1}(G_n)) = \lim_{n \to \infty} |G:G_n| \chi(X) \\ &= \begin{cases} |G| \chi(X) & \text{if } G \text{ is finite} \\ 0 & \text{otherwise} \end{cases} \end{split}$$

#### Euler characteristic:

$$\begin{split} \chi^{[p]}(X;\varphi) &= \sum_{j=0}^{\dim(X)} (-1)^j b_j^{[p]}(X;\varphi,\mathbb{Q}) \\ &= \lim_{n \to \infty} \chi(\widetilde{X}/\varphi^{-1}(G_n)) = \lim_{n \to \infty} |G:G_n| \chi(X) \\ &= \begin{cases} |G| \chi(X) & \text{if $G$ is finite} \\ 0 & \text{otherwise} \end{cases} \end{split}$$

### Further properties:

- Künneth formula
- Poincaré duality
- a formula for wedge sums



### **Examples**

#### Tori

 $T^r$  the r-torus and  $(G, \varphi)$  a virtual pro-p completion of  $\mathbb{Z}^r$ :

$$b_j^{[p]}(T^r;\varphi) = \binom{r}{j}$$

## **Examples**

#### Tori

 $T^r$  the r-torus and  $(G, \varphi)$  a virtual pro-p completion of  $\mathbb{Z}^r$ :

$$b_j^{[p]}(T^r;\varphi) = \binom{r}{j}$$

#### Surfaces

 $\Sigma_g$  closed orientable surface of genus  $g \geq 1$  and  $(G, \varphi)$  an infinite virtual pro-p completion of  $\pi_1(\Sigma_g)$ :

$$b_0^{[p]}(\Sigma_g;\varphi) = 1, \qquad b_1^{[p]}(\Sigma_g;\varphi) = 2, \qquad b_2^{[p]}(\Sigma_g;\varphi) = 1$$

# **Examples**

#### Tori

 $T^r$  the r-torus and  $(G, \varphi)$  a virtual pro-p completion of  $\mathbb{Z}^r$ :

$$b_j^{[p]}(T^r;\varphi) = \binom{r}{j}$$

#### Surfaces

 $\Sigma_g$  closed orientable surface of genus  $g \geq 1$  and  $(G, \varphi)$  an infinite virtual pro-p completion of  $\pi_1(\Sigma_q)$ :

$$b_0^{[p]}(\Sigma_g;\varphi) = 1, \qquad b_1^{[p]}(\Sigma_g;\varphi) = 2, \qquad b_2^{[p]}(\Sigma_g;\varphi) = 1$$

### Free groups

 $(G, \varphi)$  an infinite virtual pro-p completion of the free group  $F_r$ :

$$b_0^{[p]}(F_r;\varphi) = 1, \qquad b_1^{[p]}(F_r;\varphi) = 1$$

# *p*-adic Atiyah question

Question: When is  $b_j^{[p]}(X; \varphi, k) \in \mathbb{Z}$ ?

# p-adic Atiyah question

Question: When is  $b_j^{[p]}(X; \varphi, k) \in \mathbb{Z}$ ?

Dichotomy: If  $b_j^{[p]}(X;\varphi,k)\in\mathbb{Z}$ , then the sequence  $(b_j(\widetilde{X}/\varphi^{-1}(G_n),k))_{n\in\mathbb{N}}$  either

- $\blacksquare$  stabilizes as  $n \to \infty$  or
- **grows not** "too slow" as  $n \to \infty$ .

# p-adic Atiyah question

Question: When is  $b_j^{[p]}(X; \varphi, k) \in \mathbb{Z}$ ?

Dichotomy: If  $b_j^{[p]}(X;\varphi,k)\in\mathbb{Z}$ , then the sequence  $(b_j(\widetilde{X}/\varphi^{-1}(G_n),k))_{n\in\mathbb{N}}$  either

- $\blacksquare$  stabilizes as  $n \to \infty$  or
- lacksquare grows not "too slow" as  $n o \infty$ .

### Theorem (K. 2018)

If G is abelian, then  $b_j^{[p]}(X; \varphi, k) \in \mathbb{Z}$ .

## Definition of *p*-adic Betti numbers

X finite connected CW-complex and  $(G,\varphi)$  a virtual pro-p completion of  $\Gamma=\pi_1(X).$ 

$$\bar{H}^{j}(X;\varphi,\mathbb{Q}) = \varinjlim_{N \lhd_{o}G} H^{j}(\widetilde{X}/\varphi^{-1}(N),\mathbb{Q})$$

is a vector space with a smooth admissible representation of G. Definition:

$$b_j^{[p]}(X;\varphi,\mathbb{Q}) = p \operatorname{-dim}_{\mathbb{Q}}^G \bar{H}^j(X;\varphi,\mathbb{Q})$$

# Definition of p-adic Betti numbers

X finite connected CW-complex and  $(G,\varphi)$  a virtual pro-p completion of  $\Gamma=\pi_1(X).$ 

$$\bar{H}^{j}(X;\varphi,\mathbb{Q}) = \varinjlim_{N \lhd_{o}G} H^{j}(\widetilde{X}/\varphi^{-1}(N),\mathbb{Q})$$

is a vector space with a smooth admissible representation of G. Definition:

$$b_j^{[p]}(X;\varphi,\mathbb{Q}) = p\operatorname{-dim}_{\mathbb{Q}}^G \bar{H}^j(X;\varphi,\mathbb{Q})$$

#### Theorem

There is a unique continuous  $\mathbb{Z}_p$ -linear function

$$p\operatorname{-dim}_{\mathbb{Q}}^G\colon \mathsf{K}_0^{\mathsf{adm}}(\mathbb{Q}\llbracket G\rrbracket) o \mathbb{Z}_p$$

such that  $p\operatorname{-dim}_{\mathbb{Q}}^G(V)=\dim_{\mathbb{Q}}V$  for every finite dimensional representation of G.

