Nevanlinna Domains with Large Boundaries

Yurii Belov Saint Petersburg State University

Joint work with Alexander Borichev (Marseille) and Konstantin Fedorovskii (Moscow)

Topics in Geometric Function Theory, 16 February 2018

Nevanlinna Domains

Definition

A bounded simply connected domain $G \subset \mathbb{C}$ is said to be a Nevanlinna domain, if there exist functions $u, v \in H^{\infty}(G)$ such that the equality

$$\overline{z} = \frac{u(z)}{v(z)},$$

holds on ∂G a. e. in sense of conformal mappings.

That means that

$$\overline{\varphi(\zeta)} = \frac{u(\varphi(\zeta))}{v(\varphi(\zeta))}$$
, a.e. on $\mathbb T$

for some(any) conformal mapping $\varphi : \mathbb{D} \mapsto \mathbf{G}$.

Question

How large can be (accessible) boundary of Nevanlinna domain?

Nevanlinna Domains

Definition

A bounded simply connected domain $G \subset \mathbb{C}$ is said to be a Nevanlinna domain, if there exist functions $u, v \in H^{\infty}(G)$ such that the equality

$$\overline{z} = \frac{u(z)}{v(z)},$$

holds on ∂G a. e. in sense of conformal mappings.

That means that

$$\overline{\varphi(\zeta)} = \frac{u(\varphi(\zeta))}{v(\varphi(\zeta))}$$
, a.e. on \mathbb{T}

for some(any) conformal mapping $\varphi : \mathbb{D} \mapsto G$.

Question

How large can be (accessible) boundary of Nevanlinna domain?

Examples

Nevanlinna domains: unit disk \mathbb{D} , Neumann's oval (image of ellipse with center at origin under $z \mapsto \frac{1}{z}$).

Non- Nevanlinna domains: ellipse, polygon.

$$G_{a,b} = \left\{ z = x + iy : \frac{x^2}{a^2} + \frac{y^2}{b^2} < 1 \right\}, \qquad b < a.$$

Boundary of $G_{a,b}$

$$\overline{z} = S_{a,b}(z), \qquad S_{a,b}(z) = rac{(a^2+b^2)z - 2ab\sqrt{z^2-c^2}}{c^2},$$
 $c = \sqrt{a^2-b^2}.$

Motivations

- Polyanalytic approximation
- Quadratutre domains. Schwarz functions;
- Univalent functions in model subspaces of Hardy space

Definition

We will say that function f is n-analytic if

$$f(z) = \overline{z}^{n-1} f_{n-1}(z) + ... + \overline{z} f_1(z) + f_0(z),$$

where f_k are holomorphic functions.

X - compact subset of $\mathbb C$

$$\mathcal{A}_n(X) := \{ f \in C(X) : f - \text{n-analytic in } \mathsf{Int}\, X \},$$

$$\mathcal{P}_n(X) = \operatorname{Clos}_{C(X)}\{P : P - \text{n-analytic polynomial}\}.$$

Question

For which X

$$\mathcal{P}_n(X) = \mathcal{A}_n(X)$$
?

Definition

We will say that function f is n-analytic if

$$f(z) = \overline{z}^{n-1} f_{n-1}(z) + ... + \overline{z} f_1(z) + f_0(z),$$

where f_k are holomorphic functions.

X - compact subset of $\mathbb C$

$$A_n(X) := \{ f \in C(X) : f - \text{n-analytic in } Int X \},$$

$$\mathcal{P}_n(X) = \operatorname{Clos}_{\mathcal{C}(X)}\{P : P - \text{n-analytic polynomial}\}.$$

Question

For which X

$$\mathcal{P}_n(X) = \mathcal{A}_n(X)$$
?

Theorem (Mergelyan 1952)

 $\mathcal{P}_1(X) = \mathcal{A}_1(X)$ if and only if the set $\mathbb{C} \setminus X$ is connected.

Theorem (Carmona 1985)

If $\mathbb{C} \setminus X$ is connected, then $\mathcal{P}_m(X) = \mathcal{A}_m(X)$ for any $m \geq 2$

Theorem (Carmona, Paramonov, Fedorovskiy 2002)

Let X be Caratheodory compact set, $m \geq 2$. We have $\mathcal{P}_m(X) = \mathcal{A}_m(X)$ if and only if every bounded component of $\mathbb{C} \setminus X$ is not a Nevanlinna domain.

For arbitrary compact X answer may depend on m.

Theorem (Mergelyan 1952)

 $\mathcal{P}_1(X) = \mathcal{A}_1(X)$ if and only if the set $\mathbb{C} \setminus X$ is connected.

Theorem (Carmona 1985)

If $\mathbb{C} \setminus X$ is connected, then $\mathcal{P}_m(X) = \mathcal{A}_m(X)$ for any $m \geq 2$.

Theorem (Carmona, Paramonov, Fedorovskiy 2002)

Let X be Caratheodory compact set, $m \geq 2$. We have $\mathcal{P}_m(X) = \mathcal{A}_m(X)$ if and only if every bounded component of $\mathbb{C} \setminus X$ is not a Nevanlinna domain.

For arbitrary compact X answer may depend on m.

Theorem (Mergelyan 1952)

 $\mathcal{P}_1(X) = \mathcal{A}_1(X)$ if and only if the set $\mathbb{C} \setminus X$ is connected.

Theorem (Carmona 1985)

If $\mathbb{C} \setminus X$ is connected, then $\mathcal{P}_m(X) = \mathcal{A}_m(X)$ for any $m \geq 2$.

Theorem (Carmona, Paramonov, Fedorovskiy 2002)

Let X be Caratheodory compact set, $m \geq 2$. We have $\mathcal{P}_m(X) = \mathcal{A}_m(X)$ if and only if every bounded component of $\mathbb{C} \setminus X$ is not a Nevanlinna domain.

For arbitrary compact X answer may depend on m.

Quadrature domains

Definition

A bounded domain Ω is a classical quadrature domain if there exists a finite set of points $\{z_k\} \subset \Omega$ such that

$$\int_{\Omega} f(z) dx dy = \sum_{j=1}^{n} \sum_{s=0}^{n_j-1} a_{js} f^{(s)}(z_j)$$

for every summable analytic function f.

Every quadrature domain is a Nevanlinna domain. Moreover nodes correspond to the poles of function u/v

Any boundary of quadrature domain (even in wide sense) Ω admits a one-sided Schwarz function

$$\overline{z} = S(z) \text{ on } \partial\Omega, S \in C(\overline{\Omega}), S - \text{ analytic in } \Omega \setminus K.$$

Theorem (Sakai 1991)

If Ω admits a one-sided Schwarz function, then $\partial\Omega$ consists of finitely many analytic curves.

The function u/v seems to be a rather weak generalization of the concept of a one-sided Schwarz function, since we are dealing with the equality of angular boundary values only for almost all points on \mathbb{T} .

Model subspaces of Hardy space

Pseudocontinuation

A domain G is a Nevanlinna domain if and only if a conformal mapping f of the unit disc \mathbb{D} onto G admits a Nevanlinna-type pseudocontinuation, so that there exist two functions $f_1, f_2 \in H^{\infty}(\overline{\mathbb{C}} \setminus \overline{\mathbb{D}})$ such that $f(\zeta) = f_1(\zeta)/f_2(\zeta)$ for a.e. $\zeta \in \mathbb{T}$.

Model subspaces of Hardy space, Θ -inner functions in \mathbb{D}

$$K_{\Theta} := (\Theta H^2)^{\perp} = H^2 \ominus \Theta H^2.$$

${ m Parametrization}$

Let G be a bounded simply connected domain and let f be some conformal mapping from \mathbb{D} onto G. If G is a Nevanlinna domain, then there exists an inner function Θ such that $f \in K_{\Theta}$. Reciprocally, if Θ is an inner function, then any bounded univalent function from the space K_{Θ} maps \mathbb{D} conformally onto some Nevanlinna domain.

Model subspaces of Hardy space

Pseudocontinuation

A domain G is a Nevanlinna domain if and only if a conformal mapping f of the unit disc \mathbb{D} onto G admits a Nevanlinna-type pseudocontinuation, so that there exist two functions $f_1, f_2 \in H^{\infty}(\overline{\mathbb{C}} \setminus \overline{\mathbb{D}})$ such that $f(\zeta) = f_1(\zeta)/f_2(\zeta)$ for a.e. $\zeta \in \mathbb{T}$.

Model subspaces of Hardy space, Θ -inner functions in \mathbb{D} ,

$$K_{\Theta} := (\Theta H^2)^{\perp} = H^2 \ominus \Theta H^2.$$

Parametrization

Let G be a bounded simply connected domain and let f be some conformal mapping from \mathbb{D} onto G. If G is a Nevanlinna domain, then there exists an inner function Θ such that $f \in \mathcal{K}_{\Theta}$. Reciprocally, if Θ is an inner function, then any bounded univalent function from the space \mathcal{K}_{Θ} maps \mathbb{D} conformally onto some Nevanlinna domain.

Model subspaces of Hardy space

Factorization of Θ .

$$\Theta(z) = \alpha B(z)S(z), \quad B(z) := \prod_{n=1}^{\infty} \frac{\overline{a_n}}{a_n} \cdot \frac{z - a_n}{\overline{a_n}z - 1},$$
$$S(z) = \exp\left(-\int_{\mathbb{T}} \frac{\zeta + z}{\zeta - z} d\mu_S(\zeta)\right).$$

Fedorovkiy, B.

Let Θ be an inner function in \mathbb{D} . The space \mathcal{K}_{Θ} contains a bounded univalent functions if and only if one of the following two conditions satisfied:

- i) Θ has zero in \mathbb{D} :
- ii) $\Theta = S$ is a singular inner function and measure μ_S is such that $\mu_S(E) > 0$ for some Carleson set $E \subset \mathbb{T}$, which means that $\int_{\mathbb{T}} \log \operatorname{dist}(\zeta, E) d\zeta > -\infty$.

Let Θ be a Blashke product. If $f \in K_{\Theta}$, then

$$f(z) = \sum_{n=1}^{\infty} \frac{c_n}{1 - \overline{a_n} z}.$$
 (1)

Almost unrectifiable boundary.

Theorem (Fedorovskiy 2006)

For any $\alpha \in (0,1)$ there exists a Nevanlinna domain with boundary in the class C^1 but not in the class $C^{1,\alpha}$.

Theorem (Baranov, Fedorovskiy 2011)

There exits an univalent (in \mathbb{D}) function f of the form (1) such that $f' \notin H^p$ for every p > 1.

Let Θ be a Blashke product. If $f \in K_{\Theta}$, then

$$f(z) = \sum_{n=1}^{\infty} \frac{c_n}{1 - \overline{a_n} z}.$$
 (1)

Almost unrectifiable boundary.

Theorem (Fedorovskiy 2006)

For any $\alpha \in (0,1)$ there exists a Nevanlinna domain with boundary in the class C^1 but not in the class $C^{1,\alpha}$.

Theorem (Baranov, Fedorovskiy 2011)

There exits an univalent (in \mathbb{D}) function f of the form (1) such that $f' \notin H^p$ for every p > 1.

Hedgehog domains.

Theorem (Mazalov 2015)

There exists a Nevanlinna domain with unrectifiable boundary.

Theorem (Mazalov 2017)

There exists a Nevanlinna domain G such that

$$\dim_H(\partial G) = \log_2 3.$$

For a given bounded simply connected domain G let us define the set $\partial_a G \subset \partial G$, which consists of all points of ∂G being accessible from G by some curve.

Question

How large can be accessible boundary of Nevanlinna domain?

Hedgehog domains.

Theorem (Mazalov 2015)

There exists a Nevanlinna domain with unrectifiable boundary.

Theorem (Mazalov 2017)

There exists a Nevanlinna domain G such that

$$\dim_H(\partial G) = \log_2 3.$$

For a given bounded simply connected domain G let us define the set $\partial_a G \subset \partial G$, which consists of all points of ∂G being accessible from G by some curve.

Question

How large can be accessible boundary of Nevanlinna domain?

Main results

Hedgehog with needles on needles.

Theorem (Borichev, Fedorovskiy, B. 2018)

For each $\beta \in [1,2]$ there exists a Nevanlinna domain G such that $\dim_H(\partial_a G) = \beta$. This domain has the form $G = f(\mathbb{D})$, where f is some function of the form (1) univalent in \mathbb{D} .

Univalent functions from Bernstein class (correponds to the case when $\mu_{\mathcal{S}} = \delta_1$).

Theorem (Borichev, Fedorovskiy, B. 2018)

For each $\beta \in [1,2]$ there exists a Nevanlinna domain G such that $\dim_H(\partial G) = \beta$ and $G = f(\mathbb{C}^+)$, where f is some univalent function from Bernstein class $\mathcal{B}_{[0,1]}$.

Main results

Hedgehog with needles on needles.

Theorem (Borichev, Fedorovskiy, B. 2018)

For each $\beta \in [1,2]$ there exists a Nevanlinna domain G such that $\dim_H(\partial_a G) = \beta$. This domain has the form $G = f(\mathbb{D})$, where f is some function of the form (1) univalent in \mathbb{D} .

Univalent functions from Bernstein class (correponds to the case when $\mu_{\mathcal{S}} = \delta_1$).

Theorem (Borichev, Fedorovskiy, B. 2018)

For each $\beta \in [1,2]$ there exists a Nevanlinna domain G such that $\dim_H(\partial G) = \beta$ and $G = f(\mathbb{C}^+)$, where f is some univalent function from Bernstein class $\mathcal{B}_{[0,1]}$.

Let \mathcal{RU}_n be a set of all rational functions of degree n which is univalent in \mathbb{D} . We know that $R(\mathbb{D})$ is a Nevanlinna domain for $R \in \mathcal{RU}_n$.

Let

$$\gamma_0 = \lim \sup_{n \to \infty} \sup_{R \in \mathcal{RU}_n, ||R||_{\infty} \le 1} \frac{\log \ell(R)}{\log n}, \qquad \ell(R) := \frac{1}{2\pi} \int_{\mathbb{T}} |R'(\zeta)| |d\zeta|.$$

Theorem (Baranov, Fedorovskiy 2013)

$$B_b(1) < \gamma_0 \le 1/2$$
.

 $B_b(1)$ is the integral means spectrum for bounded univalent functions. It is known that (Smirnov, Belyaev, Shimorin, Hedenmalm)

$$0,23 < B_b(1) \le 0,46$$

Let \mathcal{RU}_n be a set of all rational functions of degree n which is univalent in \mathbb{D} . We know that $R(\mathbb{D})$ is a Nevanlinna domain for $R \in \mathcal{RU}_n$.

Let

$$\gamma_0 = \lim \sup_{n \to \infty} \sup_{R \in \mathcal{RU}_n, \|R\|_{\infty} \le 1} \frac{\log \ell(R)}{\log n}, \qquad \ell(R) := \frac{1}{2\pi} \int_{\mathbb{T}} |R'(\zeta)| |d\zeta|.$$

Theorem (Baranov, Fedorovskiy 2013)

$$B_b(1) < \gamma_0 \le 1/2$$
.

 $B_b(1)$ is the integral means spectrum for bounded univalent functions. It is known that (Smirnov, Belyaev, Shimorin, Hedenmalm)

$$0,23 < B_b(1) \le 0,46.$$

Snake domain

Theorem (Borichev, Fedorovskiy, B. 2018)

For every $R \in \mathcal{RU}_n$, $||R||_{\infty} \leq 1$ we have

$$\frac{\sqrt{n}}{6\pi} \le \ell(R) \le 6\pi\sqrt{n}.$$

So, $\gamma_0 = 1/2$.

Theorem (Dolzhenko 1978, Spijker 1991 ($E = \mathbb{T}$))

Let R be a rational function of degree n with poles outside $\overline{\mathbb{D}}$. For any measurable set $E \subset \mathbb{T}$ of positive measure the estimate

$$\int_{\mathbb{T}} |R'(\zeta)| |d\zeta| \le n \|R\|_{\infty, E}$$

holds and is sharp.

Snake domain

Theorem (Borichev, Fedorovskiy, B. 2018)

For every $R \in \mathcal{RU}_n$, $||R||_{\infty} \leq 1$ we have

$$\frac{\sqrt{n}}{6\pi} \le \ell(R) \le 6\pi\sqrt{n}.$$

So, $\gamma_0 = 1/2$.

Theorem (Dolzhenko 1978, Spijker 1991 ($\boldsymbol{\mathcal{E}} = \mathbb{T}$))

Let R be a rational function of degree n with poles outside $\overline{\mathbb{D}}$. For any measurable set $E \subset \mathbb{T}$ of positive measure the estimate

$$\int_{\mathbb{T}} |R'(\zeta)| |d\zeta| \le n \|R\|_{\infty, E}$$

holds and is sharp.

Idea of the proof of some results

Put $\varepsilon = 10^{-9}$. Let $\{w_n\}_{n=0}^{\infty}$ be a bounded sequence. Put

$$a_n = w_{n+1} - w_n, \qquad Q_n^{\pm} = conv\{w_n, w_{n+1}, w_n \pm 2ia_n, w_{n+1} \pm 2ia_n\},$$

$$T_n^{\pm} = conv\{w_{n+1}, w_{n+1} \pm 2ia_{n+1}, w_{n+1} \pm 2ia_{n+1}\}.$$

We will assume that $|w_n| < 1$, $w_0 = 0$,

$$1 - \varepsilon < |a_{n+1}|/|a_n| < 1 + \varepsilon, \qquad |\arg a_{n+1}\overline{a_n}| \le \varepsilon,$$

$$Q_n^{\pm} \cap Q_m^{\pm} = \emptyset, Q_n^{\pm} \cap T_m^{\pm} = \emptyset \text{ for } |n-m| > 1.$$

Put

$$L = \bigcup_n [w_n, w_{n+1}], \qquad \Omega_L = \bigcup_n Q_n^{\pm} \cup T_n^{\pm}.$$

There exists a meromorphic function f which is univalent in \mathbb{C}^+ and $L \subset f(\mathbb{C}^+) \subset \Omega_I$.

