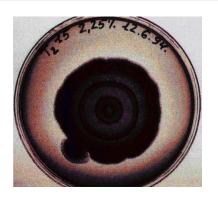
Scaling limits for planar aggregation with subcritical fluctuations

Amanda Turner
Lancaster University and University of Geneva

Joint work with James Norris and Vittoria Silvestri (Cambridge)

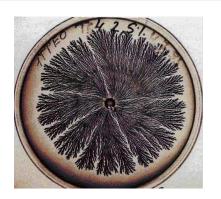
Bacterial growth in increasingly stressed conditions

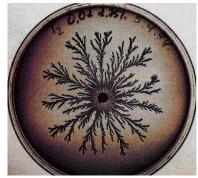


Source:

 $https://users.math.yale.edu/public_html/People/frame/Fractals/Panorama/Biology/Bacteria/Bacteria.html/People/frame/Fractals/Panorama/Biology/Bacteria/Bacteria.html/People/frame/Fractals/Panorama/Biology/Bacteria/Bacteria.html/People/frame/Fractals/Panorama/Biology/Bacteria/Bacteria.html/People/frame/Fractals/Panorama/Biology/Bacteria/Bacteria.html/People/frame/Fractals/Panorama/Biology/Bacteria/Bacteria.html/People/frame/Fractals/Panorama/Biology/Bacteria/Bacteria.html/People/frame/Fractals/Panorama/Biology/Bacteria/Bacteria.html/People/frame/Fractals/Panorama/Biology/Bacteria/Bacteria.html/People/frame/Fractals/Panorama/Biology/Bacteria/Bacteria.html/People/frame/Fractals/Panorama/Biology/Bacteria/Bacteria.html/People/frame/Fractals/Panorama/Biology/Bacteria/Bacte$

Bacterial growth in increasingly stressed conditions





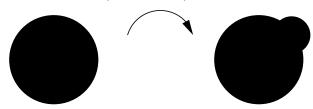
Source:

 $https://users.math.yale.edu/public_html/People/frame/Fractals/Panorama/Biology/Bacteria/Bacteria.html/People/frame/Fractals/Panorama/Biology/Bacteria/Bacteria.html/People/frame/Fractals/Panorama/Biology/Bacteria/Bacteria.html/People/frame/Fractals/Panorama/Biology/Bacteria/Bacter$

Conformal mapping representation of single particle

Let D_0 denote the exterior unit disk in the complex plane $\mathbb C$ and P denote a particle of logarithmic capacity c and attachment angle θ .

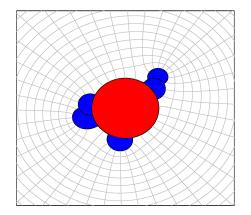
Use the unique conformal mapping $f_c^{\theta}: D_0 \to D_0 \setminus P$ that fixes ∞ as a mathematical description of the particle.



Conformal mapping representation of a cluster

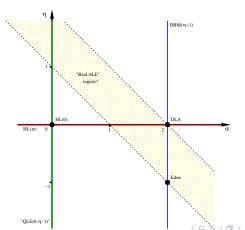
- Suppose $P_1, P_2,...$ is a sequence of particles, where P_n has capacity c_n and attachment angle θ_n , n = 1, 2,...
 - Set $\Phi_0(z) = z$.
 - Recursively define $\Phi_n(z) = \Phi_{n-1} \circ f_{c_n}^{\theta_n}(z)$, for n = 1, 2, ...
- This generates a sequence of conformal maps $\Phi_n : D_0 \to K_n^c$, where $K_{n-1} \subset K_n$ are growing compact sets, which we call clusters.
- By varying the sequences $\{\theta_n\}$ and $\{c_n\}$, it is possible to describe a wide class of growth models.

Cluster formed by iteratively composing conformal mappings



Aggregate Loewner Evolution, ALE(α, η, σ)

 $\bullet \ \theta_n \ \text{distributed} \propto |\Phi'_{n-1}(e^{\sigma+i\theta})|^{-\eta}d\theta; \quad \ c_n = c|\Phi'_{n-1}(e^{\sigma+i\theta_n})|^{-\alpha}.$



Previous results

- Almost all previous work relates to HL(0) as particle maps are i.i.d. so the model is mathematically the most tractable.
 - Norris and T. (2012) showed scaling limit of HL(0) is a growing disk with a branching structure related to the Brownian web.
 - Silvestri (2017) showed fluctuations converge to a log-correlated Fractional Gaussian Field.
- Very few results for $HL(\alpha)$ with $\alpha \neq 0$.
 - Rohde and Zinsmeister (2005) obtained estimates on the dimension of scaling limits for a regularized version of $HL(\alpha)$ when $\alpha > 0$.
 - Sola, T., Viklund (2015) showed scaling limit of regularized $HL(\alpha)$ is a growing disk for all α provided regularization parameter σ is large enough.
- Sola, T., Viklund (2018) showed scaling limit of $ALE(\alpha, \eta, \sigma)$ is a single slit if $\alpha \geq 0$ and $\eta > 1$ when using slit particles, provided σ is very small.

Phase transition

Open Problem:

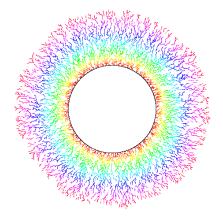
Does ALE(α, η, σ) exhibit a phase transition from disks to non-disks along the line $\alpha + \eta = 1$ (for 'broad' choices of the regularization parameter σ)?

- Longstanding conjectures:
 - $HL(\alpha)$ has a phase transition at $\alpha = 1$.
 - DBM(η) has a phase transition at $\eta = 0$.

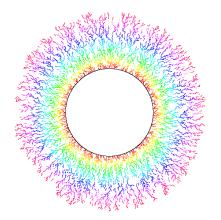
Scaling limits for ALE $(0, \eta, \sigma)$

- Natural to consider particle sizes that are very small compared to the overall size of the cluster and scaling limits where $n \to \infty$ while $c \to 0$.
- Models are difficult to analyse mathematically as all models (except HL(0)) exhibit long-range dependencies.
- Additional difficulty, when $\alpha \neq 0$, is total capacity of cluster is random and cannot, a priori, be bounded above or below, so unclear at what rate to let $n \to \infty$.
- When $\alpha = 0$, K_n has capacity cn, so natural to look for scaling limits when n = |T/c|.

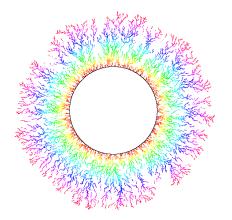
ALE(0,0) cluster with 8,000 particles for $c = 10^{-4}$



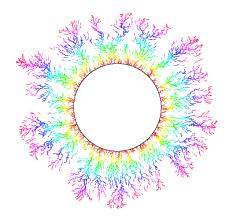
ALE(0,0.5,0.02) cluster with 8,000 particles for $c = 10^{-4}$



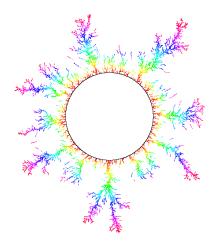
ALE(0,1,0.02) cluster with 8,000 particles for $c = 10^{-4}$



ALE(0,1.5,0.02) cluster with 8,000 particles for $c = 10^{-4}$



ALE(0,2,0.02) cluster with 8,000 particles for $c = 10^{-4}$



Disk theorem for ALE $(0, \eta, \sigma)$ when $\eta < 1$

Theorem:

For all $\eta<1$, $T\in[0,\infty)$, $\epsilon\in(0,1/3)$ and $e^{\sigma}\geq 1+c^{1/3-\epsilon}$, there exists a constant C such that, with high probability, for all $n\leq T/c$ and $|z|\geq 1+c^{1/3-\epsilon}$,

$$|\Phi_n(z)-e^{cn}z|\leq \frac{Cc^{1/2-\epsilon}}{r}\left(\left(1+\log\left(\frac{r}{r-1}\right)\right)^{1/2}+\frac{c^{1/2}}{(e^{\sigma}-1)^2}\right).$$

(Almost) Theorem:

The same result holds for ALE(α, η, σ) when $\alpha + \eta < 1$ (with e^{cn} replaced by $\exp(\sum_{k=1}^{n} c_k)$).

Disk theorem for ALE $(0, \eta, \sigma)$ when $\eta = 1$

Theorem:

Suppose $\eta=1$. For all $T\in[0,\infty)$, $\epsilon\in(0,1/5)$ and $e^{\sigma}\geq 1+c^{1/5-\epsilon}$, there exists a constant C such that, with high probability, for all $n\leq T/c$ and $|z|\geq 1+c^{1/5-\epsilon}$,

$$|\Phi_n(z) - e^{cn}z| \le \frac{Cc^{1/2-\epsilon}}{r} \left(\left(\frac{r}{r-1}\right)^{1/2} + \frac{c^{1/2}}{(e^{\sigma}-1)^3} \right).$$

(Almost) Theorem:

The same result holds for ALE(α, η, σ) when $\alpha + \eta = 1$ (with e^{cn} replaced by $\exp(\sum_{k=1}^{n} c_k)$).

1 minute proof $(\eta = 0)$

$$\Phi_n(z) - e^{cn}z = \sum_{k=1}^n \Phi_k(e^{c(n-k)}z) - \Phi_{k-1}(e^{c(n-k-1)}z).$$

But

$$\mathbb{E}\left[\Phi_{k}(z) | \mathcal{F}_{k-1}\right] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \Phi_{k-1}(e^{i\theta} f_{c}(e^{-i\theta} z)) d\theta$$

$$= \frac{1}{2\pi i} \int_{|w|=1} \frac{\Phi_{k-1}(w f_{c}(z w^{-1}))}{w} dw$$

$$= \lim_{w \to 0} \Phi_{k-1}(w f_{c}(z w^{-1}))$$

$$= \Phi_{k-1}(e^{c} z).$$

So $\Phi_n(z) - e^{cn}z$ is a martingale sum and the result follows by your favourite martingale inequality.

Proof idea $(\eta \neq 0)$

Can write

$$\Phi_n(z) = \Phi_{n-1}(e^c z) + L_n(z) + M_n(z) + R_n(z)$$

where $L_n(z)$ is linear in Φ_{n-1} , $M_n(z)$ is a martingale difference and $R_n(z)$ contains higher order error terms.

Therefore there exists an operator P such that

$$\Phi_n(z) - e^{cn}z = \sum_{k=1}^n P^{n-k}(M_k(z) + R_k(z)).$$

Main work is showing right-hand side is small. We use Marcinkiewicz to control the operator when $\eta \leq 1$ but additional difficulties exist as $M_k(z)$ and $R_k(z)$ depend on Φ'_{k-1} .

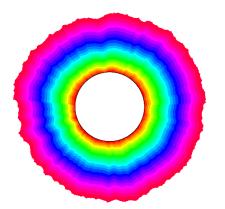
Universality of particle shapes

Results apply to any particle shape P with $\gamma \geq 1$ satisfying

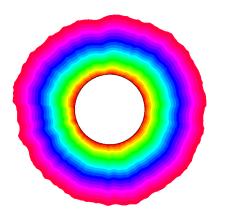
$$\log \frac{f_c(z)}{z} = c \frac{\gamma z + 1}{\gamma z - 1} + O\left(\frac{c^{3/2}}{(|z| - 1)|z - 1|}\right).$$

This includes particles that fit within a radius $\sim c^{1/2}$ of 1, but also certain non-local particles.

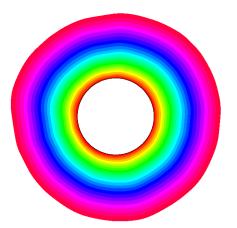
$\mathsf{ALE}(0,0)$ cluster with 10,000 non-local particles for $c=10^{-4}$



Level lines of form $\Phi_n(re^{i\theta})$ in ALE(0,0) cluster with 10,000 non-local particles for $c=10^{-4}$ and $r-1=c^{1/2}$



Level lines of form $\Phi_n(re^{i\theta})$ in ALE(0,0) cluster with 10,000 non-local particles for $c=10^{-4}$ and $r-1=c^{1/4}$



Pointwise fluctuations for ALE $(0, \eta, \sigma)$ when $\eta \leq 1$

Set

$$\mathcal{F}_n(z) = c^{-1/2} (e^{-cn} \Phi_n(z) - z)$$

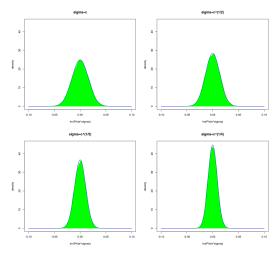
and let $n(t) = \lfloor t/c \rfloor$.

Under the assumptions above, but with $e^{\sigma} \geq 1 + c^{1/4 - \epsilon}$ when $\eta < 1$ and $e^{\sigma} \geq 1 + c^{1/6 - \epsilon}$ when $\eta = 1$,

$$\mathcal{F}_{n(t)}(z) \to \mathcal{N}\left(0, \sum_{m=0}^{\infty} \frac{1 - e^{-2(m(1-\eta)+1)t}}{m(1-\eta)+1} |z|^{-2m}\right).$$

(Note that if $\eta > 1$ would need $|z| > e^{(\eta - 1)t}$ for this sum to converge – beginnings of a phase transition?)

Fluctuation distributions in ALE(0,0)



Global fluctuations for ALE $(0, \eta, \sigma)$ when $\eta \leq 1$

Under the assumptions above, $\mathcal{F}_{n(t)}(z) o \mathcal{W}_t(z)$ where

$$\dot{\mathcal{W}}_t(z) = (1 - \eta)z\mathcal{W}_t'(z) - \mathcal{W}_t(z) + \sqrt{2}\xi_t(z).$$

Here $\xi_t(z)$ is complex space-time white noise on the circle, analytically continued to the exterior unit disk.

Global fluctuations for ALE $(0, \eta, \sigma)$ when $\eta \leq 1$

Specifically

$$W_t(z) = \sum_{m=0}^{\infty} (A_t^m + iB_t^m)z^{-m}$$

where

$$\begin{split} dA_t^m &= - \left(m(1 - \eta) + 1 \right) A_t^m dt + \sqrt{2} d\beta_t^m \\ dB_t^m &= - \left(m(1 - \eta) + 1 \right) B_t^m dt + \sqrt{2} d\beta_t'^m. \end{split}$$

Here $\beta_t^m, \beta_t^{\prime m}$ are i.i.d. Brownian motions for $m=0,1,\ldots$

Remarks

- The map $z \mapsto \mathcal{W}_t(z)$ is determined (by analytic extension) by the boundary process $\theta \mapsto \mathcal{W}_t(e^{i\theta})$.
- When $\eta = 0$, these boundary fluctations are the same as for internal diffusion limited aggregation (IDLA).
- As $t \to \infty$, $\mathcal{W}_t(e^{i\theta})$ converges to a Gaussian field.
 - When $\eta=0$, $\mathcal{W}_{\infty}(e^{i\theta})$ is known as the augmented Gaussian Free Field.
 - When $\eta < 1$, $\operatorname{Cov} \left(\mathcal{W}_{\infty}(e^{ix}), \mathcal{W}_{\infty}(e^{iy}) \right) \asymp \log |x y|$.
 - When $\eta = 1$, $W_{\infty}(e^{i\theta})$ is complex white noise.

References

- [1] M.B.Hastings and L.S.Levitov, Laplacian growth as one-dimensional turbulence, Physica D 116 (1998).
- [2] F.Johansson Viklund, A.Sola, A.Turner, Small particle limits in a regularized Laplacian random growth model, CMP, 334 (2015).
- [3] J.Norris, V.Silvetsri, A.Turner, Scaling limits for planar aggregation with subcritical fluctuations, arXiv:1902.01376.
- [4] J.Norris, A.Turner, Hastings-Levitov aggregation in the small-particle limit, CMP, 316, 809-841 (2012).
- [5] S.Rohde, M.Zinsmeister Some remarks on Laplacian growth. Topology and its Applications, 152 (2005).
- [6] A.Sola, A.Turner, F.Viklund, One-dimensional scaling limits in a planar Laplacian random growth model, arXiv:1804.08462.
- [7] V.Silvestri, Fluctuation results for Hastings-Levitov planar growth. PTRF, 167, 417-460, (2017). ↓□▶ ↓□▶ ↓□▶ ↓□▶ □ ♥Q♠