Elliptic dimer models

AND
 genus i Harnack curves

Béatrice de Tilière
University Paris-Dauphine
work in progress with

Cédric Boutillier (Sorbonne) \& David Cimasoni (Genève)

Les Diablerets, February 11, 2020

Outline

- Dimer model
- Dimer model and Harnack curves
- Minimal isoradial immersions
- Elliptic dimer model
- Results

Dimer model: definition

- Planar, bipartite graph $\mathrm{G}=(\mathrm{V}=\mathrm{B} \cup \mathrm{W}, \mathrm{E})$.

- Dimer configuration M: subset of edges s.t. each vertex is incident to exactly one edge of $\mathrm{M} \leadsto \mathcal{M}(\mathrm{G})$.
- Positive weight function on edges: $v=\left(v_{\mathrm{e}}\right)_{\mathrm{e} \in \mathrm{E}}$.
- Dimer Boltzmann measure (G finite):

$$
\forall M \in \mathcal{M}(\mathrm{G}), \quad \mathbb{P}_{\text {dimer }}(\mathrm{M})=\frac{\prod_{\mathrm{e} \in \mathrm{M}} v_{\mathrm{e}}}{Z_{\mathrm{dimer}}(\mathrm{G}, v)}
$$

where $Z_{\text {dimer }}(\mathrm{G}, v)$ is the dimer partition function.

Dimer model: definition

- Planar, bipartite graph $G=(V=B \cup W, E)$.

- Dimer configuration M: subset of edges s.t. each vertex is incident to exactly one edge of $\mathrm{M} \leadsto \mathcal{M}(\mathrm{G})$.
- Positive weight function on edges: $v=\left(v_{\mathrm{e}}\right)_{\mathrm{e} \in \mathrm{E}}$.
- Dimer Boltzmann measure (G finite):

$$
\forall M \in \mathcal{M}(\mathrm{G}), \quad \mathbb{P}_{\text {dimer }}(\mathrm{M})=\frac{\prod_{\mathrm{e} \in \mathrm{M}} v_{\mathrm{e}}}{Z_{\mathrm{dimer}}(\mathrm{G}, v)}
$$

where $Z_{\text {dimer }}(\mathrm{G}, v)$ is the dimer partition function.

Dimer model: Kasteleyn matrix

- Kasteleyn matrix (Percus-Kuperberg version)
- Edge $w b \leadsto$ angle $\phi_{w b}$ s.t. for every face $w_{1}, b_{1}, \ldots, w_{k}, b_{k}$:

$$
\sum_{j=1}^{k}\left(\phi_{w_{j} b_{j}}-\phi_{w_{j+1} b_{j}}\right) \equiv(k-1) \pi \bmod 2 \pi
$$

- K is the corresponding twisted adjacency matrix.

$$
\mathrm{K}_{w, b}= \begin{cases}v_{w b} \mathrm{e}^{i \phi_{w b}} & \text { if } w \sim b \\ 0 & \text { otherwise }\end{cases}
$$

Dimer model: founding results

- Assume G finite.

Theorem ([Kasteleyn'6i] [Kuperberg'98])

$$
Z_{\operatorname{dimer}}(\mathrm{G}, v)=|\operatorname{det}(\mathrm{K})| .
$$

Theorem (Kenyon'97)
Let $\mathcal{E}=\left\{\mathrm{e}_{1}=w_{1} b_{1}, \ldots, \mathrm{e}_{n}=w_{n} b_{n}\right\}$ be a subset of edges of G , then:

$$
\mathbb{P}_{\text {dimer }}\left(\mathrm{e}_{1}, \ldots, \mathrm{e}_{n}\right)=\left|\left(\prod_{j=1}^{n} \mathrm{~K}_{w_{j}, b_{j}}\right) \operatorname{det}\left(\mathrm{K}^{-1}\right) \varepsilon\right|,
$$

where $\left(\mathrm{K}^{-1}\right)_{\mathcal{E}}$ is the sub-matrix of K^{-1} whose rows/columns are indexed by black/white vertices of \mathcal{E}.

- G infinite: Boltzmann measure \leadsto Gibbs measure
- Periodic case [Cohn-Kenyon-Propp'01], [Ke.-Ok.-Sh.'06]
- Non-periodic [dT'07], [Boutillier-dT'10], [B-dT-Raschel'19]

Dimer model: periodic case

- Assume G is bipartite, infinite, \mathbb{Z}^{2}-periodic.

- Exhaustion of G by toroidal graphs: $\left(\mathrm{G}_{n}\right)=\left(\mathrm{G} / n \mathbb{Z}^{2}\right)$.

Dimer model: periodic case

- Fundamental domain: G_{1}

- Let K_{1} be the Kasteleyn matrix of fundamental domain G_{1}.
- Multiply edge-weights by $\mathrm{z}, \mathrm{z}^{-1}, \mathrm{w}, \mathrm{w}^{-1} \rightarrow \mathrm{~K}_{1}(\mathrm{z}, \mathrm{w})$.
- The characteristic polynomial is:

$$
P(\mathrm{z}, \mathrm{w})=\operatorname{det} \mathrm{K}_{1}(\mathrm{z}, \mathrm{w}) .
$$

Example: weight function $v \equiv 1, P(\mathrm{z}, \mathrm{w})=5-\mathrm{z}-\frac{1}{\mathrm{z}}-\mathrm{w}-\frac{1}{\mathrm{w}}$.

Dimer model: periodic case

- Fundamental domain: G_{1}

- Let K_{1} be the Kasteleyn matrix of fundamental domain G_{1}.
- Multiply edge-weights by $\mathrm{z}, \mathrm{z}^{-1}, \mathrm{w}, \mathrm{w}^{-1} \rightarrow \mathrm{~K}_{1}(\mathrm{z}, \mathrm{w})$.
- The characteristic polynomial is:

$$
P(\mathrm{z}, \mathrm{w})=\operatorname{det} \mathrm{K}_{1}(\mathrm{z}, \mathrm{w}) .
$$

Example: weight function $v \equiv 1, P(\mathrm{z}, \mathrm{w})=5-\mathrm{z}-\frac{1}{\mathrm{z}}-\mathrm{w}-\frac{1}{\mathrm{w}}$.

Dimer model: spectral curve

- The spectral curve:

$$
\mathcal{C}=\left\{(\mathrm{z}, \mathrm{w}) \in\left(\mathbb{C}^{*}\right)^{2}: P(\mathrm{z}, \mathrm{w})=0\right\} .
$$

- Amoeba: image of \mathcal{C} through the $\operatorname{map}(\mathrm{z}, \mathrm{w}) \mapsto(\log |\mathrm{z}|, \log |\mathrm{w}|)$.

Amoeba of the square-octagon graph

Dimer model and Harnack curves

Theorems

- Spectral curves of bipartite dimers [Ke.-Ok.-Sh.O6] [Ke.-Ok.'06] Harnack curves with points on ovals.
- Spectral curves of isoradial, bipartite dimer models with critical weights [Kenyon '02] $\stackrel{\text { [Kenyon-Okounkov'06] }}{\longleftrightarrow}$ Harnack curves of genus 0 .
[Goncharov-Kenyon '13]
- Spectral curves of minimal, bipartite dimers Harnack curves with points on ovals.

Explicit (\longrightarrow) map

- [Fock'15] Explicit (\longleftarrow) map for all algebraic curves. (no check on positivity).

Dimer model and Harnack curves of genus i

Theorem ([Boutillier-dT-Cimasonizo+])
Spectral curves of minimal, bipartite dimer models with Fock's weights
\longleftrightarrow
Harnack curves of genus 1 with a point on the oval.

Quad-graph, train-tracks

- Infinite, planar, embedded graph G; embedded dual graph G^{*}.
- Corresponding quad-graph $\mathrm{G}^{\triangleright}$, train-tracks.

Quad-graph, train-tracks

- Infinite, planar, embedded graph G; embedded dual graph G^{*}.
- Corresponding quad-graph G°, train-tracks.

Quad-graph, train-tracks

- Infinite, planar, embedded graph G; embedded dual graph G^{*}.
- Corresponding quad-graph G°, train-tracks.

Quad-graph, train-tracks

- Infinite, planar, embedded graph G; embedded dual graph G^{*}.
- Corresponding quad-graph G°, train-tracks.

Quad-graph, train-tracks

- Infinite, planar, embedded graph G; embedded dual graph G*.
- Corresponding quad-graph $\mathrm{G}^{\triangleright}$, train-tracks.

Quad-graph, train-tracks

- Infinite, planar, embedded graph G; embedded dual graph G^{*}.
- Corresponding quad-graph G°, train-tracks.

Isoradial graphs

- An isoradial embedding of an infinite, planar graph G is an embedding such that all of its faces are inscribed in a circle of radius 1 , and such that the center of the circles are in the interior of the faces [Duffin] [Mercat] [Kenyon].
- Equivalent to: the quad-graph G° is embedded so that of all its faces are rhombi.

Theorem (Kenyon-Schlencker’o4)

An infinite planar graph G has an isoradial embedding iff

Isoradial embeddings

Isoradial embeddings

Isoradial embeddings

Minimal graphs

- If the graph G is bipartite, train-tracks are naturally oriented (white vertex of the left, black on the right).

Minimal graphs

- If the graph G is bipartite, train-tracks are naturally oriented (white vertex of the left, black on the right).
- A bipartite, planar graph G is minimal if

[Thurston'04] [Gulotta'08] [Ishii-Ueda'11] [Goncharov-Kenyon'13]

Immersions of minimal graphs

- A minimal isoradial immersion of an infinite planar graph G is an immersion of the quadgraph G° such that:
- all of the faces are rhombi (flat or reversed)

- the immersion is flat: the sum of the rhombus angles around every vertex and every face is equal to 2π.

Proposition (Boutillier-dT-Cimasoni'i 9)

The flatness condition is equivalent to :

- around every vertex there is at most one reversed rhombus
- around every face, the cyclic order of the vertices differ by at most disjoint transpositions in the embedding and in the immersion.

Theorem (Boutillier-dT-Cimasoni'ig)
An infinite, planar, bipartite graph G has a minimal isoradial immersion iff it is minimal.

Dimer version of Fock's weights

- Tool 1. Jacobi's (first) theta function.
- Parameter $q=e^{i \pi \tau}, \mathfrak{J}(\tau)>0, \Lambda(q)=\pi \mathbb{Z}+\pi \tau \mathbb{Z}, \mathbb{T}(q)=\mathbb{C} / \Lambda$.

$$
\theta(z)=2 q^{\frac{1}{4}} \sum_{n=0}^{\infty}(-1)^{n} q^{n(n+1)} \sin (2 n+1) z .
$$

- Allows to represent $\Lambda(q)$-periodic meromorphic functions.
- $\theta(z) \sim 2 q^{\frac{1}{4}} \sin (z)$ as $q \rightarrow 0$.
- Tool 2. Isoradially immersed, bipartite, minimal graph G.
- each train-track T is assigned direction $e^{i 2 \alpha_{T}}$.
- each edge $e=w b$ is assigned train-track directions $e^{2 i \alpha}, e^{2 i \beta}$, and a half-angle $\beta-\alpha \in[0, \pi)$.

Dimer version of Fock's adjacency matrix

- Tool 3. Discrete Abel map [Fock] $D \in(\mathbb{R} / \pi \mathbb{Z})^{\mathrm{V}\left(G^{\circ}\right)}$
- Fix face f_{0} and set $D\left(f_{0}\right)=0$,
- o: degree -1 , •: degree 1 , faces: degree 0 ,
- when crossing T : increase/decrease D by α_{T} accordingly.

- Point $t \in \frac{\pi}{2} \tau+\mathbb{R}$.
- Fock's adjacency matrix

$$
\mathrm{K}_{w, b}^{(t)}= \begin{cases}\frac{\theta(\beta-\alpha)}{\theta(t+D(b)-\beta) \theta(t+D(w)-\alpha)} & \text { if } w \sim b \\ 0 & \text { otherwise }\end{cases}
$$

Dimer version of Fock's adjacency matrix

Lemma (Boutillier-dT-Cimasoni'20+])

Under the above assumptions, the matrix $\mathrm{K}^{(t)}$ is a Kasteleyn matrix for a dimer model (positive weights) on G .

Functions in the kernel of $\mathrm{K}^{(t)}$

- Define $g^{(t)}: \mathrm{V}^{\diamond} \times \mathrm{V}^{\diamond} \times \mathbb{C} \rightarrow \mathbb{C}$
- $g_{x, X}^{(t)}(u)=1$,
- If $f \sim w, g_{f, w}^{(t)}(u)=g_{w, f}^{(t)}(u)^{-1}=\frac{\theta(u+t+D(w))}{\theta(u-\alpha)}$,
. If $f \sim b, g_{b, f}^{(t)}(u)=g_{f, b}^{(t)}(u)^{-1}=\frac{\theta(u-t-D(b))}{\theta(u-\alpha)}$,
where $e^{2 i \alpha}$ is the direction of the t crossing the edge.
- If distance ≥ 2, take product along path in G°.

Property of the function $g^{(t)}$

Lemma ([Fock'i5] [Boutillier-dT-Cimason'2o+])

- The function $g^{(t)}$ is well defined.
- The function $g^{(t)}$ is in the kernel of $\mathrm{K}^{(t)}$:

Proof.

$$
\forall w \in \mathrm{~W}, x \in \mathrm{~V}^{\diamond}, \quad \sum_{b: b \sim w} \mathrm{~K}_{w, b}^{(t)} g_{b, x}^{(t)}(u)=0
$$

Weierstrass identity: $s, t \in \mathbb{T}(q), a, b, c \in \mathbb{C}$,

$$
\begin{aligned}
& \frac{\theta(b-a)}{\theta(s-a) \theta(s-b)} \frac{\theta(u+s-a-b)}{\theta(u-a) \theta(u-b)}+\frac{\theta(c-b)}{\theta(s-b) \theta(s-c)} \frac{\theta(u+s-b-c)}{\theta(u-b) \theta(u-c)}+ \\
& +\frac{\theta(a-c)}{\theta(s-c) \theta(s-a)} \frac{\theta(u+s-c-a)}{\theta(u-c) \theta(u-a)}=0 .
\end{aligned}
$$

Explicit parameterization of the spectral curve

- Assume G is \mathbb{Z}^{2}-periodic. Define the map ψ,

$$
\begin{aligned}
\psi: \mathbb{T}(q) & \rightarrow \mathbb{C}^{2} \\
u & \mapsto \psi(u)=(\mathrm{z}(u), \mathrm{w}(u))
\end{aligned}
$$

where $\mathrm{z}(u)=g_{b_{0}, b_{0}+(1,0)}^{(t)}(u), \mathrm{w}(u)=g_{b_{0}, b_{0}+(0,1)}^{(t)}(u)$.

Explicit parameterization of the spectral curve

Proposition ([B-dT-C'20+])
The map ψ is an explicit birational parameterization of the spectral curve \mathcal{C} of the dimer model with Kasteleyn matrix $\mathrm{K}^{(t)}$.
The real locus of \mathcal{C} is the image under ψ of the set $\mathbb{R} / \pi \mathbb{Z} \times\left\{0, \frac{\pi}{2} \tau\right\}$, where the connected component with ordinate $\frac{\pi}{2} \tau$ is bounded and the other is not.
(The spectral curve is independent of t).

Gibbs measures for bipartite dimer models

Theorems (Kenyon-Okounkov-Sheffield’o6)

- The dimer model on a \mathbb{Z}^{2}-periodic, bipartite graph has a two-parameter family of ergodic Gibbs measures indexed by the slope (h, v), i.e., by the average horizontal/vertical height change.
- The latter are obtained as weak limits of Boltzmann measures with magnetic field coordinates $\left(B_{\chi}, B_{y}\right)$.
- The phase diagram is given by the amoeba of the spectral curve \mathcal{C}.

Local expression for Gibbs measures, genus i

Suppose t fixed. Omit it from the notation.

Theorem (Boutillier-dT-Cimasoni'2o+)

The 2-parameter set of EGM of the dimer model with Kasteleyn matrix K is $\left(\mathbb{P}^{u_{0}}\right)_{u_{0} \in D}$, where \forall subset of edges $\mathcal{E}=\left\{\mathrm{e}_{1}=w_{1} b_{1}, \ldots, e_{n}=w_{n} b_{n}\right\}$,

$$
\mathbb{P}^{u_{0}}\left(e_{1}, \ldots, e_{n}\right)=\left(\prod_{j=1}^{n} \mathrm{~K}_{w_{j}, b_{j}}\right) \operatorname{det}\left(\mathrm{A}^{u_{0}}\right)_{\varepsilon},
$$

where $\forall b \in \mathrm{~B}, w \in \mathrm{~W}, \quad \mathrm{~A}_{b, w}^{u_{0}}=\frac{i \theta^{\prime}(0)}{2 \pi} \int_{\mathrm{C}_{b, w}^{u_{0}}} g_{b, w}(u) d u$.
Moreover, when u_{0}

- is the unique point corresponding to the top boundary of D, the dimer model is gaseous,
- is in the interior of D, the dimer model is liquid,
- is a point corresponding to a cc of the lower boundary, the model is solid.

Local expressions for ergodic Gibbs measures, genus i

- Domain D.

Top boundary identified with a single point

Each connected component is identified with a single point

- Contours of integration.

Corollary
The slope of the Gibbs measure $\mathbb{P}^{u_{0}}$ is:

$$
h^{u_{0}}=\frac{1}{2 \pi i} \int_{\mathrm{C}^{u_{0}}} \frac{d}{d u}(\log \mathrm{w}(u)) d u, \quad v^{u_{0}}=\frac{1}{2 \pi i} \int_{\mathrm{C}^{u_{0}}} \frac{d}{d u}(\log \mathrm{z}(u)) d u .
$$

Idea of the proof

- Proof 1. Using [C-K-P], [K-O-S] the Gibbs measure \mathbb{P}^{B} with magnetic field coordinates $B=\left(B_{x}, B_{y}\right)$ has the following expression on cylinder sets:

$$
\mathbb{P}^{\left(B_{x}, B_{y}\right)}\left(e_{1}, \ldots, e_{k}\right)=\left(\prod_{j=1}^{k} \mathrm{~K}_{w_{j}, b_{j}}\right) \operatorname{det}\left(\mathrm{A}^{B}\right)_{\varepsilon},
$$

where

$$
\mathrm{A}_{b+(m, n), w}^{B}=\int_{\mathbb{T}_{B}} \frac{Q(\mathrm{z}, \mathrm{w})_{b, w}}{P(\mathrm{z}, \mathrm{w})} \mathrm{z}^{-m} \mathrm{w}^{-n} \frac{d \mathrm{w}}{2 i \pi \mathrm{w}} \frac{d \mathrm{z}}{2 i \pi \mathrm{z}}
$$

- Perform one integral by residues.
- Do the change of variable $u \mapsto \psi(u)=(z(u), \mathrm{w}(u))$.
- Non-trivial cancellation!

Idea of the proof

- Proof 2. Show that for every $u_{0}, A^{u_{0}}$ is an inverse of K.
- Use Weierstrass identity.
- Show that the contours of integration are such that one has 1 on the diagonal.
Use uniqueness statements of inverse operators.

Consequences

- Suitable for asymptotics.
- Explicit local expressions for edge probabilites.

Connection to previous work

- Genus 0. [Kenyon'02].
- Genus 1. Two specific cases were handled before:
- the bipartite graph arising from the Ising model [Boutillier-dT-Raschel'20]
- the $Z^{(t)}$-Dirac operator [dT'18] $\leadsto \leadsto$ massive discrete holomorphic functions.

Perspectives

- 2-parameter family of Gibbs measures for non-periodic graphs. Missing: every finite, simply connected subgraph of an isoradial immersion can be embedded in a bipartite, \mathbb{Z}^{2}-periodic isoradial immersion.
- Extension to genus $g>1$.
- [Fock] gives a candidate for the dimer model.
- Weierstrass identity $\leadsto \rightarrow$ Fay's trisecant identity.

