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• Dimer model
• Dimer model and Harnack curves
• Minimal isoradial immersions
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D : 
I Planar, bipartite graph G = (V = B ∪W,E).

I Dimer configuration M: subset of edges s.t. each vertex is
incident to exactly one edge of M  M(G).

I Positive weight function on edges: ν = (νe)e∈E.
I Dimer Boltzmann measure (G finite):

∀M ∈M(G), Pdimer(M) =

∏
e∈M

νe

Zdimer(G, ν)
.

where Zdimer(G, ν) is the dimer partition function.
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I Kasteleyn matrix (Percus-Kuperberg version)
· Edge wb  angle φwb s.t. for every face w1, b1, . . . ,wk, bk:

k∑
j=1

(φwjbj − φwj+1bj ) ≡ (k − 1)π mod 2π.

· K is the corresponding twisted adjacency matrix.

Kw,b =

νwbeiφwb if w ∼ b
0 otherwise.



D :  

I Assume G finite.

T ([K’] [K’])

Zdimer(G, ν) = | det(K)|.

T (K’)
Let E = {e1 = w1b1, . . . , en = wnbn} be a subset of edges of G, then:

Pdimer(e1, . . . , en) =
∣∣∣∣( n∏

j=1
Kwj,bj

)
det(K−1)E

∣∣∣∣,
where (K−1)E is the sub-matrix of K−1 whose rows/columns are indexed
by black/white vertices of E.

I G infinite: Boltzmann measure  Gibbs measure
· Periodic case [Cohn-Kenyon-Propp’01], [Ke.-Ok.-Sh.’06]
· Non-periodic [dT’07], [Boutillier-dT’10], [B-dT-Raschel’19]



D :  

I Assume G is bipartite, infinite, Z2-periodic.

I Exhaustion of G by toroidal graphs: (Gn) = (G/nZ2).



D :  

I Fundamental domain: G1

I Let K1 be the Kasteleyn matrix of fundamental domain G1.
I Multiply edge-weights by z, z−1,w,w−1 → K1(z,w).
I The characteristic polynomial is:

P(z,w) = det K1(z,w).

Example: weight function ν ≡ 1, P(z,w) = 5 − z − 1
z − w − 1

w .
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D :  
I The spectral curve:

C = {(z,w) ∈ (C∗)2 : P(z,w) = 0}.

I Amoeba: image of C through the map (z,w) 7→ (log |z|, log |w|).

Amoeba of the square-octagon graph
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T
I Spectral curves of bipartite dimers

[Ke.-Ok.-Sh.’06] [Ke.-Ok.’06]
←→ Harnack curves with points on ovals.

I Spectral curves of isoradial, bipartite dimer models with critical
weights [Kenyon ’02]

[Kenyon-Okounkov’06]
←→ Harnack curves of genus 0.

I Spectral curves of minimal, bipartite dimers
[Goncharov-Kenyon ’13]

←→

Harnack curves with points on ovals.

Explicit (−→) map

I [Fock’15] Explicit (←−) map for all algebraic curves.
(no check on positivity).
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T ([B-T-C’+])
Spectral curves of minimal, bipartite dimer models with Fock’s weights
←→

Harnack curves of genus 1 with a point on the oval.
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I Infinite, planar, embedded graph G; embedded dual graph G∗.
I Corresponding quad-graph G�, train-tracks.
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I An isoradial embedding of an infinite, planar graph G is an
embedding such that all of its faces are inscribed in a circle of
radius 1, and such that the center of the circles are in the interior
of the faces [Duffin] [Mercat] [Kenyon].

I Equivalent to: the quad-graph G� is embedded so that of all its
faces are rhombi.

T (K-S’)
An infinite planar graph G has an isoradial embedding iff
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I If the graph G is bipartite, train-tracks are naturally oriented
(white vertex of the left, black on the right).



M 

I If the graph G is bipartite, train-tracks are naturally oriented
(white vertex of the left, black on the right).

I A bipartite, planar graph G is minimal if

[Thurston’04] [Gulotta’08] [Ishii-Ueda’11] [Goncharov-Kenyon’13]



I   
I A minimal isoradial immersion of an infinite planar graph G is

an immersion of the quadgraph G� such that:
· all of the faces are rhombi (flat or reversed)

· the immersion is flat: the sum of the rhombus angles around every
vertex and every face is equal to 2π.

P (B-T-C’)
The flatness condition is equivalent to :
· around every vertex there is at most one reversed rhombus
· around every face, the cyclic order of the vertices differ by at most
disjoint transpositions in the embedding and in the immersion.

T (B-T-C’)
An infinite, planar, bipartite graph G has a minimal isoradial immersion
iff it is minimal.
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I Tool 1. Jacobi’s (first) theta function.
· Parameter q = eiπτ, =(τ) > 0, Λ(q) = πZ + πτZ, T(q) = C/Λ.

θ(z) = 2q
1
4

∞∑
n=0

(−1)nqn(n+1) sin(2n + 1)z.

· Allows to represent Λ(q)-periodic meromorphic functions.
· θ(z) ∼ 2q 1

4 sin(z) as q→ 0.

I Tool 2. Isoradially immersed, bipartite, minimal graph G.
· each train-track T is assigned direction ei2αT .
· each edge e = wb is assigned train-track directions e2iα, e2iβ, and a
half-angle β − α ∈ [0, π).



D   F’  
I Tool 3. Discrete Abel map [Fock] D ∈ (R/πZ)V(G�)

· Fix face f0 and set D(f0) = 0,
· ◦: degree -1, •: degree 1, faces: degree 0,
· when crossing T: increase/decrease D by αT accordingly.

w b

f

f ′

e2iα

e2iβ
D(f ) − α D(f ) + β

D(f ) + β − α

D(f )

β − α

I Point t ∈ π
2τ + R.

I Fock’s adjacency matrix

K(t)
w,b =


θ(β − α)

θ(t + D(b) − β)θ(t + D(w) − α)
if w ∼ b

0 otherwise.



D   F’  

L ([B-T-C’+])
Under the above assumptions, the matrix K(t) is a Kasteleyn matrix for
a dimer model (positive weights) on G.



F     K(t)

I Define g(t) : V� × V� × C→ C

· g(t)
x,x(u) = 1,

· If f ∼ w, g(t)
f ,w(u) = g(t)

w,f (u)−1 =
θ(u + t + D(w))

θ(u − α)
,

· If f ∼ b, g(t)
b,f (u) = g(t)

f ,b(u)−1 =
θ(u − t −D(b))

θ(u − α)
,

where e2iα is the direction of the tt crossing the edge.

· If distance ≥ 2, take product along path in G�.

w b

f

f ′

e2iα

e2iβ
D(w) D(b)

D(f ′)

D(f )

β − α



P    g(t)

L ([F’] [B-T-C’+])

· The function g(t) is well defined.
· The function g(t) is in the kernel of K(t):

∀w ∈ W, x ∈ V�,
∑
b:b∼w

K(t)
w,b g

(t)
b,x(u) = 0.

P.
Weierstrass identity: s, t ∈ T(q), a, b, c ∈ C,

θ(b − a)
θ(s − a)θ(s − b)

θ(u + s − a − b)
θ(u − a)θ(u − b)

+
θ(c − b)

θ(s − b)θ(s − c)
θ(u + s − b − c)
θ(u − b)θ(u − c)

+

+
θ(a − c)

θ(s − c)θ(s − a)
θ(u + s − c − a)
θ(u − c)θ(u − a)

= 0.

�



E     

I Assume G is Z2-periodic. Define the map ψ,

ψ : T(q)→ C2

u 7→ ψ(u) = (z(u),w(u))

where z(u) = g(t)
b0,b0+(1,0)(u), w(u) = g(t)

b0,b0+(0,1)(u).

b0 b0 + (1, 0)

b0 + (0, 1)
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P ([B-T-C’+])
The map ψ is an explicit birational parameterization of the spectral
curve C of the dimer model with Kasteleyn matrix K(t).
The real locus of C is the image under ψ of the set R/πZ × {0, π2τ},
where the connected component with ordinate π

2τ is bounded and the
other is not.
(The spectral curve is independent of t).

T(q)

0

π

π
2 τ

log |ψ|
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G     
T (K-O-S’)

· The dimer model on a Z2-periodic, bipartite graph has a
two-parameter family of ergodic Gibbs measures indexed by the
slope (h, v), i.e., by the average horizontal/vertical height change.

· The latter are obtained as weak limits of Boltzmann measures with
magnetic field coordinates (Bx,By).

· The phase diagram is given by the amoeba of the spectral curve C.

eBy e−By

eBx

e−Bx

By

Bx

frozen

frozen

gas

liquid

frozenfrozen



L   G ,  
Suppose t fixed. Omit it from the notation.

T (B-T-C’+)
The 2-parameter set of EGM of the dimer model with Kasteleyn matrix
K is (Pu0)u0∈D, where ∀ subset of edges E = {e1 = w1b1, . . . , en = wnbn},

Pu0(e1, . . . , en) =
( n∏
j=1

Kwj,bj
)

det(Au0)E,

where ∀b ∈ B, w ∈ W, Au0
b,w =

iθ′(0)
2π

∫
C
u0
b,w

gb,w(u)du.

Moreover, when u0
· is the unique point corresponding to the top boundary of D, the
dimer model is gaseous,
· is in the interior of D, the dimer model is liquid,
· is a point corresponding to a cc of the lower boundary, the model
is solid.



L    G ,  
I Domain D. Top boundary identified with a single point

D

Each connected component is identified with a single point
I Contours of integration.

Cu0
b,w

u0

Cu0
b,w

u0

ū0

Cu0
b,w

u0

C
The slope of the Gibbs measure Pu0 is:

hu0 =
1
2πi

∫
Cu0

d
du

(log w(u))du, vu0 =
1
2πi

∫
Cu0

d
du

(log z(u))du.



I   

I Proof 1. Using [C-K-P], [K-O-S] the Gibbs measure PB with
magnetic field coordinates B = (Bx,By) has the following
expression on cylinder sets:

P(Bx,By)(e1, . . . , ek) =
( k∏
j=1

Kwj,bj
)

det(AB)E,

where
AB

b+(m,n),w =

∫
TB

Q(z,w)b,w
P(z,w)

z−mw−n
dw
2iπw

dz
2iπz

,

· Perform one integral by residues.
· Do the change of variable u 7→ ψ(u) = (z(u),w(u)).
· Non-trivial cancellation !
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I Proof 2. Show that for every u0, Au0 is an inverse of K.
· Use Weierstrass identity.
· Show that the contours of integration are such that one has 1 on
the diagonal.

Use uniqueness statements of inverse operators.



C

I Suitable for asymptotics.
I Explicit local expressions for edge probabilites.



C   

I Genus 0. [Kenyon’02].
I Genus 1. Two specific cases were handled before:

· the bipartite graph arising from the Ising model
[Boutillier-dT-Raschel’20]
· the Z(t)-Dirac operator [dT’18]  massive discrete holomorphic
functions.



P

I 2-parameter family of Gibbs measures for non-periodic graphs.
Missing: every finite, simply connected subgraph of an isoradial
immersion can be embedded in a bipartite, Z2-periodic isoradial
immersion.

I Extension to genus g > 1.
· [Fock] gives a candidate for the dimer model.
· Weierstrass identity  Fay’s trisecant identity.


