Cardy embedding of random planar maps

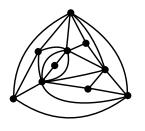
Nina Holden

ETH Zürich, Institute for Theoretical Studies

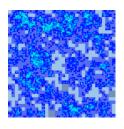
Collaboration with Xin Sun. Based on our joint works with Albenque, Bernardi, Garban, Gwynne, Lawler, Li, and Sepúlveda.

February 9, 2020

Two random surfaces

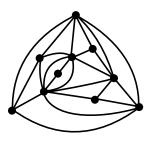


random planar map (RPM)

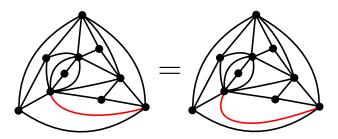


Liouville quantum gravity (LQG)

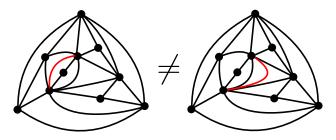
• A **planar map** *M* is a finite connected graph drawn in the sphere, viewed up to continuous deformations.



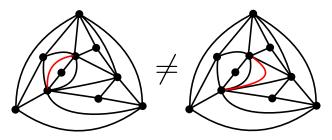
• A **planar map** *M* is a finite connected graph drawn in the sphere, viewed up to continuous deformations.



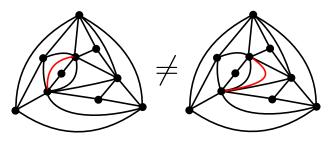
• A **planar map** *M* is a finite connected graph drawn in the sphere, viewed up to continuous deformations.



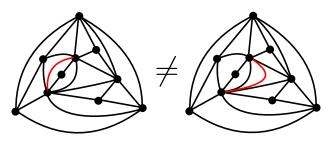
- A **planar map** *M* is a finite connected graph drawn in the sphere, viewed up to continuous deformations.
- A triangulation is a planar map where all faces have three edges.



- A **planar map** *M* is a finite connected graph drawn in the sphere, viewed up to continuous deformations.
- A **triangulation** is a planar map where all faces have three edges.
- Given $n \in \mathbb{N}$ let M be a **uniformly** chosen triangulation with n vertices.

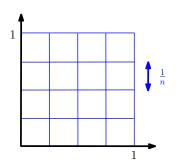


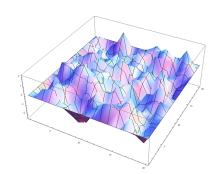
- A planar map M is a finite connected graph drawn in the sphere, viewed up to continuous deformations.
- A triangulation is a planar map where all faces have three edges.
- Given $n \in \mathbb{N}$ let M be a **uniformly** chosen triangulation with n vertices.
- Enumeration results by Tutte and Mullin in 60's.



• Hamiltonian H(f) quantifies how much f deviates from being harmonic

$$H(f)=rac{1}{2}\sum_{x\sim y}(f(x)-f(y))^2, \qquad f:rac{1}{n}\mathbb{Z}^2\cap[0,1]^2 o\mathbb{R}.$$

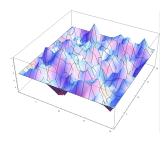


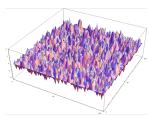


• Hamiltonian H(f) quantifies how much f deviates from being harmonic

$$H(f) = \frac{1}{2} \sum_{x \sim y} (f(x) - f(y))^2, \qquad f: \frac{1}{n} \mathbb{Z}^2 \cap [0, 1]^2 \to \mathbb{R}.$$

• Discrete Gaussian free field (GFF) $h_n: \frac{1}{n}\mathbb{Z}^2 \cap [0,1]^2 \to \mathbb{R}$ is a random function with $h_n|_{\partial [0,1]^2} = 0$ and probability density rel. to Lebesgue measure proportional to $\exp(-H(h_n))$.





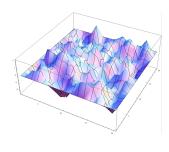
$$n = 20, n = 100$$

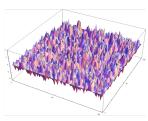
4 D > 4 D > 4 D > 4 D > 3 P 9 Q Q

• Hamiltonian H(f) quantifies how much f deviates from being harmonic

$$H(f) = \frac{1}{2} \sum_{x \sim y} (f(x) - f(y))^2, \qquad f: \frac{1}{n} \mathbb{Z}^2 \cap [0, 1]^2 \to \mathbb{R}.$$

- Discrete Gaussian free field (GFF) $h_n: \frac{1}{n}\mathbb{Z}^2 \cap [0,1]^2 \to \mathbb{R}$ is a random function with $h_n|_{\partial [0,1]^2} = 0$ and probability density rel. to Lebesgue measure proportional to $\exp(-H(h_n))$.
- $h_n(z) \sim \mathcal{N}(0, \frac{2}{\pi} \log n + O(1))$ and $Cov(h_n(z), h_n(w)) = -\frac{2}{\pi} \log |z w| + O(1)$.





n = 20, n = 100

◆ロト ◆昼 ト ◆ 差 ト → 差 → りへ(で)

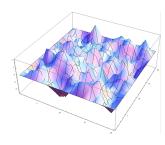
4/19

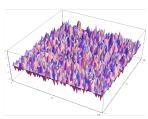
Holden (ETH Zürich) February 9, 2020

• Hamiltonian H(f) quantifies how much f deviates from being harmonic

$$H(f) = \frac{1}{2} \sum_{x \sim y} (f(x) - f(y))^2, \qquad f: \frac{1}{n} \mathbb{Z}^2 \cap [0, 1]^2 \to \mathbb{R}.$$

- Discrete Gaussian free field (GFF) $h_n: \frac{1}{n}\mathbb{Z}^2 \cap [0,1]^2 \to \mathbb{R}$ is a random function with $h_n|_{\partial [0,1]^2} = 0$ and probability density rel. to Lebesgue measure proportional to $\exp(-H(h_n))$.
- $h_n(z) \sim \mathcal{N}(0, \frac{2}{\pi} \log n + O(1))$ and $Cov(h_n(z), h_n(w)) = -\frac{2}{\pi} \log |z w| + O(1)$.
- The Gaussian free field h is the limit of h_n when $n \to \infty$.





n = 20, n = 100

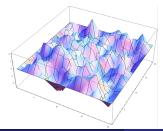
Holden (ETH Zürich)

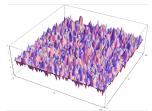
February 9, 2020 4/19

• Hamiltonian H(f) quantifies how much f deviates from being harmonic

$$H(f) = \frac{1}{2} \sum_{x \sim y} (f(x) - f(y))^2, \qquad f: \frac{1}{n} \mathbb{Z}^2 \cap [0, 1]^2 \to \mathbb{R}.$$

- Discrete Gaussian free field (GFF) $h_n: \frac{1}{n}\mathbb{Z}^2 \cap [0,1]^2 \to \mathbb{R}$ is a random function with $h_n|_{\partial [0,1]^2} = 0$ and probability density rel. to Lebesgue measure proportional to $\exp(-H(h_n))$.
- $h_n(z) \sim \mathcal{N}(0, \frac{2}{\pi} \log n + O(1))$ and $Cov(h_n(z), h_n(w)) = -\frac{2}{\pi} \log |z w| + O(1)$.
- The Gaussian free field h is the limit of h_n when $n \to \infty$.
- The GFF is a random distribution (i.e., random generalized function).



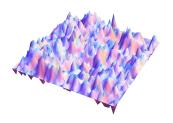


 $n = 20, \ n = 100$

• If $h: [0,1]^2 \to \mathbb{R}$ smooth and $\gamma \in (0,2)$, then $e^{\gamma h}(dx^2 + dy^2)$ defines the metric tensor of a Riemannian manifold.

- If $h: [0,1]^2 \to \mathbb{R}$ smooth and $\gamma \in (0,2)$, then $e^{\gamma h}(dx^2 + dy^2)$ defines the metric tensor of a Riemannian manifold.
- γ -Liouville quantum gravity (LQG): h is the Gaussian free field.

- If $h: [0,1]^2 \to \mathbb{R}$ smooth and $\gamma \in (0,2)$, then $e^{\gamma h}(dx^2 + dy^2)$ defines the metric tensor of a Riemannian manifold.
- γ -Liouville quantum gravity (LQG): h is the Gaussian free field.
- The definition does not make literal sense, since h is not a function.



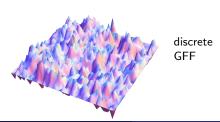
discrete GFF

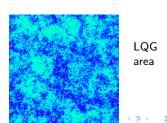
(ロト 4回 ト 4 E ト 4 E ト) E り 9 Q (で

- If $h: [0,1]^2 \to \mathbb{R}$ smooth and $\gamma \in (0,2)$, then $e^{\gamma h}(dx^2 + dy^2)$ defines the metric tensor of a Riemannian manifold.
- γ -Liouville quantum gravity (LQG): h is the **Gaussian free field**.
- The definition does not make literal sense, since h is not a function.
- Area measure $e^{\gamma h}d^2z$ and metric defined via regularized versions h_{ϵ} of h:

$$\mu(U) = \lim_{\epsilon \to 0} \epsilon^{\gamma^2/2} \int_{U} e^{\gamma h_{\epsilon}(z)} d^2 z, \quad U \subset [0, 1]^2,$$

$$d(z, w) = \lim_{\epsilon \to 0} c_{\epsilon} \inf_{P: z \to w} \int_{P} e^{\gamma h_{\epsilon}(z)/d_{\gamma}} dz, \quad z, w \in [0, 1]^2$$
(2019).

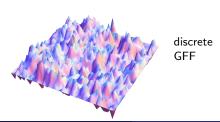


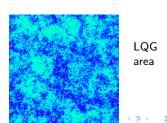


- If $h: [0,1]^2 \to \mathbb{R}$ smooth and $\gamma \in (0,2)$, then $e^{\gamma h}(dx^2 + dy^2)$ defines the metric tensor of a Riemannian manifold.
- γ -Liouville quantum gravity (LQG): h is the **Gaussian free field**.
- The definition does not make literal sense, since h is not a function.
- Area measure $e^{\gamma h}d^2z$ and metric defined via regularized versions h_{ϵ} of h:

$$\mu(U) = \lim_{\epsilon \to 0} \epsilon^{\gamma^2/2} \int_{U} e^{\gamma h_{\epsilon}(z)} d^2 z, \quad U \subset [0, 1]^2,$$

$$d(z, w) = \lim_{\epsilon \to 0} c_{\epsilon} \inf_{P: z \to w} \int_{P} e^{\gamma h_{\epsilon}(z)/d_{\gamma}} dz, \quad z, w \in [0, 1]^2$$
(2019).



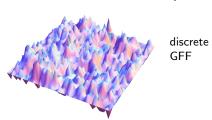


- If $h: [0,1]^2 \to \mathbb{R}$ smooth and $\gamma \in (0,2)$, then $e^{\gamma h}(dx^2 + dy^2)$ defines the metric tensor of a Riemannian manifold.
- γ -Liouville quantum gravity (LQG): h is the **Gaussian free field**.
- The definition does not make literal sense, since h is not a function.
- Area measure $e^{\gamma h}d^2z$ and metric defined via regularized versions h_{ϵ} of h:

$$\mu(U) = \lim_{\epsilon \to 0} \epsilon^{\gamma^2/2} \int_{U} e^{\gamma h_{\epsilon}(z)} d^2 z, \quad U \subset [0, 1]^2,$$

$$d(z, w) = \lim_{\epsilon \to 0} c_{\epsilon} \inf_{P: z \to w} \int_{P} e^{\gamma h_{\epsilon}(z)/d_{\gamma}} dz, \quad z, w \in [0, 1]^2$$
(2019).

• The area measure is non-atomic and any open set has positive mass a.s., but the measure is a.s. singular with respect to Lebesgue measure.



LQG

area

Random planar maps converge to LQG

Two models for random surfaces:

- Random planar maps (RPM)
- Liouville quantum gravity (LQG)

Random planar maps converge to LQG

Two models for random surfaces:

- Random planar maps (RPM)
- Liouville quantum gravity (LQG)

Conjectural relationship used by physicists to predict/calculate the dimension of random fractals and exponents of statistical physics models via the KPZ formula.

Random planar maps converge to LQG

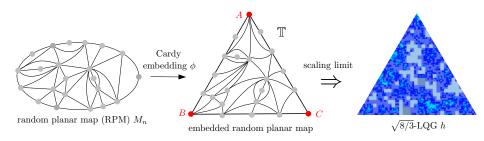
Two models for random surfaces:

- Random planar maps (RPM)
- Liouville quantum gravity (LQG)

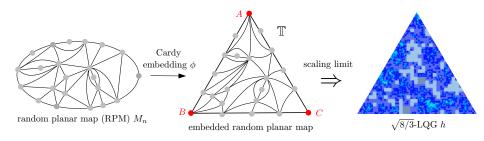
Conjectural relationship used by physicists to predict/calculate the dimension of random fractals and exponents of statistical physics models via the KPZ formula.

What does it mean for a RPM to converge?

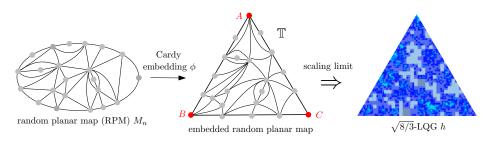
- Metric structure (Le Gall'13, Miermont'13)
- Conformal structure (H.-Sun'19)
- Statistical physics observables (Duplantier-Miller-Sheffield'14, ...)



• Uniform triangulation M_n with n vertices, boundary length $\lceil \sqrt{n} \rceil$.

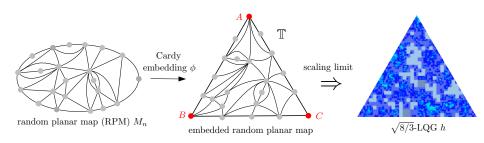


- Uniform triangulation M_n with n vertices, boundary length $\lceil \sqrt{n} \rceil$.
- Cardy embedding: uses properties of percolation on the RPM.



- Uniform triangulation M_n with n vertices, boundary length $\lceil \sqrt{n} \rceil$.
- Cardy embedding: uses properties of percolation on the RPM.
- Let μ_n be renormalized counting measure on the vertices in \mathbb{T} .

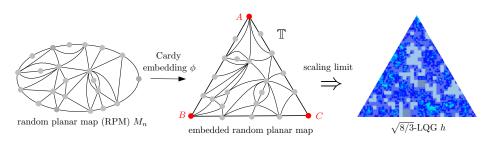
Holden (ETH Zürich) February 9, 2020 7/19



- Uniform triangulation M_n with n vertices, boundary length $\lceil \sqrt{n} \rceil$.
- Cardy embedding: uses properties of percolation on the RPM.
- Let μ_n be renormalized counting measure on the vertices in \mathbb{T} .
- Let d_n be a metric (distance function) on \mathbb{T} prop. to graph distances.

7/19

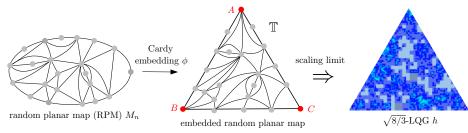
Holden (ETH Zürich) February 9, 2020



- Uniform triangulation M_n with n vertices, boundary length $\lceil \sqrt{n} \rceil$.
- Cardy embedding: uses properties of percolation on the RPM.
- Let μ_n be renormalized counting measure on the vertices in \mathbb{T} .
- Let d_n be a metric (distance function) on \mathbb{T} prop. to graph distances.
- Let μ be $\sqrt{8/3}$ -LQG area measure in \mathbb{T} , and d the associated metric.

7/19

Holden (ETH Zürich) February 9, 2020



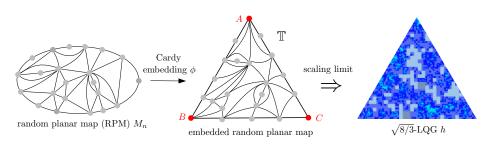
- Uniform triangulation M_n with n vertices, boundary length $\lceil \sqrt{n} \rceil$.
- Cardy embedding: uses properties of percolation on the RPM.
- Let μ_n be renormalized counting measure on the vertices in \mathbb{T} .
- Let d_n be a metric (distance function) on \mathbb{T} prop. to graph distances.
- Let μ be $\sqrt{8/3}$ -LQG area measure in \mathbb{T} , and d the associated metric.

Theorem (H.-Sun'19)

In the above setting, $(\mu_n, d_n) \Rightarrow (\mu, d)$.

Holden (ETH Zürich) February 9, 2020

7/19



Theorem (H.-Sun'19)

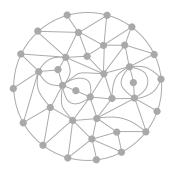
In the above setting, $(\mu_n, d_n) \Rightarrow (\mu, d)$.

More precisely, \exists coupling of M_n and h s.t. with probability 1, as $n \to \infty$,

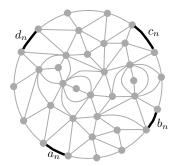
- $\int f d\mu_n \to \int f d\mu \ \forall$ continuous $f: \mathbb{T} \to [0,1]$ (measure convergence)
- $d_n(z, w) \to d(z, w)$, uniformly in $z, w \in \mathbb{T}$ (metric convergence)

Holden (ETH Zürich) February 9, 2020 7/19

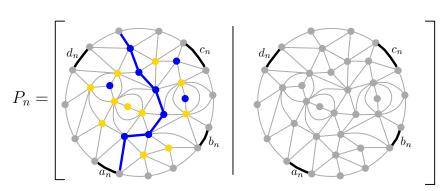
• Let M_n be a uniformly chosen triangulation with n (resp. $\lceil \sqrt{n} \rceil$) inner (resp. boundary) vertices.



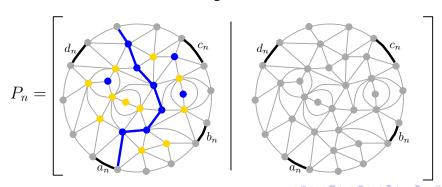
- Let M_n be a uniformly chosen triangulation with n (resp. $\lceil \sqrt{n} \rceil$) inner (resp. boundary) vertices.
- Pick edges a_n, b_n, c_n, d_n uniformly at random from ∂M_n .



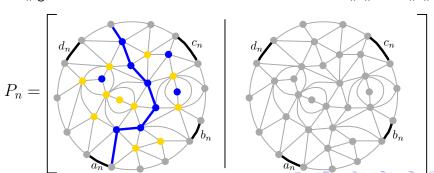
- Let M_n be a uniformly chosen triangulation with n (resp. $\lceil \sqrt{n} \rceil$) inner (resp. boundary) vertices.
- Pick edges a_n, b_n, c_n, d_n uniformly at random from ∂M_n .
- Let $P_n = P_n(M_n, a_n, b_n, c_n, d_n) \in [0, 1]$ denote the probability of a blue crossing from $a_n b_n$ to $c_n d_n$.



- Let M_n be a uniformly chosen triangulation with n (resp. $\lceil \sqrt{n} \rceil$) inner (resp. boundary) vertices.
- Pick edges a_n, b_n, c_n, d_n uniformly at random from ∂M_n .
- Let $P_n = P_n(M_n, a_n, b_n, c_n, d_n) \in [0, 1]$ denote the probability of a blue crossing from $a_n b_n$ to $c_n d_n$.
- The random variable P_n converges in law as $n \to \infty$.

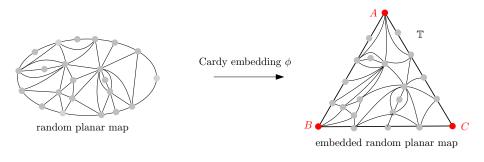


- Let M_n be a uniformly chosen triangulation with n (resp. $\lceil \sqrt{n} \rceil$) inner (resp. boundary) vertices.
- Pick edges a_n, b_n, c_n, d_n uniformly at random from ∂M_n .
- Let $P_n = P_n(M_n, a_n, b_n, c_n, d_n) \in [0, 1]$ denote the probability of a blue crossing from $a_n b_n$ to $c_n d_n$.
- The random variable P_n converges in law as $n \to \infty$.
- P_n gives some notion of **extremal distance** between a_nb_n and c_nd_n .

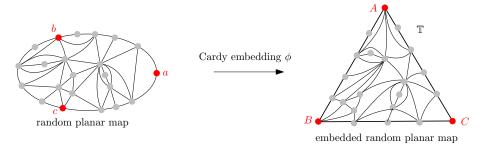


8 / 19

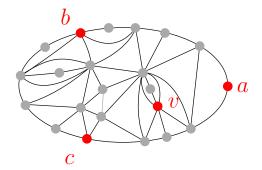
Cardy embedding: percolation-based embedding



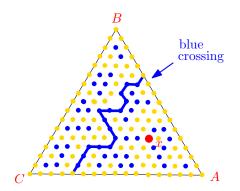
Cardy embedding: percolation-based embedding



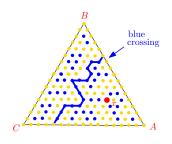
• What is the "correct" position of v in \mathbb{T} ?

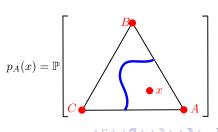


• What is the "correct" position of v in \mathbb{T} ?



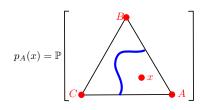
• What is the "correct" position of v in \mathbb{T} ?

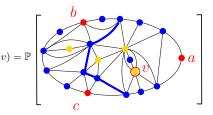




- What is the "correct" position of v in \mathbb{T} ?
- Map $v \in V(M)$ to $x \in \mathbb{T}$ such that

$$(p_A(x), p_B(x), p_C(x)) = (\widehat{p}_a(v), \widehat{p}_b(v), \widehat{p}_c(v)).$$

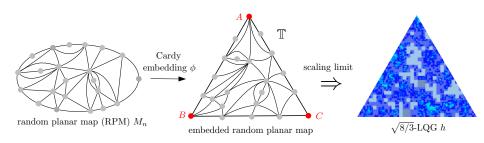




- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - からで

Holden (ETH Zürich)

RPM ⇒ LQG under conformal embedding

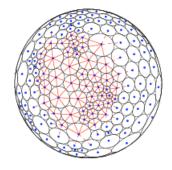


Our result is for **uniform triangulations** and the **Cardy embedding**, but is also believed to hold for other

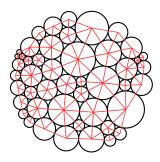
- conformal embeddings,
- local map constraints, and
- universality classes of random planar maps.

Holden (ETH Zürich)

- Circle packing
- Riemann uniformization
- Tutte embedding
- Cardy embedding



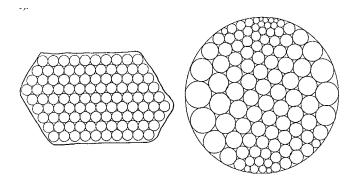
circle packing (sphere topology)



circle packing (disk topology)

Holden (ETH Zürich)
February 9, 2020 11/19

- Circle packing
- Riemann uniformization
- Tutte embedding
- Cardy embedding



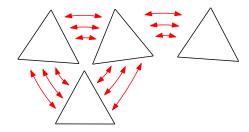
Rodin and Sullivan (1987): The convergence of circle packings to the Riemann mapping

Holden (ETH Zürich) February 9, 2020

11 / 19

- Circle packing
- Riemann uniformization
- Tutte embedding
- Cardy embedding

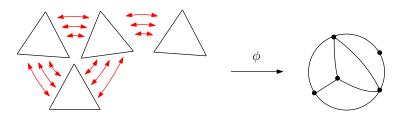
Random planar map



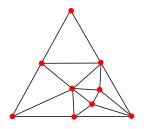
Riemannian manifold

- Circle packing
- Riemann uniformization
- Tutte embedding
- Cardy embedding

Uniformization theorem: For any simply connected Riemann surface M there is a conformal map ϕ from M to either \mathbb{D} , \mathbb{C} or \mathbb{S}^2 .

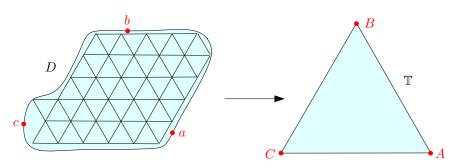


- Circle packing
- Riemann uniformization
- Tutte embedding
- Cardy embedding



Tutte embedding

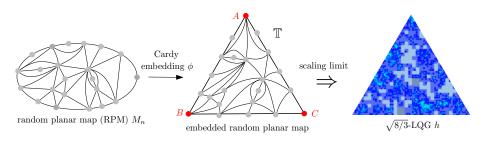
- Circle packing
- Riemann uniformization
- Tutte embedding
- Cardy embedding



Smirnov (2001): The Cardy embedding of the triangular lattice restricted to D converges to the Riemann mapping $D \to \mathbb{T}$.

Holden (ETH Zürich) February 9, 2020 11 / 19

Conformally embedded RPM converge to $\sqrt{8/3}$ -LQG



Holden (ETH Zürich)

Conformally embedded RPM converge to $\sqrt{8/3}$ -LQG

The proof is based on multiple works, including:

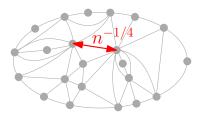
- Percolation on triangulations: a bijective path to Liouville quantum gravity (Bernardi-H.-Sun)
- Minkowski content of Brownian cut points (Lawler-Li-H.-Sun)
- Natural parametrization of percolation interface and pivotal points (Li-H.-Sun)
- Uniform triangulations with simple boundary converge to the Brownian disk (Albenque-H.-Sun)
- Joint scaling limit of site percolation on random triangulations in the metric and peanosphere sense (Gwynne-H.-Sun)
- Liouville dynamical percolation (Garban-H.-Sepúlveda-Sun)
- Convergence of uniform triangulations under the Cardy embedding (H.-Sun)

13 / 19

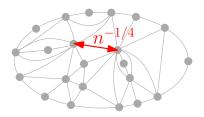
Holden (ETH Zürich)

• M_n is a uniform triangulation with n vertices and bdy length $\lceil \sqrt{n} \rceil$.

- M_n is a uniform triangulation with n vertices and bdy length $\lceil \sqrt{n} \rceil$.
- M_n is a random metric measure space.



- M_n is a uniform triangulation with n vertices and bdy length $\lceil \sqrt{n} \rceil$.
- M_n is a random **metric measure space**.
- Gromov-Hausdorff-Prokhorov (GHP) topology on the space of compact metric measure spaces.

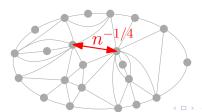


- M_n is a uniform triangulation with n vertices and bdy length $\lceil \sqrt{n} \rceil$.
- M_n is a random **metric measure space**.
- Gromov-Hausdorff-Prokhorov (GHP) topology on the space of compact metric measure spaces.

Theorem (Albenque-H.-Sun'19)

 $M_n \Rightarrow M$ in the GHP topology, where M is $\sqrt{8/3}$ -LQG (equivalently, the Brownian disk).

Building on Le Gall'13, Miermont'13, Bettinelli–Miermont'17, Poulalhon–Schaeffer'06, Addario-Berry–Albenque'17, Addario-Berry–Wen'17

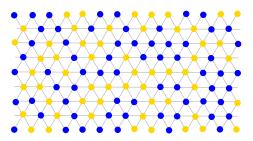


Holden (ETH Zürich) February 9, 2020

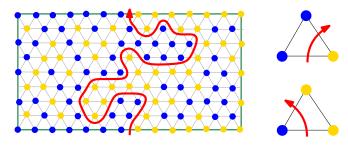
14 / 19

- One-parameter family of random fractal curves indexed by $\kappa \geq 0$, which describe the scaling limit of statistical physics models
 - ullet loop-erased random walk, $\kappa=2$
 - Ising, $\kappa = 3$, and FK-Ising, $\kappa = 16/3$
 - percolation, $\kappa = 6$
 - discrete Gaussian free field level line, $\kappa = 4$
 - uniform spanning tree, $\kappa = 8$

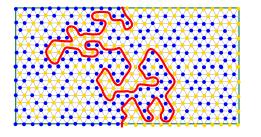
- One-parameter family of random fractal curves indexed by $\kappa \geq 0$, which describe the scaling limit of statistical physics models
 - ullet loop-erased random walk, $\kappa=2$
 - Ising, $\kappa=3$, and FK-Ising, $\kappa=16/3$
 - percolation, $\kappa = 6$
 - discrete Gaussian free field level line, $\kappa=4$
 - uniform spanning tree, $\kappa = 8$



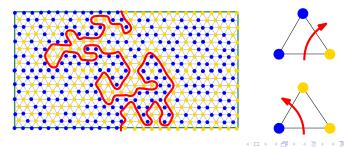
- One-parameter family of random fractal curves indexed by $\kappa \geq 0$, which describe the scaling limit of statistical physics models
 - ullet loop-erased random walk, $\kappa=2$
 - Ising, $\kappa=3$, and FK-Ising, $\kappa=16/3$
 - percolation, $\kappa = 6$
 - discrete Gaussian free field level line, $\kappa = 4$
 - uniform spanning tree, $\kappa = 8$



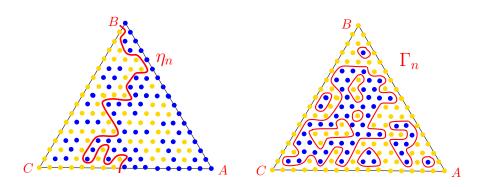
- One-parameter family of random fractal curves indexed by $\kappa \geq 0$, which describe the scaling limit of statistical physics models
 - ullet loop-erased random walk, $\kappa=2$
 - Ising, $\kappa=3$, and FK-Ising, $\kappa=16/3$
 - percolation, $\kappa = 6$
 - discrete Gaussian free field level line, $\kappa = 4$
 - uniform spanning tree, $\kappa = 8$



- One-parameter family of random fractal curves indexed by $\kappa \geq 0$, which describe the scaling limit of statistical physics models
 - loop-erased random walk, $\kappa=2$
 - Ising, $\kappa = 3$, and FK-Ising, $\kappa = 16/3$
 - percolation, $\kappa = 6$
 - discrete Gaussian free field level line, $\kappa = 4$
 - uniform spanning tree, $\kappa = 8$
- Introduced by Schramm'99: SLE uniquely characterized by conformal invariance and domain Markov property.



Conformal invariance of percolation on triangular lattice



- Smirnov'01, Camia-Newman'06: $\eta_n \Rightarrow SLE_6$.
- The conformal loop ensemble (CLE_6) is the loop version of SLE_6 .
- Smirnov'01, Camia-Newman'06: $\Gamma_n \Rightarrow CLE_6$.

4□ > 4酉 > 4亘 > 4亘 > □

16 / 19

Theorem (Albenque-H.-Sun'19)

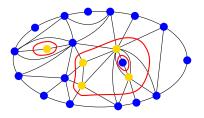
 $M_n \Rightarrow M$ in the GHP topology, where M is $\sqrt{8/3}$ -LQG (the Brownian disk).

Holden (ETH Zürich)

Theorem (Albenque-H.-Sun'19)

 $M_n \Rightarrow M$ in the GHP topology, where M is $\sqrt{8/3}$ -LQG (the Brownian disk).

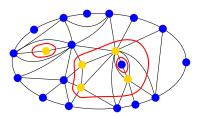
• Let P_n be a uniform percolation on M_n .



Theorem (Albenque-H.-Sun'19)

 $M_n \Rightarrow M$ in the GHP topology, where M is $\sqrt{8/3}$ -LQG (the Brownian disk).

- Let P_n be a uniform percolation on M_n .
- Gromov-Hausdorff-Prokhorov-Loop (GHPL) topology on the space of metric measure spaces with a collection of loops.



Holden (ETH Zürich)

Theorem (Albenque-H.-Sun'19)

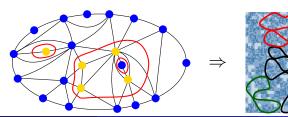
 $M_n \Rightarrow M$ in the GHP topology, where M is $\sqrt{8/3}$ -LQG (the Brownian disk).

- Let P_n be a uniform percolation on M_n .
- Gromov-Hausdorff-Prokhorov-Loop (GHPL) topology on the space of metric measure spaces with a collection of loops.

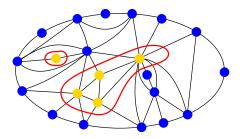
Theorem (Gwynne-H.-Sun'19)

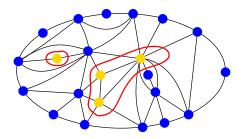
 $(M_n,P_n)\Rightarrow (M,\Gamma)$ in the GHPL topology, where Γ is the conformal loop ensemble CLE_6 .

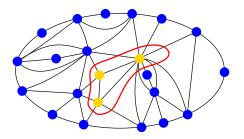
Building on Gwynne-Miller'17, Bernardi-H.-Sun'18

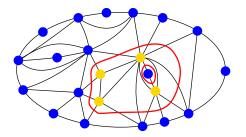


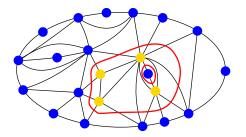
Holden (ETH Zürich)



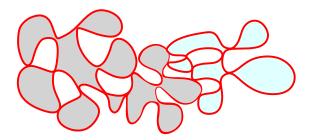




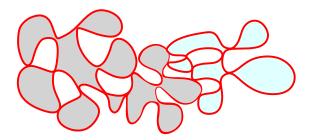




- Dynamical percolation $(P_t)_{t\geq 0}$ on M: Each vertex has an exponential clock and its color is resampled when its clock rings.
- $(P_{n^{-1/4}t})_{t\geq 0} \Rightarrow (\Gamma_t)_{t\geq 0}$, for $(\Gamma_t)_{t\geq 0}$ Liouville dynamical percolation.
 - Γ_t is a CLE₆ for each $t \geq 0$.



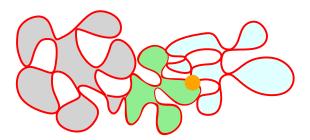
- Dynamical percolation $(P_t)_{t\geq 0}$ on M: Each vertex has an exponential clock and its color is resampled when its clock rings.
- $(P_{n^{-1/4}t})_{t\geq 0} \Rightarrow (\Gamma_t)_{t\geq 0}$, for $(\Gamma_t)_{t\geq 0}$ Liouville dynamical percolation.
 - Γ_t is a CLE₆ for each $t \geq 0$.



- Dynamical percolation $(P_t)_{t\geq 0}$ on M: Each vertex has an exponential clock and its color is resampled when its clock rings.
- $(P_{n^{-1/4}t})_{t\geq 0} \Rightarrow (\Gamma_t)_{t\geq 0}$, for $(\Gamma_t)_{t\geq 0}$ Liouville dynamical percolation.
 - Γ_t is a CLE₆ for each $t \geq 0$.

- Dynamical percolation $(P_t)_{t\geq 0}$ on M: Each vertex has an exponential clock and its color is resampled when its clock rings.
- $(P_{n^{-1/4}t})_{t\geq 0} \Rightarrow (\Gamma_t)_{t\geq 0}$, for $(\Gamma_t)_{t\geq 0}$ Liouville dynamical percolation.
 - Γ_t is a CLE₆ for each $t \geq 0$.

- Dynamical percolation $(P_t)_{t\geq 0}$ on M: Each vertex has an exponential clock and its color is resampled when its clock rings.
- $(P_{n^{-1/4}t})_{t\geq 0} \Rightarrow (\Gamma_t)_{t\geq 0}$, for $(\Gamma_t)_{t\geq 0}$ Liouville dynamical percolation.
 - Γ_t is a CLE₆ for each $t \geq 0$.

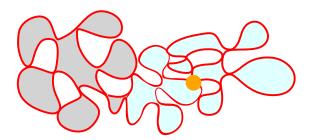


- Dynamical percolation $(P_t)_{t\geq 0}$ on M: Each vertex has an exponential clock and its color is resampled when its clock rings.
- $(P_{n^{-1/4}t})_{t\geq 0} \Rightarrow (\Gamma_t)_{t\geq 0}$, for $(\Gamma_t)_{t\geq 0}$ Liouville dynamical percolation.
 - Γ_t is a CLE₆ for each $t \geq 0$.

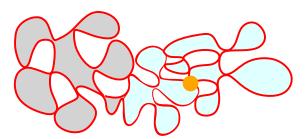
- Dynamical percolation $(P_t)_{t\geq 0}$ on M: Each vertex has an exponential clock and its color is resampled when its clock rings.
- $(P_{n^{-1/4}t})_{t\geq 0} \Rightarrow (\Gamma_t)_{t\geq 0}$, for $(\Gamma_t)_{t\geq 0}$ Liouville dynamical percolation.
 - Γ_t is a CLE₆ for each $t \geq 0$.

- Dynamical percolation $(P_t)_{t\geq 0}$ on M: Each vertex has an exponential clock and its color is resampled when its clock rings.
- $(P_{n^{-1/4}t})_{t\geq 0} \Rightarrow (\Gamma_t)_{t\geq 0}$, for $(\Gamma_t)_{t\geq 0}$ Liouville dynamical percolation.
 - Γ_t is a CLE₆ for each $t \geq 0$.

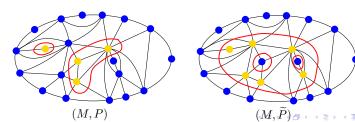
- Dynamical percolation $(P_t)_{t\geq 0}$ on M: Each vertex has an exponential clock and its color is resampled when its clock rings.
- $(P_{n^{-1/4}t})_{t\geq 0} \Rightarrow (\Gamma_t)_{t\geq 0}$, for $(\Gamma_t)_{t\geq 0}$ Liouville dynamical percolation.
 - Γ_t is a CLE₆ for each $t \geq 0$.
- $(\Gamma_t)_{t>0}$ is **mixing** (in particular, ergodic): Γ_t is asymptotically indep. of Γ_0 .
 - $\lim_{t\to\infty} \text{Cov}(E_1(\Gamma_0), E_2(\Gamma_t)) = 0$ for all events E_1, E_2 .



- Dynamical percolation $(P_t)_{t\geq 0}$ on M: Each vertex has an exponential clock and its color is resampled when its clock rings.
- $(P_{n^{-1/4}t})_{t\geq 0} \Rightarrow (\Gamma_t)_{t\geq 0}$, for $(\Gamma_t)_{t\geq 0}$ Liouville dynamical percolation.
 - Γ_t is a CLE₆ for each $t \geq 0$.
- $(\Gamma_t)_{t\geq 0}$ is **mixing** (in particular, ergodic): Γ_t is asymptotically indep. of Γ_0 .
 - $\lim_{t\to\infty} \text{Cov}(E_1(\Gamma_0), E_2(\Gamma_t)) = 0$ for all events E_1, E_2 .
- Noise sensitivity: If a fraction $Cn^{-1/4}$ of the vertices are resampled for $C \gg 1$, we get an essentially independent limiting CLE_6 .



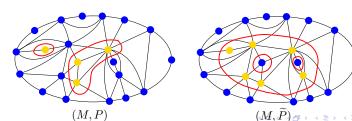
- Dynamical percolation $(P_t)_{t\geq 0}$ on M: Each vertex has an exponential clock and its color is resampled when its clock rings.
- $(P_{n^{-1/4}t})_{t\geq 0} \Rightarrow (\Gamma_t)_{t\geq 0}$, for $(\Gamma_t)_{t\geq 0}$ Liouville dynamical percolation.
 - Γ_t is a CLE₆ for each t > 0.
- $(\Gamma_t)_{t\geq 0}$ is **mixing** (in particular, ergodic): Γ_t is asymptotically indep. of Γ_0 .
 - $\lim_{t\to\infty} \text{Cov}(E_1(\Gamma_0), E_2(\Gamma_t)) = 0$ for all events E_1, E_2 .
- Noise sensitivity: If a fraction $Cn^{-1/4}$ of the vertices are resampled for $C \gg 1$, we get an essentially independent limiting CLE_6 .
- Corollary: k indep. percolations on map M gives k indep. CLE_6 's in scaling limit
 - quenched convergence result for percolation on triangulations
 - implies convergence of Cardy embedding of M via LLN argument



Holden (ETH Zürich) February 9, 2020

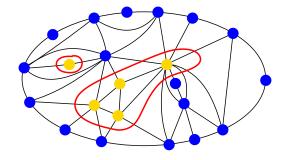
18 / 19

- Dynamical percolation $(P_t)_{t\geq 0}$ on M: Each vertex has an exponential clock and its color is resampled when its clock rings.
- $(P_{n^{-1/4}t})_{t\geq 0} \Rightarrow (\Gamma_t)_{t\geq 0}$, for $(\Gamma_t)_{t\geq 0}$ Liouville dynamical percolation.
 - Γ_t is a CLE₆ for each t > 0.
- $(\Gamma_t)_{t\geq 0}$ is **mixing** (in particular, ergodic): Γ_t is asymptotically indep. of Γ_0 .
 - $\lim_{t\to\infty} \text{Cov}(E_1(\Gamma_0), E_2(\Gamma_t)) = 0$ for all events E_1, E_2 .
- Noise sensitivity: If a fraction $Cn^{-1/4}$ of the vertices are resampled for $C \gg 1$, we get an essentially independent limiting CLE_6 .
- Corollary: k indep. percolations on map M gives k indep. CLE_6 's in scaling limit
 - quenched convergence result for percolation on triangulations
 - implies convergence of Cardy embedding of M via LLN argument



Holden (ETH Zürich) February 9, 2020

18 / 19



Thanks for your attention!