Imaginary chaos

Janne Junnila (EPFL)
Les Diablerets, February 10th 2020
joint work with
Eero Saksman and Christian Webb;
Juhan Aru, Guillaume Bavarez and Antoine Jego

Outline

1. Introduction
2. Moments
3. XOR-Ising model
4. Regularity, densities and monofractality

Introduction

Log-correlated Gaussian fields

Let us fix a bounded simply connected domain $D \subset \mathbb{R}^{d}$.

Heuristic definition

A Gaussian field $X: D \rightarrow \mathbb{R}$ is called log-correlated if

$$
\mathbb{E} X(x) X(y)=C(x, y):=\log \frac{1}{|x-y|}+g(x, y)
$$

where g is regular.

Log-correlated Gaussian fields

Let us fix a bounded simply connected domain $D \subset \mathbb{R}^{d}$.

Heuristic definition

A Gaussian field $X: D \rightarrow \mathbb{R}$ is called log-correlated if

$$
\mathbb{E} X(x) X(y)=C(x, y):=\log \frac{1}{|x-y|}+g(x, y)
$$

where g is regular.

Caveat

Such fields cannot be defined pointwise and must instead be understood as distributions (generalized functions). This means that for all $\varphi, \psi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ we have

$$
\mathbb{E} X(\varphi) X(\psi)=\int \varphi(x) \psi(y) C(x, y) d x d y
$$

Log-correlated Gaussian fields

- We will always assume at least that
- $g \in L^{1}(D \times D) \cap C(D \times D)$
- g is bounded from above

Log-correlated Gaussian fields

- We will always assume at least that
- $g \in L^{1}(D \times D) \cap C(D \times D)$
- g is bounded from above
- These properties are enough to ensure that X exists. (Assuming that the kernel C is positive definite.)

Example: The 2D GFF

Definition

The 0 -boundary GFF Γ in the domain D is a Gaussian field with the covariance

$$
\mathbb{E} \Gamma(x) \Gamma(y)=G_{D}(x, y)
$$

where G_{D} is the Green's function of the Dirichlet Laplacian in D.

Example: The 2D GFF

Definition

The 0 -boundary GFF Γ in the domain D is a Gaussian field with the covariance

$$
\mathbb{E} \Gamma(x) \Gamma(y)=G_{D}(x, y)
$$

where G_{D} is the Green's function of the Dirichlet Laplacian in D.

- universality:
- appears in the scaling limit of various height function models, random matrices, QFT, ...
- a recent characterisation: the only random field with conformally invariant law and domain Markov property (+some moment condition) [BPR19]

Example: The GFF in the unit square

Figure 1: An approximation of the GFF in the unit square.

Gaussian Multiplicative Chaos

- In various applications one is interested in measures formally of the form $e^{\gamma X(x)} d x$ where γ is a parameter.

Gaussian Multiplicative Chaos

- In various applications one is interested in measures formally of the form $e^{\gamma X(x)} d x$ where γ is a parameter.
- To rigorously define them one has to approximate X with regular fields X_{n} and normalize properly when taking the limit as $n \rightarrow \infty$.

Gaussian Multiplicative Chaos

- In various applications one is interested in measures formally of the form $e^{\gamma X(x)} d x$ where γ is a parameter.
- To rigorously define them one has to approximate X with regular fields X_{n} and normalize properly when taking the limit as $n \rightarrow \infty$.

Theorem/Definition ([Kah85; RV10; Sha16; Ber17])

For any given $\gamma \in(0, \sqrt{2 d})$ the functions $\mu_{n}(x):=e^{\gamma X_{n}(x)-\frac{\gamma^{2}}{2} \mathbb{E} X_{n}(x)^{2}}$ converge to a random measure μ. We say that $\mu=\mu^{\gamma}$ is a GMC measure associated to X.

Existence of GMC when $\gamma \in(0, \sqrt{d})$

A simple L^{2}-computation

For any $f \in C_{c}^{\infty}(D)$ we have

$$
\begin{aligned}
\mathbb{E}\left|\mu_{n}(f)\right|^{2} & =\int_{D^{2}} f(x) f(y) \mathbb{E} e^{\gamma X_{n}(x)+\gamma X_{n}(y)-\frac{\gamma^{2}}{2} \mathbb{E} X_{n}(x)^{2}-\frac{\gamma^{2}}{2} \mathbb{E} X_{n}(y)^{2}} d x d y \\
& =\int_{D^{2}} f(x) f(y) e^{\gamma^{2} \mathbb{E} X_{n}(x) X_{n}(y)} d x d y \\
& \leq\|f\|_{\infty}^{2} \int_{D^{2}} e^{\gamma^{2} \log \frac{1}{\mid x-y}} d x d y=\int_{D^{2}} \frac{d x d y}{|x-y| \gamma^{2}}<\infty .
\end{aligned}
$$

Existence of GMC when $\gamma \in(0, \sqrt{d})$

A simple L^{2}-computation

For any $f \in C_{c}^{\infty}(D)$ we have

$$
\begin{aligned}
\mathbb{E}\left|\mu_{n}(f)\right|^{2} & =\int_{D^{2}} f(x) f(y) \mathbb{E} e^{\gamma X_{n}(x)+\gamma X_{n}(y)-\frac{\gamma^{2}}{2} \mathbb{E} X_{n}(x)^{2}-\frac{\gamma^{2}}{2} \mathbb{E} X_{n}(y)^{2}} d x d y \\
& =\int_{D^{2}} f(x) f(y) e^{\gamma^{2} \mathbb{E} X_{n}(x) X_{n}(y)} d x d y \\
& \leqslant\|f\|_{\infty}^{2} \int_{D^{2}} e^{\gamma^{2} \log \frac{1}{|x-y|}} d x d y=\int_{D^{2}} \frac{d x d y}{|x-y|^{\gamma^{2}}}<\infty
\end{aligned}
$$

- If $\mu_{n}(f)$ is a martingale this immediately shows convergence.

Existence of GMC when $\gamma \in(0, \sqrt{d})$

A simple L^{2}-computation

For any $f \in C_{c}^{\infty}(D)$ we have

$$
\begin{aligned}
\mathbb{E}\left|\mu_{n}(f)\right|^{2} & =\int_{D^{2}} f(x) f(y) \mathbb{E} e^{\gamma X_{n}(x)+\gamma X_{n}(y)-\frac{\gamma^{2}}{2} \mathbb{E} X_{n}(x)^{2}-\frac{\gamma^{2}}{2} \mathbb{E} X_{n}(y)^{2}} d x d y \\
& =\int_{D^{2}} f(x) f(y) e^{\gamma^{2} \mathbb{E} X_{n}(x) X_{n}(y)} d x d y \\
& \leq\|f\|_{\infty}^{2} \int_{D^{2}} e^{\gamma^{2} \log \frac{1}{\mid x-y}} d x d y=\int_{D^{2}} \frac{d x d y}{|x-y|^{\gamma^{2}}}<\infty .
\end{aligned}
$$

- If $\mu_{n}(f)$ is a martingale this immediately shows convergence.
- Otherwise one can do a similar computation to show that the sequence is Cauchy in $L^{2}(\Omega)$.

Complex values of γ

Figure 2: The subcritical regime A for γ in the complex plane.

Complex values of γ

Figure 2: The subcritical regime A for γ in the complex plane.

- In fact, $\gamma \mapsto \mu^{\gamma}(f)$ is an analytic function on A [JSW19].

Complex values of γ

Figure 2: The subcritical regime A for γ in the complex plane.

- In fact, $\gamma \mapsto \mu^{\gamma}(f)$ is an analytic function on A [JSW19].
- The circle corresponds to the L^{2}-phase - in particular it contains the whole subcritical part of the imaginary axis.

Imaginary multiplicative chaos

Theorem/Definition ([JSW18; LRV15])

Let $\beta \in(0, \sqrt{d})$. Then the random functions

$$
\mu_{n}(x):=e^{i \beta X_{n}(x)+\frac{\beta^{2}}{2} \mathbb{E} X_{n}(x)^{2}}
$$

converge in probability in $H^{-d / 2-\varepsilon}\left(\mathbb{R}^{d}\right)$ to a random distribution μ.

Imaginary multiplicative chaos

Theorem/Definition ([JSW18; LRV15])

Let $\beta \in(0, \sqrt{d})$. Then the random functions

$$
\mu_{n}(x):=e^{i \beta X_{n}(x)+\frac{\beta^{2}}{2} \mathbb{E} X_{n}(x)^{2}}
$$

converge in probability in $H^{-d / 2-\varepsilon}\left(\mathbb{R}^{d}\right)$ to a random distribution μ.

- Applications: XOR-Ising model [JSW18], two-valued sets of the GFF [SSV19] and certain random fields constructed using the Brownian loop soup [CGPR19].

Moments

Moments

Theorem ([JSW18])

There exists $C>0$ such that for any $f \in C_{c}^{\infty}(D)$ and $N \geq 1$ we have

$$
\mathbb{E}|\mu(f)|^{2 N} \leq C^{N}\|f\|_{\infty}^{2 N} N^{\frac{\beta^{2}}{d} N} .
$$

Moments

Theorem ([JSW18])

There exists $C>0$ such that for any $f \in C_{c}^{\infty}(D)$ and $N \geq 1$ we have

$$
\mathbb{E}|\mu(f)|^{2 N} \leq C^{N}\|f\|_{\infty}^{2 N} N^{\frac{\beta^{2}}{d} N} .
$$

Corollary

The mixed moments $\mathbb{E} \mu(f)^{k} \overline{\mu(f)}^{l}$ determine the distribution of $\mu(f)$.

Moments

Theorem ([JSW18])

There exists $C>0$ such that for any $f \in C_{c}^{\infty}(D)$ and $N \geq 1$ we have

$$
\mathbb{E}|\mu(f)|^{2 N} \leq C^{N}\|f\|_{\infty}^{2 N} N^{\frac{\beta^{2}}{d} N} .
$$

Corollary

The mixed moments $\mathbb{E} \mu(f)^{k} \overline{\mu(f)}^{l}$ determine the distribution of $\mu(f)$.

Theorem ([JSW18])

Let $f \in C_{c}^{\infty}(D)$ be non-negative and non-zero, then there exists $C>0$ such that

$$
\mathbb{E}|\mu(f)|^{2 N} \geq C^{N} N^{\frac{\beta^{2}}{d} N} .
$$

Bounding moments - the naive way

- $\mathbb{E}|\mu(1)|^{2 N}$ is (formally) given by

$$
\begin{aligned}
& \int_{D^{2 N}} \mathbb{E} \prod_{j=1}^{N} e^{i \beta X\left(x_{j}\right)+\frac{\beta^{2}}{2} \mathbb{E} X\left(x_{j}\right)^{2}} e^{-i \beta X\left(y_{j}\right)+\frac{\beta^{2}}{2} \mathbb{E} X\left(y_{j}\right)^{2}} d x_{j} d y_{j}= \\
& \int_{D^{2 N}} e^{\beta^{2} \sum_{1 \leq j, k \leq N} C\left(x_{j}, y_{k}\right)-\beta^{2} \sum_{1 \leq j<k \leq N}\left(C\left(x_{j}, x_{k}\right)+C\left(y_{j}, y_{k}\right)\right)} d x_{1} \ldots d x_{N} d y_{1} \ldots d y_{N},
\end{aligned}
$$

where $C(x, y)$ is the covariance kernel of X.

Bounding moments - the naive way

- $\mathbb{E}|\mu(1)|^{2 N}$ is (formally) given by

$$
\begin{aligned}
& \int_{D^{2 N}} \mathbb{E} \prod_{j=1}^{N} e^{i \beta X\left(x_{j}\right)+\frac{\beta^{2}}{2} \mathbb{E} X\left(x_{j}\right)^{2}} e^{-i \beta X\left(y_{j}\right)+\frac{\beta^{2}}{2} \mathbb{E} X\left(y_{j}\right)^{2}} d x_{j} d y_{j}= \\
& \int_{D^{2 N}} e^{\beta^{2} \sum_{1 \leq j, j \leq N} C\left(x_{j}, y_{k}\right)-\beta^{2} \sum_{1 \leq j k k \leq N}\left(C\left(x_{j}, x_{k}\right)+C\left(y_{j}, y_{k}\right)\right)} d x_{1} \ldots d x_{N} d y_{1} \ldots d y_{N},
\end{aligned}
$$

where $C(x, y)$ is the covariance kernel of X.

- In the case $C(x, y)=\log \frac{1}{|x-y|}$ this is simply the partition function of Coulomb gas with N positive and N negative charges. Estimating this was done in [GP77] by using an electrostatic inequality due to Onsager [Ons39].

Bounding moments - the naive way

- $\mathbb{E}|\mu(1)|^{2 N}$ is (formally) given by

$$
\begin{aligned}
& \int_{D^{2 N}} \mathbb{E} \prod_{j=1}^{N} e^{i \beta X\left(x_{j}\right)+\frac{\beta^{2}}{2} \mathbb{E} X\left(x_{j}\right)^{2}} e^{-i \beta X\left(y_{j}\right)+\frac{\beta^{2}}{2} \mathbb{E} X\left(y_{j}\right)^{2}} d x_{j} d y_{j}= \\
& \int_{D^{2 N}} e^{\beta^{2} \sum_{1 \leq j, k \leq N} C\left(x_{j}, y_{k}\right)-\beta^{2} \sum_{1 \leq j j k \leq N}\left(C\left(x_{j}, x_{k}\right)+C\left(y_{j}, y_{k}\right)\right)} d x_{1} \ldots d x_{N} d y_{1} \ldots d y_{N},
\end{aligned}
$$

where $C(x, y)$ is the covariance kernel of X.

- In the case $C(x, y)=\log \frac{1}{|x-y|}$ this is simply the partition function of Coulomb gas with N positive and N negative charges. Estimating this was done in [GP77] by using an electrostatic inequality due to Onsager [Ons39].
- In the general case $C(x, y)=\log \frac{1}{|x-y|}+g(x, y)$ with g bounded one could simply estimate each $C(x, y)$ in the sums by $\log \frac{1}{|x-y|} \pm\|g\|_{\infty}$, but this would incur an error of order $O\left(N^{2}\right)$.

General Onsager inequalities

Theorem ([JSW18; JSW19])

Assume that either of the following conditions hold:

- $g \in H_{l o c}^{d+\varepsilon}(D \times D)$ for some ε, or
- $d=2$ and $g \in C^{2}(D \times D)$,

Then around any $z \in D$ there exists a neighbourhood $U \subset D$ and $C>0$ such that for any $z_{1}, \ldots, z_{N} \in U$ and $q_{1}, \ldots, q_{N} \in\{-1,1\}$ we have

$$
-\sum_{1 \leq j<k \leq N} q_{j} q_{k} C\left(z_{j}, z_{k}\right) \leq \frac{1}{2} \sum_{j=1}^{N} \log \frac{1}{\frac{1}{2} \min _{j \neq k}\left|z_{j}-z_{k}\right|}+C N .
$$

The rest of the argument

Figure 3: Dependencies between the variables in the integral.

The rest of the argument

Figure 3: Dependencies between the variables in the integral.

- After applying Onsager the dependencies between the variables can be reduced to a set of 2-cycles with attached trees.

The rest of the argument

Figure 3: Dependencies between the variables in the integral.

- After applying Onsager the dependencies between the variables can be reduced to a set of 2-cycles with attached trees.
- The upper bound is now obtained by computing a uniform bound over all the graphs with a given number of components (integrate variables one by one starting from the leaves) and multiplying by the number of such graphs.

Proof of the Onsager inequality for nice fields

- Let A_{j} be centered Gaussians. From $\mathbb{E}\left(\sum_{j=1}^{N} q_{j} A_{j}\right)^{2} \geq 0$ we get by expanding and rearranging the inequality

$$
-\sum_{1 \leq j<k \leq N}^{N} q_{j} q_{k} \mathbb{E} A_{j} A_{k} \leq \frac{1}{2} \sum_{j=1}^{N} \mathbb{E} A_{j}^{2}
$$

Proof of the Onsager inequality for nice fields

- Let A_{j} be centered Gaussians. From $\mathbb{E}\left(\sum_{j=1}^{N} q_{j} A_{j}\right)^{2} \geq 0$ we get by expanding and rearranging the inequality

$$
-\sum_{1 \leq j<k \leq N}^{N} q_{j} q_{k} \mathbb{E} A_{j} A_{k} \leq \frac{1}{2} \sum_{j=1}^{N} \mathbb{E} A_{j}^{2}
$$

- We want to choose A_{j} so that $\mathbb{E} A_{j} A_{k}=C\left(z_{j}, z_{k}\right)$, but $\mathbb{E} A_{j}^{2}$ are small.

Proof of the Onsager inequality for nice fields

- Let A_{j} be centered Gaussians. From $\mathbb{E}\left(\sum_{j=1}^{N} q_{j} A_{j}\right)^{2} \geq 0$ we get by expanding and rearranging the inequality

$$
-\sum_{1 \leq j<k \leq N}^{N} q_{j} q_{k} \mathbb{E} A_{j} A_{k} \leq \frac{1}{2} \sum_{j=1}^{N} \mathbb{E} A_{j}^{2}
$$

- We want to choose A_{j} so that $\mathbb{E} A_{j} A_{k}=C\left(z_{j}, z_{k}\right)$, but $\mathbb{E} A_{j}^{2}$ are small.
- Assume that X has an approximation X_{r} with the following properties:
- $X_{r}(x)$ is a martingale as $r \rightarrow 0$
- $\mathbb{E} X_{r}(x)^{2} \approx \log \frac{1}{r}$
- $\left(X_{u}(x)-X_{r}(x)\right) \perp\left(X_{v}(y)-X_{s}(y)\right)$ for all $u<r$ and $v<s$ if $r+s<|x-y|$

Proof of the Onsager inequality for nice fields

- Let A_{j} be centered Gaussians. From $\mathbb{E}\left(\sum_{j=1}^{N} q_{j} A_{j}\right)^{2} \geq 0$ we get by expanding and rearranging the inequality

$$
-\sum_{1 \leq j<k \leq N}^{N} q_{j} q_{k} \mathbb{E} A_{j} A_{k} \leq \frac{1}{2} \sum_{j=1}^{N} \mathbb{E} A_{j}^{2}
$$

- We want to choose A_{j} so that $\mathbb{E} A_{j} A_{k}=C\left(z_{j}, z_{k}\right)$, but $\mathbb{E} A_{j}^{2}$ are small.
- Assume that X has an approximation X_{r} with the following properties:
- $X_{r}(x)$ is a martingale as $r \rightarrow 0$
- $\mathbb{E} X_{r}(x)^{2} \approx \log \frac{1}{r}$
- $\left(X_{u}(x)-X_{r}(x)\right) \perp\left(X_{v}(y)-X_{s}(y)\right)$ for all $u<r$ and $v<s$ if $r+s<|x-y|$
- By choosing $A_{j}=X_{r_{j}}\left(z_{j}\right)$, where $r_{j}=\frac{1}{2} \min _{k \neq j}\left|z_{j}-z_{k}\right|$, we see that $\mathbb{E} A_{j} A_{k}=C\left(z_{j}, z_{k}\right)$ and the claim follows.

Generalizing to other fields

Theorem ([JSW19])

Assume that in the covariance $C(x, y)=\log \frac{1}{|x-y|}+g(x, y)$ the function g lies in $H_{l o c}^{d+\varepsilon}(D \times D)$. Then around any point $x_{0} \in D$ there exists a neighbourhood in which X can be decomposed as a sum of independent fields, $X=L+R$, where L is a nice log-correlated field (in particular it has the properties in the previous slide) and R is a regular field with Hölder continuous realisations.

XOR-Ising model

Ising model

- a model of ferromagnetism consisting of spins $\sigma(f) \in\{-1,1\}$ for all faces f of a square lattice (for us $\sigma=1$ on the boundary)

Figure 4: Critical Ising model

Ising model

- a model of ferromagnetism consisting of spins $\sigma(f) \in\{-1,1\}$ for all faces f of a square lattice (for us $\sigma=1$ on the boundary)
- Gibbs distribution: $\mathbb{P}[\sigma] \propto e^{\beta \sum_{f_{1} \sim f_{2}} \sigma\left(f_{1}\right) \sigma\left(f_{2}\right)}$

Figure 4: Critical Ising model

Ising model

- a model of ferromagnetism consisting of spins $\sigma(f) \in\{-1,1\}$ for all faces f of a square lattice (for us $\sigma=1$ on the boundary)
- Gibbs distribution:

$$
\mathbb{P}[\sigma] \propto e^{\beta \sum_{f_{1} \sim f_{2}} \sigma\left(f_{1}\right) \sigma\left(f_{2}\right)}
$$

- phase transition at

$$
\beta=\beta_{c}=\log (1+\sqrt{2}) / 2
$$

Figure 4: Critical Ising model

Ising model

Figure 4: Critical Ising model

- a model of ferromagnetism consisting of spins $\sigma(f) \in\{-1,1\}$ for all faces f of a square lattice (for us $\sigma=1$ on the boundary)
- Gibbs distribution: $\mathbb{P}[\sigma] \propto e^{\beta \sum_{f_{1} \sim f_{2}} \sigma\left(f_{1}\right) \sigma\left(f_{2}\right)}$
- phase transition at $\beta=\beta_{c}=\log (1+\sqrt{2}) / 2$.
- We denote $\sigma_{\delta}(x)=\sigma(f)$ for $x \in f$ and a given lattice length $\delta>0$.

XOR-Ising model

- The XOR-Ising spin field is defined by $S_{\delta}(x):=\sigma_{\delta}(x) \tau_{\delta}(x)$, where σ and τ are two independent Ising spin fields.

Figure 5: Ising, Ising, XOR-Ising

XOR-Ising and the real part of imaginary chaos

Theorem ([JSW18])

For any $f \in C_{c}^{\infty}(D)$ we have
$\delta^{-1 / 4} \int_{D} f(x) S_{\delta}(x) d x \rightarrow C^{2} \int_{D} f(x)\left(\frac{2\left|\varphi^{\prime}(x)\right|}{\mathbb{I} \varphi(x)}\right)^{1 / 4} \cos \left(2^{-1 / 2} \Gamma(x)\right) d x$
where $\cos \left(2^{-1 / 2} \Gamma(x)\right)$ denotes the real part of the imaginary chaos distribution μ with parameter $\beta=1 / \sqrt{2}$ and $\varphi: D \rightarrow \mathbb{H}$ is a conformal bijection.

On the proof

- method of moments \Rightarrow integrals of n-point correlations

On the proof

- method of moments \Rightarrow integrals of n-point correlations

Theorem ([CHI15])

For any distinct x_{1}, \ldots, x_{n} we have

$$
\begin{aligned}
& \lim _{\delta \rightarrow 0} \delta^{-n / 8} \mathbb{E}\left[\sigma_{\delta}\left(x_{1}\right) \ldots \sigma_{\delta}\left(x_{n}\right)\right] \\
& =C^{n} \prod_{j=1}^{n}\left(\frac{\left|\varphi^{\prime}\left(x_{j}\right)\right|}{2 \mathbb{J} \varphi\left(x_{j}\right)}\right) \sqrt{2^{-n / 2} \sum_{\mu \in\{-1,1\}^{n}} \prod_{1 \leq k<m \leq n}\left|\frac{\varphi\left(x_{k}\right)-\varphi\left(x_{m}\right)}{\varphi\left(x_{k}\right)-\overline{\varphi\left(x_{m}\right)}}\right|^{\frac{\mu_{k} \mu_{k}}{2}}} .
\end{aligned}
$$

On the proof

- method of moments \Rightarrow integrals of n-point correlations

Theorem ([CHI15])

For any distinct x_{1}, \ldots, x_{n} we have

$$
\begin{aligned}
& \lim _{\delta \rightarrow 0} \delta^{-n / 8} \mathbb{E}\left[\sigma_{\delta}\left(x_{1}\right) \ldots \sigma_{\delta}\left(x_{n}\right)\right] \\
& =C^{n} \prod_{j=1}^{n}\left(\frac{\left|\varphi^{\prime}\left(x_{j}\right)\right|}{2 \mathbb{J} \varphi\left(x_{j}\right)}\right) \sqrt{2^{-n / 2} \sum_{\mu \in\{-1,1\}^{n}} \prod_{1 \leq k<m \leq n}\left|\frac{\varphi\left(x_{k}\right)-\varphi\left(x_{m}\right)}{\varphi\left(x_{k}\right)-\overline{\varphi\left(x_{m}\right)}}\right|^{\frac{\mu_{k} \mu_{m}}{2}}} .
\end{aligned}
$$

- A direct computation shows that the moments match formally.

On the proof

- method of moments \Rightarrow integrals of n-point correlations

Theorem ([CHI15])

For any distinct x_{1}, \ldots, x_{n} we have

$$
\begin{aligned}
& \lim _{\delta \rightarrow 0} \delta^{-n / 8} \mathbb{E}\left[\sigma_{\delta}\left(x_{1}\right) \ldots \sigma_{\delta}\left(x_{n}\right)\right] \\
& =C^{n} \prod_{j=1}^{n}\left(\frac{\left|\varphi^{\prime}\left(x_{j}\right)\right|}{2 \mathbb{I} \varphi\left(x_{j}\right)}\right) \sqrt{2^{-n / 2} \sum_{\mu \in\{-1,1\}^{n}} \prod_{1 \leq k<m \leq n}\left|\frac{\varphi\left(x_{k}\right)-\varphi\left(x_{m}\right)}{\varphi\left(x_{k}\right)-\overline{\varphi\left(x_{m}\right)}}\right|^{\frac{\mu_{k} \mu_{k}}{2}}} .
\end{aligned}
$$

- A direct computation shows that the moments match formally.
- To justify dominated convergence, we prove an Onsager-type inequality for the Ising model:

$$
\delta^{-n / 8} \mathbb{E} \sigma_{\delta}\left(x_{1}\right) \ldots \sigma_{\delta}\left(x_{n}\right) \leq C^{n} \prod_{j=1}^{n}\left(\min _{k \neq j}\left|x_{j}-x_{k}\right|\right)^{-1 / 8}
$$

Regularity, densities and monofractality

Besov spaces

The spaces $B_{p, q}^{s}\left(\mathbb{R}^{d}\right)$

- Banach spaces of distributions parametrised by smoothness parameter $s \in \mathbb{R}$ and two size parameters $p, q \in[1, \infty]$.
- Contain both Sobolev and Hölder spaces:
- $B_{2,2}^{s}\left(\mathbb{R}^{d}\right)=H^{s}\left(\mathbb{R}^{d}\right)(s \in \mathbb{R})$
- $B_{\infty, \infty}^{s}\left(\mathbb{R}^{d}\right)=C^{s}\left(\mathbb{R}^{d}\right)(s \in(0, \infty) \backslash \mathbb{N})$.

Besov spaces

The spaces $B_{p, q}^{s}\left(\mathbb{R}^{d}\right)$

- Banach spaces of distributions parametrised by smoothness parameter $s \in \mathbb{R}$ and two size parameters $p, q \in[1, \infty]$.
- Contain both Sobolev and Hölder spaces:
- $B_{2,2}^{s}\left(\mathbb{R}^{d}\right)=H^{s}\left(\mathbb{R}^{d}\right)(s \in \mathbb{R})$
- $B_{\infty, \infty}^{s}\left(\mathbb{R}^{d}\right)=C^{s}\left(\mathbb{R}^{d}\right)(s \in(0, \infty) \backslash \mathbb{N})$.
- We say that $f \in B_{p, q, l o c}^{s}(D)$ if and only if $\psi f \in B_{p, q}^{s}\left(\mathbb{R}^{d}\right)$ for all $\psi \in C_{c}^{\infty}(D)$.

Theorem ([JSW18])

We have for all $p, q \in[1, \infty]$ that

- $s<-\frac{\beta^{2}}{2} \Rightarrow \mu \in B_{p, q, l o c}^{s}(D)$
- $s>-\frac{\beta^{2}}{2} \Rightarrow \mu \notin B_{p, q, l o c}^{s}(D)$
- μ is almost surely not a complex measure

Regularity of μ

Theorem ([JSW18])

We have for all $p, q \in[1, \infty]$ that

- $s<-\frac{\beta^{2}}{2} \Rightarrow \mu \in B_{p, q, l o c}^{s}(D)$
- $s>-\frac{\beta^{2}}{2} \Rightarrow \mu \notin B_{p, q, l o c}^{s}(D)$
- μ is almost surely not a complex measure
- One can get finiteness of Besov norms by computing moments.

Regularity of μ

Theorem ([JSW18])

We have for all $p, q \in[1, \infty]$ that

- $s<-\frac{\beta^{2}}{2} \Rightarrow \mu \in B_{p, q, l o c}^{s}(D)$
- $s>-\frac{\beta^{2}}{2} \Rightarrow \mu \notin B_{p, q, l o c}^{s}(D)$
- μ is almost surely not a complex measure
- One can get finiteness of Besov norms by computing moments.
- To show that μ is not a complex measure it suffices to show that $\mu\left(e^{-i \beta X_{\delta}} \psi\right) \rightarrow \infty$ as $\delta \rightarrow 0$ for some $\psi \in C_{c}^{\infty}(D)$.

Smooth and bounded densities

Theorem ([ABJJ20])

Assume that X is a GFF in some bounded domain D and let $f \in L^{\infty}(D)$ be a non-zero function. Then the random variable $\mu(f)$ has a smooth and bounded density in \mathbb{C}.

Smooth and bounded densities

Theorem ([ABJJ20])

Assume that X is a GFF in some bounded domain D and let $f \in L^{\infty}(D)$ be a non-zero function. Then the random variable $\mu(f)$ has a smooth and bounded density in \mathbb{C}.

- A rough first idea towards a proof: Look at $\int e^{i \beta \sum_{n=1}^{\infty} A_{n} \varphi_{n}(x)+\frac{\beta^{2}}{2} \sum_{n=1}^{\infty} \varphi_{n}(x)^{2}} d x$ and try to show that if one conditions for instance on A_{1}, A_{2}, then with a high probability the continuous map $\left(A_{1}, A_{2}\right) \mapsto \mu(f)$ sweeps a reasonable area in the complex plane for $\left|A_{1}\right|,\left|A_{2}\right| \leq 1$, say.

Smooth and bounded densities

Theorem ([ABJJ20])

Assume that X is a GFF in some bounded domain D and let $f \in L^{\infty}(D)$ be a non-zero function. Then the random variable $\mu(f)$ has a smooth and bounded density in \mathbb{C}.

- A rough first idea towards a proof: Look at $\int e^{i \beta \sum_{n=1}^{\infty} A_{n} \varphi_{n}(x)+\frac{\beta^{2}}{2} \sum_{n=1}^{\infty} \varphi_{n}(x)^{2}} d x$ and try to show that if one conditions for instance on A_{1}, A_{2}, then with a high probability the continuous map $\left(A_{1}, A_{2}\right) \mapsto \mu(f)$ sweeps a reasonable area in the complex plane for $\left|A_{1}\right|,\left|A_{2}\right| \leq 1$, say.
- Central difficulty with this approach: How to rule out the rest of the chaos $e^{i \beta \sum_{n=3}^{\infty} A_{n} \varphi_{n}(x)+\frac{\beta^{2}}{2} \sum_{n=3}^{\infty} \varphi_{n}(x)^{2}}$ being close to 0 ?
- In the case of real chaos on say the unit interval $[0,1]$ one heuristically has something like

$$
\mathbb{P}[\mu([0,1]) \leq \varepsilon] \leq \mathbb{P}\left[\mu\left(\left[0, \frac{1}{2}\right]\right) \leq \varepsilon, \mu\left(\left[\frac{1}{2}, 1\right]\right) \leq \varepsilon\right] \approx \mathbb{P}[\mu([0,1]) \leq 2 \varepsilon]^{2}
$$

Reasoning along these lines can indeed be made precise and yields the existence of all negative moments for $\mu([0,1])$.

Smooth and bounded densities

- In the case of real chaos on say the unit interval $[0,1]$ one heuristically has something like

$$
\mathbb{P}[\mu([0,1]) \leq \varepsilon] \leq \mathbb{P}\left[\mu\left(\left[0, \frac{1}{2}\right]\right) \leq \varepsilon, \mu\left(\left[\frac{1}{2}, 1\right]\right) \leq \varepsilon\right] \approx \mathbb{P}[\mu([0,1]) \leq 2 \varepsilon]^{2}
$$

Reasoning along these lines can indeed be made precise and yields the existence of all negative moments for $\mu([0,1])$.

- The crucial property here was non-negativity, which of course fails for imaginary chaos.

Smooth and bounded densities

- In the case of real chaos on say the unit interval $[0,1]$ one heuristically has something like

$$
\mathbb{P}[\mu([0,1]) \leq \varepsilon] \leq \mathbb{P}\left[\mu\left(\left[0, \frac{1}{2}\right]\right) \leq \varepsilon, \mu\left(\left[\frac{1}{2}, 1\right]\right) \leq \varepsilon\right] \approx \mathbb{P}[\mu([0,1]) \leq 2 \varepsilon]^{2}
$$

Reasoning along these lines can indeed be made precise and yields the existence of all negative moments for $\mu([0,1])$.

- The crucial property here was non-negativity, which of course fails for imaginary chaos.
- In the end our proof goes through Malliavin calculus.

Monofractality

Theorem ([ABJJ20])

Almost surely for all $z \in D$ we have

$$
\liminf _{r \rightarrow 0} \frac{\log |\mu(Q(z, r))|}{\log r}=2-\beta^{2} / 2
$$

Monofractality

Theorem ([ABJJ20])

Almost surely for all $z \in D$ we have

$$
\liminf _{r \rightarrow 0} \frac{\log |\mu(Q(z, r))|}{\log r}=2-\beta^{2} / 2
$$

- We refine this in two different ways:
- A law of iterated logarithm -type result: For fixed x we have

$$
\limsup _{r \rightarrow 0} \frac{|\mu(Q(x, r))|}{r^{2-\beta^{2} / 2}(\log |\log r|)^{\beta^{2} / 4}}=c_{1}(\beta)
$$

- Existence of exceptional (fast) points:

$$
\sup _{x \in D} \lim _{r \rightarrow 0} \sup \frac{|\mu(Q(x, r))|}{r^{2-\beta^{2} / 2}|\log r|^{\beta^{2} / 4}}=c_{2}(\beta)
$$

Thanks!

References i

[ABJJ20] J. Aru, G. Bavarez, A. Jego, and J. Junnila. TBA. Work in progress (2020).
[Ber17] N. Berestycki. An elementary approach to Gaussian multiplicative chaos. Electronic Communications in Probability 22 (2017).
[BPR19] N. Berestycki, E. Powell, and G. Ray. A characterisation of the Gaussian free field. Probability Theory and Related Fields (2019).
[CGPR19] F. Camia, A. Gandolfi, G. Peccati, and Reddy T. R. Brownian Loops, Layering Fields and Imaginary Gaussian Multiplicative Chaos. arXiv:1908.05881 (2019).

References ii

[CHI15] D. Chelkak, C. Hongler, and K. Izyurov. Conformal invariance of spin correlations in the planar Ising model. Annals of mathematics (2015), 1087-1138.
[GP77] J. Gunson and L. S. Panta. Two-dimensional neutral Coulomb gas. Communications in Mathematical Physics 52.3 (1977), 295-304.
[JSW18] J. Junnila, E. Saksman, and C. Webb. Imaginary multiplicative chaos: Moments, regularity and connections to the Ising model. arXiv:1806.02118 (2018).
[JSW19] J. Junnila, E. Saksman, and C. Webb. Decompositions of log-correlated fields with applications. Annals of Applied Probability 29.6 (2019), 3786-3820.

References iii

[Kah85] J.-P. Kahane. Sur le chaos multiplicatif. Comptes rendus de l'Académie des sciences. Série 1, Mathématique 301.6 (1985), 329-332.
[LRV15] H. Lacoin, R. Rhodes, and V. Vargas. Complex Gaussian Multiplicative Chaos. Communications in Mathematical Physics 337.2 (2015), 569-632.
[Ons39] L. Onsager. Electrostatic Interaction of Molecules. The Journal of Physical Chemistry 43.2 (1939), 189-196.
[RV10] R. Robert and V. Vargas. Gaussian multiplicative chaos revisited. The Annals of Probability 38.2 (2010), 605-631.
[Sha16] A. Shamov. On Gaussian multiplicative chaos. Journal of Functional Analysis 270.9 (2016), 3224-3261.
[SSV19] L. Schoug, A. Sepúlveda, and F. Viklund. Dimension of two-valued sets via imaginary chaos. arXiv:1910.09294 (2019).

