IMAGINARY CHAOS

Janne Junnila (EPFL)
Les Diablerets, February 10th 2020

joint work with

Eero Saksman and Christian Webb; Juhan Aru, Guillaume Bavarez and Antoine Jego

Outline

1. Introduction

2. Moments

3. XOR-Ising model

4. Regularity, densities and monofractality

Introduction

Let us fix a bounded simply connected domain $D \subset \mathbb{R}^d$.

Heuristic definition

A Gaussian field $X \colon D \to \mathbb{R}$ is called log-correlated if

$$\mathbb{E}X(x)X(y) = C(x,y) \coloneqq \log \frac{1}{|x-y|} + g(x,y)$$

where g is regular.

Let us fix a bounded simply connected domain $D \in \mathbb{R}^d$.

Heuristic definition

A Gaussian field $X \colon D \to \mathbb{R}$ is called log-correlated if

$$\mathbb{E}X(x)X(y) = C(x,y) \coloneqq \log \frac{1}{|x-y|} + g(x,y)$$

where g is regular.

Caveat

Such fields cannot be defined pointwise and must instead be understood as distributions (generalized functions). This means that for all $\varphi, \psi \in C_c^\infty(\mathbb{R}^d)$ we have

$$\mathbb{E}X(\varphi)X(\psi) = \int \varphi(x)\psi(y)C(x,y)\,dx\,dy.$$

- We will always assume at least that
 - $g \in L^1(D \times D) \cap C(D \times D)$
 - $\bullet \ \ g \ {\rm is} \ {\rm bounded} \ {\rm from} \ {\rm above}$

- We will always assume at least that
 - $g \in L^1(D \times D) \cap C(D \times D)$
 - $oldsymbol{\cdot}$ g is bounded from above
- These properties are enough to ensure that X exists. (Assuming that the kernel C is positive definite.)

Example: The 2D GFF

Definition

The 0-boundary GFF \varGamma in the domain D is a Gaussian field with the covariance

$$\mathbb{E}\Gamma(x)\Gamma(y)=G_D(x,y)$$

where G_D is the Green's function of the Dirichlet Laplacian in D.

Example: The 2D GFF

Definition

The 0-boundary GFF Γ in the domain D is a Gaussian field with the covariance

$$\mathbb{E}\Gamma(x)\Gamma(y) = G_D(x,y)$$

where G_D is the Green's function of the Dirichlet Laplacian in D.

· universality:

- appears in the scaling limit of various height function models, random matrices, QFT, ...
- a recent characterisation: the only random field with conformally invariant law and domain Markov property (+some moment condition) [BPR19]

Example: The GFF in the unit square

Figure 1: An approximation of the GFF in the unit square.

Gaussian Multiplicative Chaos

• In various applications one is interested in measures formally of the form $e^{\gamma X(x)} \, dx$ where γ is a parameter.

Gaussian Multiplicative Chaos

- In various applications one is interested in measures formally of the form $e^{\gamma X(x)} dx$ where γ is a parameter.
- To rigorously define them one has to approximate X with regular fields X_n and normalize properly when taking the limit as $n \to \infty$.

Gaussian Multiplicative Chaos

- In various applications one is interested in measures formally of the form $e^{\gamma X(x)} dx$ where γ is a parameter.
- To rigorously define them one has to approximate X with regular fields X_n and normalize properly when taking the limit as $n \to \infty$.

Theorem/Definition ([Kah85; RV10; Sha16; Ber17])

For any given $\gamma \in (0, \sqrt{2d})$ the functions $\mu_n(x) \coloneqq e^{\gamma X_n(x) - \frac{\gamma^2}{2} \mathbb{E} X_n(x)^2}$ converge to a random measure μ . We say that $\mu = \mu^{\gamma}$ is a GMC measure associated to X.

Existence of GMC when $\gamma \in (0, \sqrt{d})$

A simple L^2 -computation

For any $f \in C_c^{\infty}(D)$ we have

$$\begin{split} \mathbb{E}|\mu_n(f)|^2 &= \int_{D^2} f(x) f(y) \mathbb{E} e^{\gamma X_n(x) + \gamma X_n(y) - \frac{\gamma^2}{2} \mathbb{E} X_n(x)^2 - \frac{\gamma^2}{2} \mathbb{E} X_n(y)^2} \, dx \, dy \\ &= \int_{D^2} f(x) f(y) e^{\gamma^2 \mathbb{E} X_n(x) X_n(y)} \, dx \, dy \\ &\leq \|f\|_{\infty}^2 \int_{D^2} e^{\gamma^2 \log \frac{1}{|x-y|}} \, dx \, dy = \int_{D^2} \frac{dx \, dy}{|x-y|^{\gamma^2}} < \infty. \end{split}$$

Existence of GMC when $\gamma \in (0, \sqrt{d})$

A simple L^2 -computation

For any $f \in C_c^{\infty}(D)$ we have

$$\begin{split} \mathbb{E}|\mu_{n}(f)|^{2} &= \int_{D^{2}} f(x)f(y)\mathbb{E}e^{\gamma X_{n}(x) + \gamma X_{n}(y) - \frac{\gamma^{2}}{2}\mathbb{E}X_{n}(x)^{2} - \frac{\gamma^{2}}{2}\mathbb{E}X_{n}(y)^{2}} \, dx \, dy \\ &= \int_{D^{2}} f(x)f(y)e^{\gamma^{2}\mathbb{E}X_{n}(x)X_{n}(y)} \, dx \, dy \\ &\leq \|f\|_{\infty}^{2} \int_{D^{2}} e^{\gamma^{2}\log\frac{1}{|x-y|}} \, dx \, dy = \int_{D^{2}} \frac{dx \, dy}{|x-y|^{\gamma^{2}}} < \infty. \end{split}$$

• If $\mu_n(f)$ is a martingale this immediately shows convergence.

Existence of GMC when $\gamma \in (0, \sqrt{d})$

A simple L^2 -computation

For any $f \in C_c^{\infty}(D)$ we have

$$\mathbb{E}|\mu_{n}(f)|^{2} = \int_{D^{2}} f(x)f(y)\mathbb{E}e^{\gamma X_{n}(x) + \gamma X_{n}(y) - \frac{\gamma^{2}}{2}\mathbb{E}X_{n}(x)^{2} - \frac{\gamma^{2}}{2}\mathbb{E}X_{n}(y)^{2}} dx dy$$

$$= \int_{D^{2}} f(x)f(y)e^{\gamma^{2}\mathbb{E}X_{n}(x)X_{n}(y)} dx dy$$

$$\leq \|f\|_{\infty}^{2} \int_{D^{2}} e^{\gamma^{2}\log\frac{1}{|x-y|}} dx dy = \int_{D^{2}} \frac{dx dy}{|x-y|^{\gamma^{2}}} < \infty.$$

- If $\mu_n(f)$ is a martingale this immediately shows convergence.
- Otherwise one can do a similar computation to show that the sequence is Cauchy in $L^2(\Omega)$.

Complex values of γ

Figure 2: The subcritical regime A for γ in the complex plane.

Complex values of γ

Figure 2: The subcritical regime A for γ in the complex plane.

• In fact, $\gamma \mapsto \mu^{\gamma}(f)$ is an analytic function on A [JSW19].

Complex values of γ

Figure 2: The subcritical regime A for γ in the complex plane.

- In fact, $\gamma \mapsto \mu^{\gamma}(f)$ is an analytic function on A [JSW19].
- The circle corresponds to the L^2 -phase in particular it contains the whole subcritical part of the imaginary axis.

Imaginary multiplicative chaos

Theorem/Definition ([JSW18; LRV15])

Let $\beta \in (0, \sqrt{d})$. Then the random functions

$$\mu_n(x) \coloneqq e^{i\beta X_n(x) + \frac{\beta^2}{2}\mathbb{E} X_n(x)^2}$$

converge in probability in $H^{-d/2-arepsilon}(\mathbb{R}^d)$ to a random distribution μ .

Imaginary multiplicative chaos

Theorem/Definition ([JSW18; LRV15])

Let $\beta \in (0, \sqrt{d})$. Then the random functions

$$\mu_n(x) \coloneqq e^{i\beta X_n(x) + \frac{\beta^2}{2}\mathbb{E} X_n(x)^2}$$

converge in probability in $H^{-d/2-\varepsilon}(\mathbb{R}^d)$ to a random distribution μ .

 Applications: XOR-Ising model [JSW18], two-valued sets of the GFF [SSV19] and certain random fields constructed using the Brownian loop soup [CGPR19].

Theorem ([JSW18])

There exists C>0 such that for any $f\in C_c^\infty(D)$ and $N\geq 1$ we have

$$\mathbb{E}|\mu(f)|^{2N} \le C^N \|f\|_{\infty}^{2N} N^{\frac{\beta^2}{d}N}.$$

Theorem ([JSW18])

There exists C>0 such that for any $f\in C_c^\infty(D)$ and $N\geq 1$ we have

$$\mathbb{E}|\mu(f)|^{2N} \le C^N \|f\|_{\infty}^{2N} N^{\frac{\beta^2}{d}N}.$$

Corollary

The mixed moments $\mathbb{E}\mu(f)^k\overline{\mu(f)}^l$ determine the distribution of $\mu(f)$.

Theorem ([JSW18])

There exists C>0 such that for any $f\in C_c^\infty(D)$ and $N\geq 1$ we have

$$\mathbb{E}|\mu(f)|^{2N} \le C^N \|f\|_{\infty}^{2N} N^{\frac{\beta^2}{d}N}.$$

Corollary

The mixed moments $\mathbb{E}\mu(f)^k\overline{\mu(f)}^l$ determine the distribution of $\mu(f)$.

Theorem ([JSW18])

Let $f \in C_c^\infty(D)$ be non-negative and non-zero, then there exists C>0 such that

$$\mathbb{E}|\mu(f)|^{2N} \ge C^N N^{\frac{\beta^2}{d}N}.$$

Bounding moments - the naive way

• $\mathbb{E}|\mu(1)|^{2N}$ is (formally) given by

$$\begin{split} & \int_{D^{2N}} \mathbb{E} \prod_{j=1}^{N} e^{i\beta X(x_{j}) + \frac{\beta^{2}}{2} \mathbb{E}X(x_{j})^{2}} e^{-i\beta X(y_{j}) + \frac{\beta^{2}}{2} \mathbb{E}X(y_{j})^{2}} dx_{j} dy_{j} = \\ & \int_{D^{2N}} e^{\beta^{2} \sum_{1 \leq j,k \leq N} C(x_{j},y_{k}) - \beta^{2} \sum_{1 \leq j < k \leq N} (C(x_{j},x_{k}) + C(y_{j},y_{k}))} dx_{1} \dots dx_{N} dy_{1} \dots dy_{N}, \end{split}$$

where C(x, y) is the covariance kernel of X.

Bounding moments – the naive way

• $\mathbb{E}|\mu(1)|^{2N}$ is (formally) given by

$$\begin{split} & \int_{D^{2N}} \mathbb{E} \prod_{j=1}^N e^{i\beta X(x_j) + \frac{\beta^2}{2} \mathbb{E} X(x_j)^2} e^{-i\beta X(y_j) + \frac{\beta^2}{2} \mathbb{E} X(y_j)^2} dx_j dy_j = \\ & \int_{D^{2N}} e^{\beta^2 \sum_{1 \leq j,k \leq N} C(x_j,y_k) - \beta^2 \sum_{1 \leq j < k \leq N} (C(x_j,x_k) + C(y_j,y_k))} dx_1 \dots dx_N dy_1 \dots dy_N, \end{split}$$

where C(x, y) is the covariance kernel of X.

• In the case $C(x, y) = \log \frac{1}{|x-y|}$ this is simply the partition function of Coulomb gas with N positive and N negative charges. Estimating this was done in [GP77] by using an electrostatic inequality due to Onsager [Ons39].

Bounding moments - the naive way

• $\mathbb{E}|\mu(1)|^{2N}$ is (formally) given by

$$\begin{split} & \int_{D^{2N}} \mathbb{E} \prod_{j=1}^N e^{i\beta X(x_j) + \frac{\beta^2}{2}} \mathbb{E} X(x_j)^2 \, e^{-i\beta X(y_j) + \frac{\beta^2}{2}} \mathbb{E} X(y_j)^2 \, dx_j dy_j = \\ & \int_{D^{2N}} e^{\beta^2 \sum_{1 \leq j,k \leq N} C(x_j,y_k) - \beta^2 \sum_{1 \leq j < k \leq N} (C(x_j,x_k) + C(y_j,y_k))} \, dx_1 \, \dots dx_N dy_1 \, \dots dy_N, \end{split}$$

where C(x, y) is the covariance kernel of X.

- In the case $C(x, y) = \log \frac{1}{|x-y|}$ this is simply the partition function of Coulomb gas with N positive and N negative charges. Estimating this was done in [GP77] by using an electrostatic inequality due to Onsager [Ons39].
- In the general case $C(x,y) = \log \frac{1}{|x-y|} + g(x,y)$ with g bounded one could simply estimate each C(x,y) in the sums by $\log \frac{1}{|x-y|} \pm \|g\|_{\infty}$, but this would incur an error of order $O(N^2)$.

General Onsager inequalities

Theorem ([JSW18; JSW19])

Assume that either of the following conditions hold:

- $g \in H^{d+\varepsilon}_{loc}(D \times D)$ for some ε , or
- d = 2 and $g \in C^2(D \times D)$,

Then around any $z\in D$ there exists a neighbourhood $U\subset D$ and C>0 such that for any $z_1,\ldots,z_N\in U$ and $q_1,\ldots,q_N\in \{-1,1\}$ we have

$$-\sum_{1 \le j < k \le N} q_j q_k C(z_j, z_k) \le \frac{1}{2} \sum_{j=1}^N \log \frac{1}{\frac{1}{2} \min_{j \ne k} |z_j - z_k|} + CN.$$

The rest of the argument

Figure 3: Dependencies between the variables in the integral.

The rest of the argument

Figure 3: Dependencies between the variables in the integral.

 After applying Onsager the dependencies between the variables can be reduced to a set of 2-cycles with attached trees.

The rest of the argument

Figure 3: Dependencies between the variables in the integral.

- After applying Onsager the dependencies between the variables can be reduced to a set of 2-cycles with attached trees.
- The upper bound is now obtained by computing a uniform bound over all the graphs with a given number of components (integrate variables one by one starting from the leaves) and multiplying by the number of such graphs.

• Let A_j be centered Gaussians. From $\mathbb{E}\Big(\sum_{j=1}^N q_j A_j\Big)^2 \geq 0$ we get by expanding and rearranging the inequality

$$-\sum_{1\leq j< k\leq N}^N q_j q_k \mathbb{E} A_j A_k \leq \frac{1}{2} \sum_{j=1}^N \mathbb{E} A_j^2.$$

• Let A_j be centered Gaussians. From $\mathbb{E}\Big(\sum_{j=1}^N q_j A_j\Big)^2 \geq 0$ we get by expanding and rearranging the inequality

$$-\sum_{1\leq j< k\leq N}^N q_j q_k \mathbb{E} A_j A_k \leq \frac{1}{2} \sum_{j=1}^N \mathbb{E} A_j^2.$$

• We want to choose A_j so that $\mathbb{E} A_j A_k = C(z_j, z_k)$, but $\mathbb{E} A_j^2$ are small.

• Let A_j be centered Gaussians. From $\mathbb{E}\Big(\sum_{j=1}^N q_j A_j\Big)^2 \geq 0$ we get by expanding and rearranging the inequality

$$-\sum_{1\leq j< k\leq N}^N q_j q_k \mathbb{E} A_j A_k \leq \frac{1}{2} \sum_{j=1}^N \mathbb{E} A_j^2.$$

- We want to choose A_j so that $\mathbb{E} A_j A_k = C(z_j, z_k)$, but $\mathbb{E} A_j^2$ are small.
- Assume that X has an approximation X_r with the following properties:
 - $X_r(x)$ is a martingale as $r \to 0$
 - $\mathbb{E}X_r(x)^2 \approx \log \frac{1}{r}$
 - $(X_u(x) X_r(x)) \perp (X_v(y) X_s(y))$ for all u < r and v < s if r + s < |x y|

• Let A_j be centered Gaussians. From $\mathbb{E}\Big(\sum_{j=1}^N q_j A_j\Big)^2 \geq 0$ we get by expanding and rearranging the inequality

$$-\sum_{1\leq j< k\leq N}^N q_j q_k \mathbb{E} A_j A_k \leq \frac{1}{2} \sum_{j=1}^N \mathbb{E} A_j^2.$$

- We want to choose A_j so that $\mathbb{E} A_j A_k = C(z_j, z_k)$, but $\mathbb{E} A_j^2$ are small.
- Assume that X has an approximation X_r with the following properties:
 - $X_r(x)$ is a martingale as $r \to 0$
 - $\mathbb{E}X_r(x)^2 \approx \log \frac{1}{r}$
 - $(X_u(x) X_r(x)) \perp (X_v(y) X_s(y))$ for all u < r and v < s if r + s < |x y|
- By choosing $A_j=X_{r_j}(z_j)$, where $r_j=\frac{1}{2}\min_{k\neq j}|z_j-z_k|$, we see that $\mathbb{E} A_jA_k=C(z_j,z_k)$ and the claim follows.

Generalizing to other fields

Theorem ([JSW19])

Assume that in the covariance $C(x,y)=\log\frac{1}{|x-y|}+g(x,y)$ the function g lies in $H^{d+\varepsilon}_{loc}(D\times D)$. Then around any point $x_0\in D$ there exists a neighbourhood in which X can be decomposed as a sum of independent fields, X=L+R, where L is a nice log-correlated field (in particular it has the properties in the previous slide) and R is a regular field with Hölder continuous realisations.

16

Figure 4: Critical Ising model

• a model of ferromagnetism consisting of spins $\sigma(f) \in \{-1,1\} \text{ for all faces } f$ of a square lattice (for us $\sigma=1$ on the boundary)

Figure 4: Critical Ising model

- a model of ferromagnetism consisting of spins $\sigma(f) \in \{-1,1\} \text{ for all faces } f$ of a square lattice (for us $\sigma=1$ on the boundary)
- Gibbs distribution: $\mathbb{P}[\sigma] \propto e^{\beta \sum_{f_1 \sim f_2} \sigma(f_1) \sigma(f_2)}$

Figure 4: Critical Ising model

- a model of ferromagnetism consisting of spins $\sigma(f) \in \{-1,1\} \text{ for all faces } f$ of a square lattice (for us $\sigma=1$ on the boundary)
- Gibbs distribution: $\mathbb{P}[\sigma] \propto e^{\beta \sum_{f_1 \sim f_2} \sigma(f_1) \sigma(f_2)}$
- phase transition at $\beta = \beta_c = \log(1 + \sqrt{2})/2.$

Figure 4: Critical Ising model

- a model of ferromagnetism consisting of spins $\sigma(f) \in \{-1,1\}$ for all faces f of a square lattice (for us $\sigma=1$ on the boundary)
- Gibbs distribution: $\mathbb{P}[\sigma] \propto e^{\beta \sum_{f_1 \sim f_2} \sigma(f_1) \sigma(f_2)}$
- phase transition at $\beta = \beta_c = \log(1 + \sqrt{2})/2.$
- We denote $\sigma_{\delta}(x) = \sigma(f)$ for $x \in f$ and a given lattice length $\delta > 0$.

XOR-Ising model

• The XOR-Ising spin field is defined by $S_{\delta}(x) \coloneqq \sigma_{\delta}(x)\tau_{\delta}(x)$, where σ and τ are two independent Ising spin fields.

Figure 5: Ising, Ising, XOR-Ising

XOR-Ising and the real part of imaginary chaos

Theorem ([JSW18])

For any $f \in C_c^{\infty}(D)$ we have

$$\delta^{-1/4} \int_{D} f(x) S_{\delta}(x) \, dx \to C^{2} \int_{D} f(x) \left(\frac{2|\varphi'(x)|}{\Im \varphi(x)} \right)^{1/4} \cos(2^{-1/2} \Gamma(x)) \, dx$$

where $\cos(2^{-1/2}\Gamma(x))$ denotes the real part of the imaginary chaos distribution μ with parameter $\beta=1/\sqrt{2}$ and $\phi\colon D\to \mathbb{H}$ is a conformal bijection.

• method of moments \Rightarrow integrals of n-point correlations

• method of moments \Rightarrow integrals of n-point correlations

Theorem ([CHI15])

For any distinct x_1, \ldots, x_n we have

$$\begin{split} &\lim_{\delta \to 0} \delta^{-n/8} \mathbb{E}[\sigma_{\delta}(x_1) \cdots \sigma_{\delta}(x_n)] \\ &= C^n \prod_{j=1}^n \left(\frac{|\varphi^{'}(x_j)|}{2 \mathbb{J} \varphi(x_j)} \right) \sqrt{2^{-n/2} \sum_{\mu \in \{-1,1\}^n} \prod_{1 \le k < m \le n} \left| \frac{\varphi(x_k) - \varphi(x_m)}{\varphi(x_k) - \overline{\varphi}(x_m)} \right|^{\frac{\mu_k \mu_m}{2}}}. \end{split}$$

• method of moments \Rightarrow integrals of n-point correlations

Theorem ([CHI15])

For any distinct x_1, \ldots, x_n we have

$$\begin{split} &\lim_{\delta \to 0} \delta^{-n/8} \mathbb{E}[\sigma_{\delta}(x_1) \cdots \sigma_{\delta}(x_n)] \\ &= C^n \prod_{j=1}^n \left(\frac{|\varphi^{'}(x_j)|}{2 \mathbb{J} \varphi(x_j)} \right) \sqrt{2^{-n/2} \sum_{\mu \in \{-1,1\}^n} \prod_{1 \le k < m \le n} \left| \frac{\varphi(x_k) - \varphi(x_m)}{\varphi(x_k) - \overline{\varphi}(x_m)} \right|^{\frac{\mu_k \mu_m}{2}}}. \end{split}$$

A direct computation shows that the moments match formally.

• method of moments \Rightarrow integrals of n-point correlations

Theorem ([CHI15])

For any distinct x_1, \ldots, x_n we have

$$\begin{split} &\lim_{\delta \to 0} \delta^{-n/8} \mathbb{E}[\sigma_{\delta}(x_1) \cdots \sigma_{\delta}(x_n)] \\ &= C^n \prod_{j=1}^n \left(\frac{|\varphi'(x_j)|}{2 \mathbb{J} \varphi(x_j)} \right) \sqrt{2^{-n/2} \sum_{\mu \in \{-1,1\}^n} \prod_{1 \le k < m \le n} \left| \frac{\varphi(x_k) - \varphi(x_m)}{\varphi(x_k) - \overline{\varphi}(x_m)} \right|^{\frac{\mu_k \mu_m}{2}}}. \end{split}$$

- · A direct computation shows that the moments match formally.
- To justify dominated convergence, we prove an Onsager-type inequality for the Ising model:

$$\delta^{-n/8} \mathbb{E} \sigma_{\delta}(x_1) \dots \sigma_{\delta}(x_n) \le C^n \prod_{j=1}^n (\min_{k \ne j} |x_j - x_k|)^{-1/8}$$

Regularity, defisities and	
monofractality	

Pogularity densities and

Besov spaces

The spaces $B_{p,q}^s(\mathbb{R}^d)$

- Banach spaces of distributions parametrised by smoothness parameter $s \in \mathbb{R}$ and two size parameters $p, q \in [1, \infty]$.
- · Contain both Sobolev and Hölder spaces:
 - $B_{2,2}^s(\mathbb{R}^d)=H^s(\mathbb{R}^d) \ (s\in\mathbb{R})$
 - $B^s_{\infty,\infty}(\mathbb{R}^d)=C^s(\mathbb{R}^d)$ ($s\in(0,\infty)\setminus\mathbb{N}$).

Besov spaces

The spaces $B_{p,q}^s(\mathbb{R}^d)$

- Banach spaces of distributions parametrised by smoothness parameter $s \in \mathbb{R}$ and two size parameters $p, q \in [1, \infty]$.
- Contain both Sobolev and Hölder spaces:
 - $B_{2,2}^s(\mathbb{R}^d) = H^s(\mathbb{R}^d)$ $(s \in \mathbb{R})$
 - $B^s_{\infty,\infty}(\mathbb{R}^d)=C^s(\mathbb{R}^d)$ ($s\in(0,\infty)\setminus\mathbb{N}$).
- We say that $f \in B^s_{p,q,loc}(D)$ if and only if $\psi f \in B^s_{p,q}(\mathbb{R}^d)$ for all $\psi \in C^\infty_c(D)$.

Regularity of μ

Theorem ([JSW18])

We have for all $p, q \in [1, \infty]$ that

•
$$s < -\frac{\beta^2}{2} \Rightarrow \mu \in B^s_{p,q,loc}(D)$$

•
$$s > -\frac{\beta^2}{2} \Rightarrow \mu \notin B^s_{p,q,loc}(D)$$

 $oldsymbol{\cdot}$ μ is almost surely not a complex measure

Regularity of μ

Theorem ([JSW18])

We have for all $p, q \in [1, \infty]$ that

•
$$s < -\frac{\beta^2}{2} \Rightarrow \mu \in B^s_{p,q,loc}(D)$$

•
$$s > -\frac{\beta^2}{2} \Rightarrow \mu \notin B^s_{p,q,loc}(D)$$

• μ is almost surely not a complex measure

• One can get finiteness of Besov norms by computing moments.

Regularity of μ

Theorem ([JSW18])

We have for all $p, q \in [1, \infty]$ that

- $s < -\frac{\beta^2}{2} \Rightarrow \mu \in B^s_{p,q,loc}(D)$
- $s > -\frac{\beta^2}{2} \Rightarrow \mu \notin B^s_{p,q,loc}(D)$
- μ is almost surely not a complex measure

- · One can get finiteness of Besov norms by computing moments.
- To show that μ is not a complex measure it suffices to show that $\mu(e^{-i\beta X_\delta}\psi)\to\infty$ as $\delta\to 0$ for some $\psi\in C_c^\infty(D)$.

Theorem ([ABJJ20])

Assume that X is a GFF in some bounded domain D and let $f \in L^\infty(D)$ be a non-zero function. Then the random variable $\mu(f)$ has a smooth and bounded density in $\mathbb C$.

Theorem ([ABJJ20])

Assume that X is a GFF in some bounded domain D and let $f \in L^{\infty}(D)$ be a non-zero function. Then the random variable $\mu(f)$ has a smooth and bounded density in \mathbb{C} .

• A rough first idea towards a proof: Look at $\int e^{i\beta\sum_{n=1}^{\infty}A_n\varphi_n(x)+\frac{\beta^2}{2}\sum_{n=1}^{\infty}\varphi_n(x)^2}\,dx \text{ and try to show that if one } \\ \text{conditions for instance on } A_1,A_2,\text{ then with a high probability the } \\ \text{continuous map } (A_1,A_2)\mapsto \mu(f) \text{ sweeps a reasonable area in the } \\ \text{complex plane for } |A_1|,|A_2|\leq 1,\text{ say.} \\$

Theorem ([ABJJ20])

Assume that X is a GFF in some bounded domain D and let $f \in L^{\infty}(D)$ be a non-zero function. Then the random variable $\mu(f)$ has a smooth and bounded density in \mathbb{C} .

- A rough first idea towards a proof: Look at $\int e^{i\beta \sum_{n=1}^{\infty} A_n \varphi_n(x) + \frac{\beta^2}{2} \sum_{n=1}^{\infty} \varphi_n(x)^2} dx \text{ and try to show that if one}$ conditions for instance on A_1, A_2 , then with a high probability the continuous map $(A_1, A_2) \mapsto \mu(f)$ sweeps a reasonable area in the complex plane for $|A_1|, |A_2| \leq 1$, say.
- Central difficulty with this approach: How to rule out the rest of the chaos $e^{i\beta\sum_{n=3}^{\infty}A_n\varphi_n(x)+\frac{\beta^2}{2}\sum_{n=3}^{\infty}\varphi_n(x)^2}$ being close to 0?

 In the case of real chaos on say the unit interval [0, 1] one heuristically has something like

$$\mathbb{P}[\mu([0,1]) \leq \varepsilon] \leq \mathbb{P}[\mu([0,\frac{1}{2}]) \leq \varepsilon, \mu([\frac{1}{2},1]) \leq \varepsilon] \approx \mathbb{P}[\mu([0,1]) \leq 2\varepsilon]^2.$$

Reasoning along these lines can indeed be made precise and yields the existence of all negative moments for $\mu([0,1])$.

 In the case of real chaos on say the unit interval [0, 1] one heuristically has something like

$$\mathbb{P}[\mu([0,1]) \leq \varepsilon] \leq \mathbb{P}[\mu([0,\frac{1}{2}]) \leq \varepsilon, \mu([\frac{1}{2},1]) \leq \varepsilon] \approx \mathbb{P}[\mu([0,1]) \leq 2\varepsilon]^2.$$

Reasoning along these lines can indeed be made precise and yields the existence of all negative moments for $\mu([0,1])$.

 The crucial property here was non-negativity, which of course fails for imaginary chaos.

• In the case of real chaos on say the unit interval [0,1] one heuristically has something like

$$\mathbb{P}[\mu([0,1]) \leq \varepsilon] \leq \mathbb{P}[\mu([0,\frac{1}{2}]) \leq \varepsilon, \mu([\frac{1}{2},1]) \leq \varepsilon] \approx \mathbb{P}[\mu([0,1]) \leq 2\varepsilon]^2.$$

Reasoning along these lines can indeed be made precise and yields the existence of all negative moments for $\mu([0,1])$.

- The crucial property here was non-negativity, which of course fails for imaginary chaos.
- In the end our proof goes through Malliavin calculus.

Monofractality

Theorem ([ABJJ20])

Almost surely for all $z \in D$ we have

$$\liminf_{r\to 0}\frac{\log|\mu(Q(z,r))|}{\log r}=2-\beta^2/2.$$

Monofractality

Theorem ([ABJJ20])

Almost surely for all $z \in D$ we have

$$\liminf_{r\to 0}\frac{\log|\mu(Q(z,r))|}{\log r}=2-\beta^2/2.$$

- · We refine this in two different ways:
 - A law of iterated logarithm -type result: For fixed x we have

$$\limsup_{r \to 0} \frac{|\mu(Q(x,r))|}{r^{2-\beta^2/2}(\log|\log r|)^{\beta^2/4}} = c_1(\beta)$$

· Existence of exceptional (fast) points:

$$\sup_{x \in D} \limsup_{r \to 0} \frac{|\mu(Q(x,r))|}{r^{2-\beta^2/2} |\log r|^{\beta^2/4}} = c_2(\beta)$$

Thanks!

References i

- [ABJJ20] J. Aru, G. Bavarez, A. Jego, and J. Junnila. *TBA*. Work in progress (2020).
- [Ber17] N. Berestycki. An elementary approach to Gaussian multiplicative chaos. Electronic Communications in Probability 22 (2017).
- [BPR19] N. Berestycki, E. Powell, and G. Ray. A characterisation of the Gaussian free field. Probability Theory and Related Fields (2019).
- [CGPR19] F. Camia, A. Gandolfi, G. Peccati, and Reddy T. R. Brownian Loops, Layering Fields and Imaginary Gaussian Multiplicative Chaos. arXiv:1908.05881 (2019).

References ii

- [CHI15] D. Chelkak, C. Hongler, and K. Izyurov. Conformal invariance of spin correlations in the planar Ising model. Annals of mathematics (2015), 1087–1138.
- [GP77] J. Gunson and L. S. Panta. *Two-dimensional neutral Coulomb gas*. Communications in Mathematical Physics 52.3 (1977), 295–304.
- [JSW18] J. Junnila, E. Saksman, and C. Webb. Imaginary multiplicative chaos: Moments, regularity and connections to the Ising model. arXiv:1806.02118 (2018).
- [JSW19] J. Junnila, E. Saksman, and C. Webb. *Decompositions of log-correlated fields with applications*. Annals of Applied Probability 29.6 (2019), 3786–3820.

References iii

- [Kah85] J.–P. Kahane. Sur le chaos multiplicatif. Comptes rendus de l'Académie des sciences. Série 1, Mathématique 301.6 (1985), 329–332.
- [LRV15] H. Lacoin, R. Rhodes, and V. Vargas. *Complex Gaussian Multiplicative Chaos*. Communications in Mathematical Physics 337.2 (2015), 569–632.
- [Ons39] L. Onsager. *Electrostatic Interaction of Molecules*. The Journal of Physical Chemistry 43.2 (1939), 189–196.
- [RV10] R. Robert and V. Vargas. *Gaussian multiplicative chaos* revisited. The Annals of Probability 38.2 (2010), 605–631.
- [Sha16] A. Shamov. *On Gaussian multiplicative chaos*. Journal of Functional Analysis 270.9 (2016), 3224–3261.

References iv

[SSV19] L. Schoug, A. Sepúlveda, and F. Viklund. *Dimension of two-valued sets via imaginary chaos*. arXiv:1910.09294 (2019).