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Introduction



Log-correlated Gaussian fields

Let us fix a bounded simply connected domain𝐷 ⊂ ℝ𝑑 .
Heuristic definition
A Gaussian field𝑋∶ 𝐷 → ℝ is called log-correlated if

𝔼𝑋(𝑥)𝑋(𝑦) = 𝐶(𝑥, 𝑦) ≔ log 1
|𝑥 − 𝑦|
+ 𝑔(𝑥, 𝑦)

where 𝑔 is regular.

Caveat
Such fields cannot be defined pointwise and must instead be
understood as distributions (generalized functions). This means that
for all 𝜑, 𝜓 ∈ 𝐶∞𝑐 (ℝ𝑑) we have

𝔼𝑋(𝜑)𝑋(𝜓) = ∫𝜑(𝑥)𝜓(𝑦)𝐶(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦.
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Log-correlated Gaussian fields

• We will always assume at least that
• 𝑔 ∈ 𝐿1(𝐷 × 𝐷) ∩ 𝐶(𝐷 × 𝐷)
• 𝑔 is bounded from above

• These properties are enough to ensure that𝑋 exists.
(Assuming that the kernel 𝐶 is positive definite.)
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Example: The 2D GFF

Definition
The 0-boundary GFF 𝛤 in the domain𝐷 is a Gaussian field with the
covariance

𝔼𝛤(𝑥)𝛤(𝑦) = 𝐺𝐷(𝑥, 𝑦)

where 𝐺𝐷 is the Green’s function of the Dirichlet Laplacian in𝐷.

• universality:
• appears in the scaling limit of various height function models,
random matrices, QFT, …

• a recent characterisation: the only random field with conformally
invariant law and domain Markov property (+some moment
condition) [BPR19]
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Example: The GFF in the unit square

Figure 1: An approximation of the GFF in the unit square.
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Gaussian Multiplicative Chaos

• In various applications one is interested in measures formally of the
form 𝑒𝛾𝑋(𝑥) 𝑑𝑥 where 𝛾 is a parameter.

• To rigorously define them one has to approximate𝑋 with regular
fields𝑋𝑛 and normalize properly when taking the limit as 𝑛 → ∞.

Theorem/Definition ([Kah85; RV10; Sha16; Ber17])

For any given 𝛾 ∈ (0, √2𝑑) the functions 𝜇𝑛(𝑥) ≔ 𝑒𝛾𝑋𝑛(𝑥)−
𝛾2

2 𝔼𝑋𝑛(𝑥)
2

converge to a random measure 𝜇. We say that 𝜇 = 𝜇𝛾 is a GMC measure
associated to𝑋.
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Existence of GMC when 𝛾 ∈ (0, √𝑑)

A simple 𝐿2-computation
For any 𝑓 ∈ 𝐶∞𝑐 (𝐷) we have

𝔼|𝜇𝑛(𝑓)|2 = ∫
𝐷2
𝑓(𝑥)𝑓(𝑦)𝔼𝑒𝛾𝑋𝑛(𝑥)+𝛾𝑋𝑛(𝑦)−

𝛾2

2 𝔼𝑋𝑛(𝑥)
2− 𝛾
2

2 𝔼𝑋𝑛(𝑦)
2
𝑑𝑥𝑑𝑦

= ∫
𝐷2
𝑓(𝑥)𝑓(𝑦)𝑒𝛾

2𝔼𝑋𝑛(𝑥)𝑋𝑛(𝑦) 𝑑𝑥𝑑𝑦

≲ ‖𝑓‖2∞ ∫
𝐷2
𝑒𝛾
2 log 1|𝑥−𝑦| 𝑑𝑥𝑑𝑦 = ∫

𝐷2

𝑑𝑥𝑑𝑦
|𝑥 − 𝑦|𝛾2

< ∞.

• If 𝜇𝑛(𝑓) is a martingale this immediately shows convergence.

• Otherwise one can do a similar computation to show that the
sequence is Cauchy in 𝐿2(𝛺).
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Complex values of 𝛾

ℜ(𝛾)

ℑ(𝛾)
√𝑑

−√𝑑

−√2𝑑 √2𝑑

Figure 2: The subcritical regime 𝐴 for 𝛾 in the complex plane.

• In fact, 𝛾 ↦ 𝜇𝛾(𝑓) is an analytic function on 𝐴 [JSW19].
• The circle corresponds to the 𝐿2-phase – in particular it contains
the whole subcritical part of the imaginary axis.
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Imaginary multiplicative chaos

Theorem/Definition ([JSW18; LRV15])

Let 𝛽 ∈ (0, √𝑑). Then the random functions

𝜇𝑛(𝑥) ≔ 𝑒𝑖𝛽𝑋𝑛(𝑥)+
𝛽2

2 𝔼𝑋𝑛(𝑥)
2

converge in probability in𝐻−𝑑/2−𝜀(ℝ𝑑) to a random distribution 𝜇.

• Applications: XOR-Ising model [JSW18], two-valued sets of the GFF
[SSV19] and certain random fields constructed using the Brownian
loop soup [CGPR19].
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Moments



Moments

Theorem ([JSW18])
There exists 𝐶 > 0 such that for any 𝑓 ∈ 𝐶∞𝑐 (𝐷) and𝑁 ≥ 1 we have

𝔼|𝜇(𝑓)|2𝑁 ≤ 𝐶𝑁‖𝑓‖2𝑁∞ 𝑁
𝛽2

𝑑 𝑁 .

Corollary

The mixed moments 𝔼𝜇(𝑓)𝑘𝜇(𝑓)𝑙 determine the distribution of 𝜇(𝑓).

Theorem ([JSW18])
Let 𝑓 ∈ 𝐶∞𝑐 (𝐷) be non-negative and non-zero, then there exists 𝐶 > 0
such that

𝔼|𝜇(𝑓)|2𝑁 ≥ 𝐶𝑁𝑁
𝛽2

𝑑 𝑁 .
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Bounding moments – the naive way

• 𝔼|𝜇(1)|2𝑁 is (formally) given by

∫
𝐷2𝑁
𝔼
𝑁

∏
𝑗=1
𝑒𝑖𝛽𝑋(𝑥𝑗)+

𝛽2

2 𝔼𝑋(𝑥𝑗)
2
𝑒−𝑖𝛽𝑋(𝑦𝑗)+

𝛽2

2 𝔼𝑋(𝑦𝑗)
2
𝑑𝑥𝑗𝑑𝑦𝑗 =

∫
𝐷2𝑁
𝑒𝛽
2 ∑1≤𝑗,𝑘≤𝑁 𝐶(𝑥𝑗 ,𝑦𝑘)−𝛽

2 ∑1≤𝑗<𝑘≤𝑁(𝐶(𝑥𝑗 ,𝑥𝑘)+𝐶(𝑦𝑗 ,𝑦𝑘))𝑑𝑥1…𝑑𝑥𝑁𝑑𝑦1…𝑑𝑦𝑁 ,

where 𝐶(𝑥, 𝑦) is the covariance kernel of𝑋.

• In the case 𝐶(𝑥, 𝑦) = log 1|𝑥−𝑦| this is simply the partition function
of Coulomb gas with𝑁 positive and𝑁 negative charges. Estimating
this was done in [GP77] by using an electrostatic inequality due to
Onsager [Ons39].

• In the general case 𝐶(𝑥, 𝑦) = log 1|𝑥−𝑦| + 𝑔(𝑥, 𝑦) with 𝑔 bounded
one could simply estimate each 𝐶(𝑥, 𝑦) in the sums by
log 1|𝑥−𝑦| ± ‖𝑔‖∞ , but this would incur an error of order 𝑂(𝑁

2).
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General Onsager inequalities

Theorem ([JSW18; JSW19])
Assume that either of the following conditions hold:

• 𝑔 ∈ 𝐻𝑑+𝜀𝑙𝑜𝑐 (𝐷 × 𝐷) for some 𝜀, or

• 𝑑 = 2 and 𝑔 ∈ 𝐶2(𝐷 × 𝐷),

Then around any 𝑧 ∈ 𝐷 there exists a neighbourhood𝑈 ⊂ 𝐷 and 𝐶 > 0
such that for any 𝑧1 ,… , 𝑧𝑁 ∈ 𝑈 and 𝑞1 ,… , 𝑞𝑁 ∈ {−1, 1} we have

− ∑
1≤𝑗<𝑘≤𝑁
𝑞𝑗𝑞𝑘𝐶(𝑧𝑗 , 𝑧𝑘) ≤

1
2

𝑁

∑
𝑗=1

log 1
1
2 min𝑗≠𝑘 |𝑧𝑗 − 𝑧𝑘 |

+ 𝐶𝑁.
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The rest of the argument

𝑥1

𝑥2

𝑥3

𝑦1

𝑦2

𝑦3

𝑧1
𝑧2

𝑧3

𝑧4

𝑧5
𝑧6Onsager

Figure 3: Dependencies between the variables in the integral.

• After applying Onsager the dependencies between the variables can
be reduced to a set of 2-cycles with attached trees.

• The upper bound is now obtained by computing a uniform bound
over all the graphs with a given number of components (integrate
variables one by one starting from the leaves) and multiplying by
the number of such graphs.
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Proof of the Onsager inequality for nice fields

• Let 𝐴𝑗 be centered Gaussians. From 𝔼(∑
𝑁
𝑗=1 𝑞𝑗𝐴𝑗)

2
≥ 0 we get by

expanding and rearranging the inequality

−
𝑁

∑
1≤𝑗<𝑘≤𝑁
𝑞𝑗𝑞𝑘𝔼𝐴𝑗𝐴𝑘 ≤

1
2

𝑁

∑
𝑗=1
𝔼𝐴2𝑗 .

• We want to choose 𝐴𝑗 so that 𝔼𝐴𝑗𝐴𝑘 = 𝐶(𝑧𝑗 , 𝑧𝑘), but 𝔼𝐴2𝑗 are
small.

• Assume that𝑋 has an approximation𝑋𝑟 with the following
properties:

• 𝑋𝑟(𝑥) is a martingale as 𝑟 → 0
• 𝔼𝑋𝑟(𝑥)2 ≈ log

1
𝑟

• (𝑋𝑢(𝑥) − 𝑋𝑟(𝑥))⊥(𝑋𝑣(𝑦) − 𝑋𝑠(𝑦)) for all 𝑢 < 𝑟 and 𝑣 < 𝑠 if
𝑟 + 𝑠 < |𝑥 − 𝑦|

• By choosing 𝐴𝑗 = 𝑋𝑟𝑗 (𝑧𝑗), where 𝑟𝑗 =
1
2 min𝑘≠𝑗 |𝑧𝑗 − 𝑧𝑘 |, we see

that 𝔼𝐴𝑗𝐴𝑘 = 𝐶(𝑧𝑗 , 𝑧𝑘) and the claim follows.
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Generalizing to other fields

Theorem ([JSW19])

Assume that in the covariance 𝐶(𝑥, 𝑦) = log 1|𝑥−𝑦| + 𝑔(𝑥, 𝑦) the
function 𝑔 lies in𝐻𝑑+𝜀𝑙𝑜𝑐 (𝐷 × 𝐷). Then around any point 𝑥0 ∈ 𝐷 there
exists a neighbourhood in which𝑋 can be decomposed as a sum of
independent fields,𝑋 = 𝐿 + 𝑅, where 𝐿 is a nice log-correlated field (in
particular it has the properties in the previous slide) and 𝑅 is a regular
field with Hölder continuous realisations.
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XOR-Ising model



Ising model

Figure 4: Critical Ising model

• a model of ferromagnetism
consisting of spins
𝜎(𝑓) ∈ {−1, 1} for all faces 𝑓
of a square lattice (for us 𝜎 = 1
on the boundary)

• Gibbs distribution:
ℙ[𝜎] ∝ 𝑒𝛽∑𝑓1∼𝑓2 𝜎(𝑓1)𝜎(𝑓2)

• phase transition at
𝛽 = 𝛽𝑐 = log(1 + √2)/2.

• We denote 𝜎𝛿(𝑥) = 𝜎(𝑓) for
𝑥 ∈ 𝑓 and a given lattice
length 𝛿 > 0.
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XOR-Ising model

• The XOR-Ising spin field is defined by 𝑆𝛿(𝑥) ≔ 𝜎𝛿(𝑥)𝜏𝛿(𝑥), where 𝜎
and 𝜏 are two independent Ising spin fields.

Figure 5: Ising, Ising, XOR-Ising

18



XOR-Ising and the real part of imaginary chaos

Theorem ([JSW18])
For any 𝑓 ∈ 𝐶∞𝑐 (𝐷) we have

𝛿−1/4 ∫
𝐷
𝑓(𝑥)𝑆𝛿(𝑥) 𝑑𝑥 → 𝐶2 ∫

𝐷
𝑓(𝑥)(
2|𝜑′(𝑥)|
ℑ𝜑(𝑥)
)
1/4

cos(2−1/2𝛤(𝑥)) 𝑑𝑥

where cos(2−1/2𝛤(𝑥)) denotes the real part of the imaginary chaos
distribution 𝜇 with parameter 𝛽 = 1/√2 and 𝜑∶ 𝐷 → ℍ is a
conformal bijection.
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On the proof

• method of moments⇒ integrals of 𝑛-point correlations

Theorem ([CHI15])
For any distinct 𝑥1 ,… , 𝑥𝑛 we have

lim
𝛿→0
𝛿−𝑛/8𝔼[𝜎𝛿(𝑥1)…𝜎𝛿(𝑥𝑛)]

= 𝐶𝑛
𝑛

∏
𝑗=1
(
|𝜑′(𝑥𝑗)|
2ℑ𝜑(𝑥𝑗)

)√2−𝑛/2 ∑
𝜇∈{−1,1}𝑛

∏
1≤𝑘<𝑚≤𝑛
|
𝜑(𝑥𝑘) − 𝜑(𝑥𝑚)
𝜑(𝑥𝑘) − 𝜑(𝑥𝑚)

|
𝜇𝑘𝜇𝑚
2
.

• A direct computation shows that the moments match formally.
• To justify dominated convergence, we prove an Onsager-type
inequality for the Ising model:

𝛿−𝑛/8𝔼𝜎𝛿(𝑥1)…𝜎𝛿(𝑥𝑛) ≤ 𝐶𝑛
𝑛

∏
𝑗=1
(min
𝑘≠𝑗
|𝑥𝑗 − 𝑥𝑘 |)−1/8
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Regularity, densities and
monofractality



Besov spaces

The spaces 𝐵𝑠𝑝,𝑞(ℝ𝑑)

• Banach spaces of distributions parametrised by smoothness
parameter 𝑠 ∈ ℝ and two size parameters 𝑝, 𝑞 ∈ [1,∞].

• Contain both Sobolev and Hölder spaces:
• 𝐵𝑠2,2(ℝ𝑑) = 𝐻𝑠(ℝ𝑑) (𝑠 ∈ ℝ)
• 𝐵𝑠∞,∞(ℝ𝑑) = 𝐶𝑠(ℝ𝑑) (𝑠 ∈ (0,∞) ⧵ ℕ).

• We say that 𝑓 ∈ 𝐵𝑠𝑝,𝑞,𝑙𝑜𝑐(𝐷) if and only if 𝜓𝑓 ∈ 𝐵𝑠𝑝,𝑞(ℝ𝑑) for all
𝜓 ∈ 𝐶∞𝑐 (𝐷).
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Regularity of 𝜇

Theorem ([JSW18])
We have for all 𝑝, 𝑞 ∈ [1,∞] that

• 𝑠 < −𝛽
2

2 ⇒ 𝜇 ∈ 𝐵
𝑠
𝑝,𝑞,𝑙𝑜𝑐(𝐷)

• 𝑠 > −𝛽
2

2 ⇒ 𝜇 ∉ 𝐵
𝑠
𝑝,𝑞,𝑙𝑜𝑐(𝐷)

• 𝜇 is almost surely not a complex measure

• One can get finiteness of Besov norms by computing moments.

• To show that 𝜇 is not a complex measure it suffices to show that
𝜇(𝑒−𝑖𝛽𝑋𝛿𝜓) → ∞ as 𝛿 → 0 for some 𝜓 ∈ 𝐶∞𝑐 (𝐷).
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Smooth and bounded densities

Theorem ([ABJJ20])
Assume that𝑋 is a GFF in some bounded domain𝐷 and let 𝑓 ∈ 𝐿∞(𝐷)
be a non-zero function. Then the random variable 𝜇(𝑓) has a smooth
and bounded density in ℂ.

• A rough first idea towards a proof: Look at

∫ 𝑒𝑖𝛽∑
∞
𝑛=1 𝐴𝑛𝜑𝑛(𝑥)+

𝛽2

2 ∑
∞
𝑛=1 𝜑𝑛(𝑥)

2
𝑑𝑥 and try to show that if one

conditions for instance on 𝐴1 , 𝐴2 , then with a high probability the
continuous map (𝐴1 , 𝐴2) ↦ 𝜇(𝑓) sweeps a reasonable area in the
complex plane for |𝐴1 |, |𝐴2 | ≤ 1, say.

• Central difficulty with this approach: How to rule out the rest of the

chaos 𝑒𝑖𝛽∑
∞
𝑛=3 𝐴𝑛𝜑𝑛(𝑥)+

𝛽2

2 ∑
∞
𝑛=3 𝜑𝑛(𝑥)

2
being close to 0?
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Smooth and bounded densities

• In the case of real chaos on say the unit interval [0, 1] one
heuristically has something like

ℙ[𝜇([0, 1]) ≤ 𝜀] ≤ ℙ[𝜇([0, 1
2
]) ≤ 𝜀, 𝜇([1

2
, 1]) ≤ 𝜀] ≈ ℙ[𝜇([0, 1]) ≤ 2𝜀]2 .

Reasoning along these lines can indeed be made precise and yields
the existence of all negative moments for 𝜇([0, 1]).

• The crucial property here was non-negativity, which of course fails
for imaginary chaos.

• In the end our proof goes through Malliavin calculus.
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Monofractality

Theorem ([ABJJ20])
Almost surely for all 𝑧 ∈ 𝐷 we have

lim inf
𝑟→0

log |𝜇(𝑄(𝑧, 𝑟))|
log 𝑟

= 2 − 𝛽2/2.

• We refine this in two different ways:
• A law of iterated logarithm -type result: For fixed 𝑥 we have

lim sup
𝑟→0

|𝜇(𝑄(𝑥, 𝑟))|
𝑟2−𝛽2/2(log | log 𝑟|)𝛽2/4

= 𝑐1(𝛽)

• Existence of exceptional (fast) points:

sup
𝑥∈𝐷

lim sup
𝑟→0

|𝜇(𝑄(𝑥, 𝑟))|
𝑟2−𝛽2/2 | log 𝑟|𝛽2/4

= 𝑐2(𝛽)
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Thanks!
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