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The variational principle for domino tilings

Uniformly random domino tiling of an aztec diamond
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The variational principle for domino tilings

Zω
Λ := − log

number of tilings of Λ with
boundary height function
ω|∂Λ



Theorem (Cohn, Kenyon, Propp, 2000)
Consider R an open region, ξ a continuous function on ∂R.

Assume: 1

n
Λn → R and 1

n
Graph(ωn|∂Λn) → Graph(ξ),

Then: 1

n2
Zωn
Λn

→ inf
f : f |∂R=ξ

∫
R
σ(∇f)dλ,

where σ(s) encodes the specific free energy of a gradient Gibbs
measure of slope s.
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The variational principle for domino tilings

If σ is strictly convex on the interior of the set of possible
slopes, then there is a unique minimizer fmin in the infimum

inf
f : f |∂R=ξ

∫
R
σ(∇f)dλ.

This implies:
1. Uniqueness of the asymptotic profile,
2. The LDP with speed n2 and rate function

I(f) :=

∫
R
σ(∇f)dλ

has a unique minimizer.



6 / 23

The variational principle for domino tilings

If σ is strictly convex on the interior of the set of possible
slopes, then there is a unique minimizer fmin in the infimum

inf
f : f |∂R=ξ

∫
R
σ(∇f)dλ.

This implies:
1. Uniqueness of the asymptotic profile,

2. The LDP with speed n2 and rate function

I(f) :=

∫
R
σ(∇f)dλ

has a unique minimizer.



6 / 23

The variational principle for domino tilings

If σ is strictly convex on the interior of the set of possible
slopes, then there is a unique minimizer fmin in the infimum

inf
f : f |∂R=ξ

∫
R
σ(∇f)dλ.

This implies:
1. Uniqueness of the asymptotic profile,
2. The LDP with speed n2 and rate function

I(f) :=

∫
R
σ(∇f)dλ

has a unique minimizer.



7 / 23

What if σ is not strictly convex?

May have “chaos” when the surface tension σ has affine regions:

Goals:
1. Understand natural conditions that imply strict convexity,
2. Prove strict convexity for a large class of models.
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What is known

Definition (Notation)
▶ Sample space Ω = EZd , where E ∈ {Z,R},

▶ F is the product σ-algebra on Ω,
▶ ϕ = (ϕΛ)Λ⊂⊂Zd denotes the specification,
▶ ϕω

Λ is the local Gibbs measure in Λ with bc ω,
▶ Always assumed:

▶ ϕ is invariant under shifts of Zd,
▶ ϕ is a gradient specification: ϕω+a

Λ is equivalent to lifting all
samples from ϕω

Λ by a, whenever a is constant.
▶ ϕ is generated by a potential Φ.



9 / 23

What is known

Definition (Notation)
▶ Sample space Ω = EZd , where E ∈ {Z,R},
▶ F is the product σ-algebra on Ω,

▶ ϕ = (ϕΛ)Λ⊂⊂Zd denotes the specification,
▶ ϕω

Λ is the local Gibbs measure in Λ with bc ω,
▶ Always assumed:

▶ ϕ is invariant under shifts of Zd,
▶ ϕ is a gradient specification: ϕω+a

Λ is equivalent to lifting all
samples from ϕω

Λ by a, whenever a is constant.
▶ ϕ is generated by a potential Φ.



9 / 23

What is known

Definition (Notation)
▶ Sample space Ω = EZd , where E ∈ {Z,R},
▶ F is the product σ-algebra on Ω,
▶ ϕ = (ϕΛ)Λ⊂⊂Zd denotes the specification,

▶ ϕω
Λ is the local Gibbs measure in Λ with bc ω,

▶ Always assumed:
▶ ϕ is invariant under shifts of Zd,
▶ ϕ is a gradient specification: ϕω+a

Λ is equivalent to lifting all
samples from ϕω

Λ by a, whenever a is constant.
▶ ϕ is generated by a potential Φ.



9 / 23

What is known

Definition (Notation)
▶ Sample space Ω = EZd , where E ∈ {Z,R},
▶ F is the product σ-algebra on Ω,
▶ ϕ = (ϕΛ)Λ⊂⊂Zd denotes the specification,
▶ ϕω

Λ is the local Gibbs measure in Λ with bc ω,

▶ Always assumed:
▶ ϕ is invariant under shifts of Zd,
▶ ϕ is a gradient specification: ϕω+a

Λ is equivalent to lifting all
samples from ϕω

Λ by a, whenever a is constant.
▶ ϕ is generated by a potential Φ.



9 / 23

What is known

Definition (Notation)
▶ Sample space Ω = EZd , where E ∈ {Z,R},
▶ F is the product σ-algebra on Ω,
▶ ϕ = (ϕΛ)Λ⊂⊂Zd denotes the specification,
▶ ϕω

Λ is the local Gibbs measure in Λ with bc ω,
▶ Always assumed:

▶ ϕ is invariant under shifts of Zd,

▶ ϕ is a gradient specification: ϕω+a
Λ is equivalent to lifting all

samples from ϕω
Λ by a, whenever a is constant.

▶ ϕ is generated by a potential Φ.



9 / 23

What is known

Definition (Notation)
▶ Sample space Ω = EZd , where E ∈ {Z,R},
▶ F is the product σ-algebra on Ω,
▶ ϕ = (ϕΛ)Λ⊂⊂Zd denotes the specification,
▶ ϕω

Λ is the local Gibbs measure in Λ with bc ω,
▶ Always assumed:

▶ ϕ is invariant under shifts of Zd,
▶ ϕ is a gradient specification: ϕω+a

Λ is equivalent to lifting all
samples from ϕω

Λ by a, whenever a is constant.

▶ ϕ is generated by a potential Φ.



9 / 23

What is known

Definition (Notation)
▶ Sample space Ω = EZd , where E ∈ {Z,R},
▶ F is the product σ-algebra on Ω,
▶ ϕ = (ϕΛ)Λ⊂⊂Zd denotes the specification,
▶ ϕω

Λ is the local Gibbs measure in Λ with bc ω,
▶ Always assumed:

▶ ϕ is invariant under shifts of Zd,
▶ ϕ is a gradient specification: ϕω+a

Λ is equivalent to lifting all
samples from ϕω

Λ by a, whenever a is constant.
▶ ϕ is generated by a potential Φ.



10 / 23

What is known

Sheffield (2005) showed that σ is strictly convex for simply
attractive potentials Φ. These are potentials which are both:

1. Nearest neighbor: interactions between pairs of points only,
2. Convex.

He uses reflexion transformations introduced by Swendsen and
Wang.

It contains:
1. Dimer models,
2. Six-vertex model with certain parameters,
3. Uniformly random k-Lipschitz functions,
4. Discrete Gaussian free field.
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Can we go further?

Limit shapes appear for models with non-local interactions.

tiling by 3× 1 bars tree-valued function
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Can we go further?

In order to attack more general random surfaces with more
complex interactions we need to:
▶ Get around cluster swapping techniques which use edge

energy and thus only works for two-points interactions,

▶ Understand what convexity of the potential is really
bringing to the table.

The answer to these problems is stochastic monotonicity.
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Definition of stochastic monotonicity

Definition
A specification ϕ is stochastically monotone if

ϕω1
Λ ≼ ϕω2

Λ whenever ω1 ≤ ω2,

where ω1, ω2 are height functions, Λ ⊂⊂ Zd.
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Definition of Lipschitz

Definition
A specification ϕ is Lipschitz if there is a K < ∞ such that ϕω

Λ

is supported on K-Lipschitz functions for ω K-Lipschitz.
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Statement of the result

Theorem (L, Tassy)
Let ϕ denote a shift-invariant gradient specification which is:

1. stochastically monotone,
2. Lipschitz,

3. generated by some potential Φ ∈ C.
Write U for the interior of {σ < ∞} ⊂ (Rd)∗: the set of
allowable slopes. The surface tension σ : U → R is strictly
convex if:

1. E = R
2. E = Z and σ is affine on ∂U , but not U .
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Definition of our class of potentials

The potential Φ must decompose as the sum of two potentials
Ψ and Ξ, where:

1. Ψ is a finite-range potential which excludes non-Lipschitz
functions∗,

2. Ξ is a potential such that the Hamiltonians HΛ are
uniformly bounded, and which is amenable, i.e.:

|HΛn −H0
Λn

| = o(nd)

as n → ∞ where Λn = {0, . . . , n− 1}d ⊂ Zd.

∗ By which we mean: 1-Lipschitz w.r.t. some quasimetric q, in
order to be as general as possible.
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Open questions

▶ Can we extend the argument to non-Lipschitz functions?
▶ Is it possible to reformulate the variational principle in

terms of specifications only?
▶ Can we find models non-monotone models for which there

exists a c < ∞ such that ω1 ≤ ω2 implies

ϕω1
Λ ⪯ ϕω2+c

Λ ?

If it is the case the Moat Lemma still works and σ is
strictly convex.
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