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number of tilings of A with
73 = —log | boundary height function
wloa

Theorem (Cohn, Kenyon, Propp, 2000)

Consider R an open region, & a continuous function on OR.
1 1
Assume: —An — R and — Graph(wy|sa, ) — Graph(§),
n

Then: —Z“’” inf /U VH)dA
n? f: flar=¢ JR V)

where o(s) encodes the specific free energy of a gradient Gibbs
measure of slope s.
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The variational principle for domino tilings

If o is strictly convex on the interior of the set of possible
slopes, then there is a unique minimizer f;, in the infimum

inf o(Vf)dA.
f: f|6R=§/R (V1)

This implies:
1. Uniqueness of the asymptotic profile,
2. The LDP with speed n? and rate function

1(f) = /R o(V f)dA

has a unique minimizer.
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Goals:

1. Understand natural conditions that imply strict convexity,

2. Prove strict convexity for a large class of models.
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What is known

Definition (Notation)
» Sample space Q = EZ*, where E € {Z,R},

F is the product o-algebra on €2,

>

» ¢ = (¢a)rccza denotes the specification,

> Y is the local Gibbs measure in A with bc w,
»

Always assumed:

> ¢ is invariant under shifts of Z9,
> ¢ is a gradient specification: ¢47* is equivalent to lifting all

samples from ¢% by a, whenever a is constant.

> ¢ is generated by a potential .
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What is known

Sheffield (2005) showed that o is strictly convex for simply
attractive potentials ®. These are potentials which are both:

1. Nearest neighbor: interactions between pairs of points only,
2. Convex.

He uses reflexion transformations introduced by Swendsen and
Wang.

It contains:
1. Dimer models,
2. Six-vertex model with certain parameters,
3. Uniformly random k-Lipschitz functions,

4. Discrete Gaussian free field.
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Limit shapes appear for models with non-local interactions.

tiling by 3 x 1 bars tree-valued function
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Can we go further?

In order to attack more general random surfaces with more
complex interactions we need to:

> Get around cluster swapping techniques which use edge
energy and thus only works for two-points interactions,

» Understand what convexity of the potential is really
bringing to the table.

The answer to these problems is stochastic monotonicity.



Definition of stochastic monotonicity

Definition
A specification ¢ is stochastically monotone if

e ore whenever w1 < wa,

where wy,wy are height functions, A CC Z¢.



Definition of Lipschitz

Definition
A specification ¢ is Lipschitz if there is a K < oo such that ¢%
is supported on K-Lipschitz functions for w K-Lipschitz.
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Statement of the result

Theorem (L, Tassy)

Let ¢ denote a shift-invariant gradient specification which is:
1. stochastically monotone,
2. Lipschitz,
3. generated by some potential ® € C.

Write U for the interior of {o < oo} C (RY)*: the set of
allowable slopes. The surface tension o : U — R is strictly
convez if:

1. E=R
2. E =7 and o is affine on OU, but not U.
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Definition of our class of potentials

The potential ® must decompose as the sum of two potentials
¥ and Z, where:
1. V¥ is a finite-range potential which excludes non-Lipschitz
functions™,

2. = is a potential such that the Hamiltonians Hy are
uniformly bounded, and which is amenable, i.e.:

|[Ha, — HR, | = o(n?)
as n — oo where A, = {0,...,n —1}¢ c Z4.

*x By which we mean: 1-Lipschitz w.r.t. some quasimetric ¢, in
order to be as general as possible.
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Open questions

> Can we extend the argument to non-Lipschitz functions?

» Is it possible to reformulate the variational principle in
terms of specifications only?

» Can we find models non-monotone models for which there
exists a ¢ < oo such that w; < we implies

QZ)‘XI =< QZ)‘XQ -‘rc?

If it is the case the Moat Lemma still works and o is
strictly convex.
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