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Outline

1. The six-vertex model and its height function on a finite torus

2. Two results:
. Existence and ergodicity of the infinite volume limit for ¢ € [\/3 ,2]
2. Delocalization of the height function for ¢ € (v/2 + v/2,2)

3. Ingredients of proofs:

» Baxter—Kelland—Wu °73 correspondence with the critical random cluster
model with g € [1,4]

> continuity of phase transition in the random cluster model with g € [1, 4]
(Duminil-Copin & Sidoravicius & Tassion *15)

> spin representation of the six-vertex model (Rys *63)

> FK-type representation of the spin model (Glazman & Peled "18, Ray &
Spinka ’19, L. ’19)



The six-vertex model

A six-vertex (or arrow) configuration on a 4-regular graph is an assignment
of an arrow to each edge which yields a conservative flow, i.e., such that
there are two incoming and two outgoing arrows at every vertex

Forn = (n;,ny) € N2, let Ty = (Z/2n,Z) x (Z/2n,Z), and let O, and O
be the set of arrow configurations on Ty, and Z? respectively

We consider the six-vertex model (or more precisely the F-model) on Ty
with parameter ¢ > 0. This is a probability measure on O, given by

tn (@) CN(Q), a € Oy,

where N(«) is the number of vertices of type 3a or 3b in «



The six-vertex model




Existence of the infinite-volume limit

Theorem 1. (Dumnil-Copin et al. *20, L. *20)

For ¢ € [V/3,2],
(i) there exists a translation invariant probability measure x on O such that

Un — 4 as |n| = oo

(ii) the limiting measure p is ergodic with respect to translations by the
even sublattice of Z?

¢ € [V/3,2] corresponds to ¢ € [1,4] in the BKW representation
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The height function




Behaviour of the height function

What is the behaviour of
Var,[h(u)] as |u| = o0

where u is a face of Z2?
» variance bounded <> [ocalization

» variance unbounded < delocalizatoin

So far

> localization was proved for ¢ > 2 (Duminil-Copin et al. ’16, Glazman
& Peled "18)

» delocalization for ¢ = 2 (Duminil-Copin & Sidoravicius & Tassion 15,
Glazman & Peled *18), ¢ — /2 (Kenyon *99) and its small
neighbourhood (Giuliani & Mastropietro & Toninelli *14), and ¢ = |
(Chandgotia et al. 18, Duminil-Copin et al. *19)

7138



Delocalization of the height function

Theorem 2. (Dumnil-Copin et al. *20, L. *20)

Forc € (V2 ++/2,2),

Var,[h(u)] - o0 as |u] = o0

The result of Dumnil-Copin & Karrila & Manolescu & Oulamara uses
different techniques, works for all ¢ € [1,2] and gives logarithmic
divergence of the variance

¢ € (V2 +v/2,2] corresponds to g € (2,4] in the BKW representation
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BKW representation




BKW representation




BKW representation

W(Z) —e L A (left(L) —right(L)) __ He "t\(left(é) rlght
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BKW representation

(bn(L) o H(eikwind(z)_;’_e—i)\wind(z)) I \/a\L\ (\/Lq)lL"C‘f‘
leL



BKW representation

(bn (f) x ﬂlL(ﬁ)l (\/iq) [Lnetr (€) ] (“almost” FK(q) measure)
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BKW representation

#FK(€) \/(—IIL(é)I ¢© (FK(g) measure)



Convergence of ¢, to ¢

» All subsequential limits of ¢, satisfy the DLR conditions of a critical
random cluster measure

» By uniqueness of the critical random cluster measure ¢, we get
convergence of ¢, to ¢

How to infer convergence of u, without a probabilistic coupling between i,
and ¢,?
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o(u) = "™

Answer

It is enough to prove convergence of spin correlations!
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Outline of proof of Theorem 1

use the BKW representation to get

E,[o(ur) - o(um)] = Eg, [ H o( }

Lel

use percolation properties of the critical random cluster measure ¢
obtained by Duminil-Copin, Sidoravicius & Tassion 15, to get
convergence

E,, [ I1 p(@} S E, [ I1 p(z)} as n— oo
el el

conclude convergence in distribution of y, to an infinite volume
measure /i

use mixing of ¢ to get ergodicity of u



BKW representation of spin correlations




BKW representation of spin correlations




BKW representation of spin correlations

E,, [0(u)o ()] = By, [T (=) 10D = B, [e(a)]



BKW representation of spin correlations

E,, [0(u)o ()] = By, [T (=) 10D = B, [e(a)]



BKW representation of spin correlations

- E :Hez)\wmd

L€£ Zel

Ianul
ST 00 CONCAIT

" LeL teL

=Eg[[[r(0)]

el

where

—

zAwmd(@ + 1)\wind(—l7)€ _
oy = 0D &)

eiAwind(£ 7 + et)\wind(—f)



BKW representation of spin correlations

Let uy, ..., u,, be black faces. We call a face source if one of the fixed paths
starts at this face, and otherwise the face is a sink. For a contractible loop ¢,
let §(¢) be the number of sources minus the number o sinks enclosed by the

loop. Then

—tan \

tan \

|

Proposition [L. *20]

Elo(u) - o(um)]

if §(¢) = 0 mod 4,
if 5(¢) = 1 mod 4,
if 5(¢) =2 mod 4,
if 5(¢) = 3 mod 4

Eqsn[HP ]

Lel



End of proof of Theorem 1

» By “quasilocality” of the loop observables and non-percolation of ¢,
we have

E¢D[Hp(€)}—>E¢[Hp(€)} as n— oo O

LeLl LeLl



Outline of proof of Theorem 2

(i) The fact that there is no infinite cluster under ¢, implies that
E, lo(u)o) —-0 as |u—u'|— o0
forc € (V2 +2,2].

(ii) Decorrelation of spins implies no infinite cluster in the FK-rype
representation w of o

(iii) No percolation of w implies delocalization of the height function (L.
’19).



Decorrelation of spins

For two black faces u, u’, we get

EM [O’(u)g(u’)] _ E¢ [p2N(u,u’)(_1)N(u,u’,oo)] ’

where

p=tan\ with Vg = 2cos A
Here

» N(u,u') is the number of clusters in the random cluster model on Z2
that disconnect u from v’

» N(u,u,0) is the number of clusters that disconnect all three points u,
u’, and oo from each other

p<l & cc (\/2+\/§,2]
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FK representation of o







FK representation of o

Condition on OV so that o is globally well-defined



globally well-defined



FK representation of o




FK representation of o

Open primal and dual edges with probability 1 — ¢!

Call the resulting yellow configuration w and its law Py,



Properties of the coupling (o, w)
We have the following Edwards—Sokal property

Proposition [Glazman & Peled *18, L. *19]

Under P,,, conditionally on w, the spins ¢ are distributed like an independent
uniform assignment of a £1 spin to each connected component of w.

One can show that conditioning on O does not change the limit distribution.
This implies that P;, converges to an ergodic infinite-volume limit P

.
In particular,
E,fo(u)o ()] = P(u <> '),

where {u <% u'} is the event that u and ' are in the same cluster of w.

Hence if spins decorrelate, then w does not percolate!
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Properties of the coupling (o, w)

For two black faces u, u’, let N(u, u’) be the number of clusters of w
disconnecting u from u’

Proposition [L. *19]

Var, [h(u) — h(u')] < Ep[N(u,u’)]
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Properties of the coupling (o, w)

Theorem [L. *19]

It
P(w percolates) = 0,
then
P(infinitely many clusters of w surround the origin) = 1
and

Var,[h(u)] = oo as [n| = o0
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What next?

0. c=vV2+V2
4\/§§c<\/2+\/§

. Polynomial decay of correlations

W N =

. Other boundary conditions
4. Scaling limit at ¢ = /2 + v/2? Then g = (¢ —2)> =2

5. Connection to Gaussian imaginary chaos



Thank you for your attention!



