On delocalization in the six-vertex model

Marcin Lis

University of Vienna

February 10, 2020

Outline

1. The six-vertex model and its height function on a finite torus
2. Two results:
3. Existence and ergodicity of the infinite volume limit for $c \in[\sqrt{3}, 2]$
4. Delocalization of the height function for $c \in(\sqrt{2+\sqrt{2}}, 2]$
5. Ingredients of proofs:

- Baxter-Kelland-Wu '73 correspondence with the critical random cluster model with $q \in[1,4]$
- continuity of phase transition in the random cluster model with $q \in[1,4]$ (Duminil-Copin \& Sidoravicius \& Tassion '15)
- spin representation of the six-vertex model (Rys '63)
- FK-type representation of the spin model (Glazman \& Peled ' 18 , Ray \& Spinka '19, L. '19)

The six-vertex model

A six-vertex (or arrow) configuration on a 4-regular graph is an assignment of an arrow to each edge which yields a conservative flow, i.e., such that there are two incoming and two outgoing arrows at every vertex

For $\mathbf{n}=\left(n_{1}, n_{2}\right) \in \mathbb{N}^{2}$, let $\mathbb{T}_{\mathbf{n}}=\left(\mathbb{Z} / 2 n_{1} \mathbb{Z}\right) \times\left(\mathbb{Z} / 2 n_{2} \mathbb{Z}\right)$, and let $\mathcal{O}_{\mathbf{n}}$ and \mathcal{O} be the set of arrow configurations on $\mathbb{T}_{\mathbf{n}}$ and \mathbb{Z}^{2} respectively

We consider the six-vertex model (or more precisely the F-model) on $\mathbb{T}_{\mathbf{n}}$ with parameter $c>0$. This is a probability measure on $\mathcal{O}_{\mathbf{n}}$ given by

$$
\mu_{\mathbf{n}}(\alpha) \propto c^{N(\alpha)}, \quad \alpha \in \mathcal{O}_{\mathbf{n}}
$$

where $N(\alpha)$ is the number of vertices of type $3 a$ or $3 b$ in α

The six-vertex model

1a

1b

2a

2b

3b

Existence of the infinite-volume limit

Theorem 1. (Dumnil-Copin et al. '20, L. '20)

For $c \in[\sqrt{3}, 2]$,
(i) there exists a translation invariant probability measure μ on \mathcal{O} such that

$$
\mu_{\mathbf{n}} \rightarrow \mu \quad \text { as } \quad|\mathbf{n}| \rightarrow \infty
$$

(ii) the limiting measure μ is ergodic with respect to translations by the even sublattice of \mathbb{Z}^{2}
$c \in[\sqrt{3}, 2]$ corresponds to $q \in[1,4]$ in the BKW representation

The height function

$$
h(u)=\# \leftarrow-\#_{\rightarrow} \text { on a path from } u_{0} \text { to } u
$$

Behaviour of the height function

Question

What is the behaviour of

$$
\operatorname{Var}_{\mu}[h(u)] \quad \text { as } \quad|u| \rightarrow \infty
$$

where u is a face of \mathbb{Z}^{2} ?

- variance bounded \leftrightarrow localization
- variance unbounded \leftrightarrow delocalizatoin

So far

- localization was proved for $c>2$ (Duminil-Copin et al. '16, Glazman \& Peled '18)
- delocalization for $c=2$ (Duminil-Copin \& Sidoravicius \& Tassion '15, Glazman \& Peled '18), $c=\sqrt{2}$ (Kenyon '99) and its small neighbourhood (Giuliani \& Mastropietro \& Toninelli ' 14), and $c=1$ (Chandgotia et al. '18, Duminil-Copin et al. '19)

Delocalization of the height function

Theorem 2. (Dumnil-Copin et al. '20, L. '20)

For $c \in(\sqrt{2+\sqrt{2}}, 2]$,

$$
\operatorname{Var}_{\mu}[h(u)] \rightarrow \infty \quad \text { as } \quad|u| \rightarrow \infty
$$

The result of Dumnil-Copin \& Karrila \& Manolescu \& Oulamara uses different techniques, works for all $c \in[1,2]$ and gives logarithmic divergence of the variance
$c \in(\sqrt{2+\sqrt{2}}, 2]$ corresponds to $q \in(2,4]$ in the BKW representation

BKW representation

BKW representation

BKW representation

BKW representation

BKW representation

$$
\phi_{\mathbf{n}}(L) \propto \prod_{\ell \in L}\left(e^{i \lambda \operatorname{wind}(\vec{\ell})}+e^{-i \lambda \operatorname{wind}(\vec{\ell})}\right) \propto \sqrt{q}^{|L|}\left(\frac{2}{\sqrt{q}}\right)^{\left|L_{\mathrm{nctr}}\right|}
$$

BKW representation

BKW representation

Convergence of $\phi_{\mathbf{n}}$ to ϕ

- All subsequential limits of $\phi_{\mathbf{n}}$ satisfy the DLR conditions of a critical random cluster measure
- By uniqueness of the critical random cluster measure ϕ, we get convergence of $\phi_{\mathbf{n}}$ to ϕ

Question

How to infer convergence of $\mu_{\mathbf{n}}$ without a probabilistic coupling between $\mu_{\mathbf{n}}$ and $\phi_{\mathbf{n}}$?

The spin model

$$
\sigma(u)=i^{h(u)}
$$

Answer

It is enough to prove convergence of spin correlations!

Outline of proof of Theorem 1

(i) use the BKW representation to get

$$
\mathbf{E}_{\mu_{\mathbf{n}}}\left[\sigma\left(u_{1}\right) \cdots \sigma\left(u_{2 m}\right)\right]=\mathbf{E}_{\phi_{\mathbf{n}}}\left[\prod_{\ell \in \mathcal{L}} \rho(\ell)\right]
$$

(ii) use percolation properties of the critical random cluster measure ϕ obtained by Duminil-Copin, Sidoravicius \& Tassion '15, to get convergence

$$
\mathbf{E}_{\phi_{\mathbf{n}}}\left[\prod_{\ell \in \mathcal{L}} \rho(\ell)\right] \rightarrow \mathbf{E}_{\phi}\left[\prod_{\ell \in \mathcal{L}} \rho(\ell)\right] \quad \text { as } \quad \mathbf{n} \rightarrow \infty
$$

(iii) conclude convergence in distribution of $\mu_{\mathbf{n}}$ to an infinite volume measure μ
(iv) use mixing of ϕ to get ergodicity of μ

BKW representation of spin correlations

$$
\mathbf{E}_{\mu_{\mathbf{n}}}\left[\sigma(u) \sigma\left(u^{\prime}\right)\right]=\mathbf{E}_{\mu_{\mathbf{n}}}\left[i^{h(u)+h\left(u^{\prime}\right)}\right]=\mathbf{E}_{\mu_{\mathbf{n}}}\left[i^{h(u)-h\left(u^{\prime}\right)}\right]
$$

BKW representation of spin correlations

$$
\mathbf{E}_{\mu_{\mathbf{n}}}\left[\sigma(u) \sigma\left(u^{\prime}\right)\right]=\mathbf{E}_{\mu_{\mathbf{n}}}\left[i^{|\Gamma \cap \alpha|}(-i)^{|\Gamma \cap(-\alpha)|}\right]=: \mathbf{E}_{\mu_{\mathbf{n}}}[\epsilon(\alpha)]
$$

BKW representation of spin correlations

$$
\mathbf{E}_{\mu_{\mathbf{n}}}\left[\sigma(u) \sigma\left(u^{\prime}\right)\right]=\mathbf{E}_{\mu_{\mathbf{n}}}\left[i^{|\Gamma \cap \alpha|}(-i)^{|\Gamma \cap(-\alpha)|}\right]=: \mathbf{E}_{\mu_{\mathbf{n}}}[\epsilon(\alpha)]
$$

BKW representation of spin correlations

$$
\mathbf{E}_{\mu_{\mathbf{n}}}\left[\sigma(u) \sigma\left(u^{\prime}\right)\right]=\mathbf{E}_{\mu_{\mathbf{n}}}\left[i^{|\Gamma \cap \alpha|}(-i)^{|\Gamma \cap(-\alpha)|}\right]=: \mathbf{E}_{\mu_{\mathbf{n}}}[\epsilon(\alpha)]
$$

BKW representation of spin correlations

$$
\begin{aligned}
\mathbf{E}_{\mu_{\mathbf{n}}}\left[\sigma(u) \sigma\left(u^{\prime}\right)\right] & =\mathbf{E}_{\mu_{\mathbf{n}}}[\epsilon(\alpha)] \\
& =\frac{1}{Z_{\mathbf{n}}} \sum_{\vec{L} \in \overrightarrow{\mathcal{L}}} \epsilon(\vec{L}) w(\vec{L}) \\
& =\frac{1}{Z_{\mathbf{n}}} \sum_{\vec{L} \in \overrightarrow{\mathcal{L}}} \prod_{\vec{\ell} \in \vec{L}} e^{i \lambda \operatorname{wind}(\vec{\ell})} \epsilon(\vec{\ell}) \\
& =\frac{1}{Z_{\mathbf{n}}} \sum_{L \in \mathcal{L}}\left(\prod_{\ell \in L} \rho(\ell)\right) \sqrt{q}^{|L|}\left(\frac{2}{\sqrt{q}}\right)^{\left|L_{\text {nctr }}\right|} \\
& =\mathbf{E}_{\phi_{\mathbf{n}}}\left[\prod_{\ell \in L} \rho(\ell)\right]
\end{aligned}
$$

where

$$
\rho(\ell)=\frac{e^{i \lambda \operatorname{wind}(\vec{\ell})} \epsilon(\vec{\ell})+e^{i \lambda \operatorname{wind}(-\vec{\ell})} \epsilon(-\vec{\ell})}{e^{i \lambda \operatorname{wind}(\vec{\ell})}+e^{i \lambda \operatorname{wind}(-\vec{\ell})}}
$$

BKW representation of spin correlations

Let $u_{1}, \ldots, u_{2 m}$ be black faces. We call a face source if one of the fixed paths starts at this face, and otherwise the face is a sink. For a contractible loop ℓ, let $\delta(\ell)$ be the number of sources minus the number o sinks enclosed by the loop. Then

$$
\rho(\ell)= \begin{cases}1 & \text { if } \delta(\ell)=0 \bmod 4 \\ -\tan \lambda & \text { if } \delta(\ell)=1 \bmod 4 \\ -1 & \text { if } \delta(\ell)=2 \bmod 4 \\ \tan \lambda & \text { if } \delta(\ell)=3 \bmod 4\end{cases}
$$

Proposition [L. '20]

$$
\mathbf{E}_{\mu_{\mathbf{n}}}\left[\sigma\left(u_{1}\right) \cdots \sigma\left(u_{2 m}\right)\right]=\mathbf{E}_{\phi_{\mathbf{n}}}\left[\prod_{\ell \in \mathcal{L}} \rho(\ell)\right]
$$

End of proof of Theorem 1

- By "quasilocality" of the loop observables and non-percolation of ϕ, we have

$$
\mathbf{E}_{\phi_{\mathbf{n}}}\left[\prod_{\ell \in \mathcal{L}} \rho(\ell)\right] \rightarrow \mathbf{E}_{\phi}\left[\prod_{\ell \in \mathcal{L}} \rho(\ell)\right] \quad \text { as } \quad \mathbf{n} \rightarrow \infty
$$

Outline of proof of Theorem 2

(i) The fact that there is no infinite cluster under ϕ, implies that

$$
\mathbf{E}_{\mu}\left[\sigma(u) \sigma\left(u^{\prime}\right)\right] \rightarrow 0 \quad \text { as } \quad\left|u-u^{\prime}\right| \rightarrow \infty
$$

for $c \in(\sqrt{2+\sqrt{2}}, 2]$.
(ii) Decorrelation of spins implies no infinite cluster in the FK-type representation ω of σ
(iii) No percolation of ω implies delocalization of the height function (L. '19).

Decorrelation of spins

For two black faces u, u^{\prime}, we get

$$
\mathbf{E}_{\mu}\left[\sigma(u) \sigma\left(u^{\prime}\right)\right]=\mathbf{E}_{\phi}\left[\rho^{2 N\left(u, u^{\prime}\right)}(-1)^{N\left(u, u^{\prime}, \infty\right)}\right]
$$

where

$$
\rho=\tan \lambda \quad \text { with } \quad \sqrt{q}=2 \cos \lambda
$$

Here

- $N\left(u, u^{\prime}\right)$ is the number of clusters in the random cluster model on \mathbb{Z}_{\circ}^{2} that disconnect u from u^{\prime}
- $N\left(u, u^{\prime}, \infty\right)$ is the number of clusters that disconnect all three points u, u^{\prime}, and ∞ from each other

$$
\rho<1 \quad \Leftrightarrow \quad c \in(\sqrt{2+\sqrt{2}}, 2]
$$

FK representation of σ

FK representation of σ

Draw primal and dual contours between spins of different value

FK representation of σ

Condition on $\mathcal{O}_{\mathbf{n}}^{0}$ so that σ is globally well-defined

FK representation of σ

Condition on $\mathcal{O}_{\mathbf{n}}^{0}$ so that σ is globally well-defined

FK representation of σ

FK representation of σ

Open primal and dual edges with probability $1-c^{-1}$
Call the resulting yellow configuration ω and its law $\mathbf{P}_{\mathbf{n}}$

Properties of the coupling (σ, ω)

We have the following Edwards-Sokal property

Proposition [Glazman \& Peled '18, L. '19]

Under $\mathbf{P}_{\mathbf{n}}$, conditionally on ω, the spins σ are distributed like an independent uniform assignment of a ± 1 spin to each connected component of ω.

One can show that conditioning on $\mathcal{O}_{\mathbf{n}}^{0}$ does not change the limit distribution. This implies that $\mathbf{P}_{\mathbf{n}}$ converges to an ergodic infinite-volume limit \mathbf{P}

In particular,

$$
\mathbf{E}_{\mu}\left[\sigma(u) \sigma\left(u^{\prime}\right)\right]=\mathbf{P}\left(u \stackrel{\omega}{\leftrightarrow} u^{\prime}\right),
$$

where $\left\{u \stackrel{\omega}{\hookrightarrow} u^{\prime}\right\}$ is the event that u and u^{\prime} are in the same cluster of ω.
Hence if spins decorrelate, then ω does not percolate!

Properties of the coupling (σ, ω)

For two black faces u, u^{\prime}, let $N\left(u, u^{\prime}\right)$ be the number of clusters of ω disconnecting u from u^{\prime}

Proposition [L. '19]

$$
\operatorname{Var}_{\mu}\left[h(u)-h\left(u^{\prime}\right)\right] \asymp \mathbf{E}_{\mathbf{P}}\left[N\left(u, u^{\prime}\right)\right]
$$

Properties of the coupling (σ, ω)

Theorem [L. '19]

If

$$
\mathbf{P}(\omega \text { percolates })=0,
$$

then
$\mathbf{P}($ infinitely many clusters of ω surround the origin $)=1$
and

$$
\operatorname{Var}_{\mu}[h(u)] \rightarrow \infty \quad \text { as } \quad|\mathbf{n}| \rightarrow \infty
$$

What next?

0. $c=\sqrt{2+\sqrt{2}}$
1. $\sqrt{3} \leq c<\sqrt{2+\sqrt{2}}$
2. Polynomial decay of correlations
3. Other boundary conditions
4. Scaling limit at $c=\sqrt{2+\sqrt{2}}$? Then $q=\left(c^{2}-2\right)^{2}=2$
5. Connection to Gaussian imaginary chaos

Thank you for your attention!

