On delocalization in the six-vertex model

Marcin Lis

University of Vienna

February 10, 2020

Outline

- 1. The *six-vertex model* and its height function on a finite torus
- 2. Two results:
 - 1. *Existence* and *ergodicity* of the infinite volume limit for $c \in [\sqrt{3}, 2]$
 - 2. *Delocalization* of the height function for $c \in (\sqrt{2+\sqrt{2}},2]$
- 3. Ingredients of proofs:
 - ▶ Baxter–Kelland–Wu '73 correspondence with the *critical random cluster model* with $q \in [1, 4]$
 - continuity of phase transition in the random cluster model with $q \in [1, 4]$ (Duminil–Copin & Sidoravicius & Tassion '15)
 - spin representation of the six-vertex model (Rys '63)
 - FK-type representation of the spin model (Glazman & Peled '18, Ray & Spinka '19, L. '19)

The six-vertex model

A *six-vertex* (or *arrow*) *configuration* on a 4-regular graph is an assignment of an arrow to each edge which yields a *conservative flow*, i.e., such that there are two incoming and two outgoing arrows at every vertex

For $\mathbf{n} = (n_1, n_2) \in \mathbb{N}^2$, let $\mathbb{T}_{\mathbf{n}} = (\mathbb{Z}/2n_1\mathbb{Z}) \times (\mathbb{Z}/2n_2\mathbb{Z})$, and let $\mathcal{O}_{\mathbf{n}}$ and \mathcal{O} be the set of arrow configurations on $\mathbb{T}_{\mathbf{n}}$ and \mathbb{Z}^2 respectively

We consider the *six-vertex model* (or more precisely the *F-model*) on $\mathbb{T}_{\mathbf{n}}$ with parameter c > 0. This is a probability measure on $\mathcal{O}_{\mathbf{n}}$ given by

$$\mu_{\mathbf{n}}(\alpha) \propto c^{N(\alpha)}, \qquad \alpha \in \mathcal{O}_{\mathbf{n}},$$

where $N(\alpha)$ is the number of vertices of type 3a or 3b in α

The six-vertex model

Existence of the infinite-volume limit

Theorem 1. (Dumnil-Copin et al. '20, L. '20)

For $c \in [\sqrt{3}, 2]$,

(i) there exists a translation invariant probability measure μ on \mathcal{O} such that

$$\mu_{\mathbf{n}} \to \mu$$
 as $|\mathbf{n}| \to \infty$

(ii) the limiting measure μ is ergodic with respect to translations by the even sublattice of \mathbb{Z}^2

 $c \in [\sqrt{3}, 2]$ corresponds to $q \in [1, 4]$ in the BKW representation

The height function

 $h(u) = \#_{\leftarrow} - \#_{\rightarrow}$ on a path from u_0 to u

Behaviour of the height function

Question

What is the behaviour of

$$\mathbf{Var}_{\mu}[h(u)]$$
 as $|u| \to \infty$

where u is a face of \mathbb{Z}^2 ?

- \triangleright variance bounded \leftrightarrow *localization*
- \triangleright variance unbounded \leftrightarrow *delocalizatoin*

So far

- localization was proved for c > 2 (Duminil-Copin et al. '16, Glazman & Peled '18)
- ▶ delocalization for c=2 (Duminil-Copin & Sidoravicius & Tassion '15, Glazman & Peled '18), $c=\sqrt{2}$ (Kenyon '99) and its small neighbourhood (Giuliani & Mastropietro & Toninelli '14), and c=1 (Chandgotia et al. '18, Duminil-Copin et al. '19)

Delocalization of the height function

Theorem 2. (Dumnil-Copin et al. '20, L. '20)

For
$$c \in (\sqrt{2+\sqrt{2}}, 2]$$
,

$$\operatorname{Var}_{\mu}[h(u)] \to \infty$$
 as $|u| \to \infty$

The result of Dumnil-Copin & Karrila & Manolescu & Oulamara uses different techniques, works for all $c \in [1,2]$ and gives logarithmic divergence of the variance

$$c \in (\sqrt{2+\sqrt{2}},2]$$
 corresponds to $q \in (2,4]$ in the BKW representation

$$w(\alpha) = c^{N_3(\alpha)}$$

$$w(\vec{L}) = e^{\frac{i\lambda}{4}(\mathrm{left}(\vec{L}) - \mathrm{right}(\vec{L}))} = \prod_{\vec{\ell} \in \vec{L}} e^{\frac{i\lambda}{4}(\mathrm{left}(\vec{\ell}) - \mathrm{right}(\vec{\ell}))} = \prod_{\vec{\ell} \in \vec{L}} e^{i\lambda \mathrm{wind}(\vec{\ell})}$$

$$w(\vec{L}) = \prod_{\vec{\ell} \in \vec{L}} e^{i\lambda \text{wind}(\vec{\ell})}$$

$$\phi_{\mathbf{n}}(L) \propto \prod_{\ell \in L} (e^{i\lambda \mathrm{wind}(\vec{\ell})} + e^{-i\lambda \mathrm{wind}(\vec{\ell})}) \propto \sqrt{q}^{|L|} \big(\tfrac{2}{\sqrt{q}}\big)^{|L_{\mathrm{nctr}}|}$$

$$\phi_{\mathbf{n}}(\xi) \propto \sqrt{q}^{|L(\xi)|} ig(rac{2}{\sqrt{q}}ig)^{|L_{
m netr}(\xi)|}$$

("almost" FK(q) measure)

Convergence of $\phi_{\mathbf{n}}$ to ϕ

- ▶ All subsequential limits of ϕ_n satisfy the DLR conditions of a critical random cluster measure
- ▶ By uniqueness of the critical random cluster measure ϕ , we get convergence of ϕ_n to ϕ

Question

How to infer convergence of $\mu_{\mathbf{n}}$ without a probabilistic coupling between $\mu_{\mathbf{n}}$ and $\phi_{\mathbf{n}}$?

The spin model

Answer

It is enough to prove convergence of spin correlations!

Outline of proof of Theorem 1

(i) use the BKW representation to get

$$\mathbf{E}_{\mu_{\mathbf{n}}}[\sigma(u_1)\cdots\sigma(u_{2m})] = \mathbf{E}_{\phi_{\mathbf{n}}}\Big[\prod_{\ell\in\mathcal{L}}\rho(\ell)\Big]$$

(ii) use percolation properties of the critical random cluster measure ϕ obtained by Duminil-Copin, Sidoravicius & Tassion '15, to get convergence

$$\mathbf{E}_{\phi_{\mathbf{n}}} \Big[\prod_{\ell \in \mathcal{L}} \rho(\ell) \Big] \to \mathbf{E}_{\phi} \Big[\prod_{\ell \in \mathcal{L}} \rho(\ell) \Big] \quad \text{as} \quad \mathbf{n} \to \infty$$

- (iii) conclude convergence in distribution of $\mu_{\mathbf{n}}$ to an infinite volume measure μ
- (iv) use mixing of ϕ to get ergodicity of μ

$$\mathbf{E}_{\mu_{\mathbf{n}}}[\sigma(u)\sigma(u')] = \mathbf{E}_{\mu_{\mathbf{n}}}[i^{h(u)+h(u')}] = \mathbf{E}_{\mu_{\mathbf{n}}}[i^{h(u)-h(u')}]$$

$$\mathbf{E}_{\mu_{\mathbf{n}}}[\sigma(u)\sigma(u')] = \mathbf{E}_{\mu_{\mathbf{n}}}[i^{|\Gamma \cap \alpha|}(-i)^{|\Gamma \cap (-\alpha)|}] =: \mathbf{E}_{\mu_{\mathbf{n}}}[\epsilon(\alpha)]$$

$$\mathbf{E}_{\mu_{\mathbf{n}}}[\sigma(u)\sigma(u')] = \mathbf{E}_{\mu_{\mathbf{n}}}[i^{|\Gamma\cap\alpha|}(-i)^{|\Gamma\cap(-\alpha)|}] =: \mathbf{E}_{\mu_{\mathbf{n}}}[\epsilon(\alpha)]$$

$$\mathbf{E}_{\mu_{\mathbf{n}}}[\sigma(u)\sigma(u')] = \mathbf{E}_{\mu_{\mathbf{n}}}[i^{|\Gamma \cap \alpha|}(-i)^{|\Gamma \cap (-\alpha)|}] =: \mathbf{E}_{\mu_{\mathbf{n}}}[\epsilon(\alpha)]$$

$$\begin{split} \mathbf{E}_{\mu_{\mathbf{n}}}[\sigma(u)\sigma(u')] &= \mathbf{E}_{\mu_{\mathbf{n}}}[\epsilon(\alpha)] \\ &= \frac{1}{Z_{\mathbf{n}}} \sum_{\vec{L} \in \vec{\mathcal{L}}} \epsilon(\vec{L}) w(\vec{L}) \\ &= \frac{1}{Z_{\mathbf{n}}} \sum_{\vec{L} \in \vec{\mathcal{L}}} \prod_{\vec{\ell} \in \vec{L}} e^{i\lambda \text{wind}(\vec{\ell})} \epsilon(\vec{\ell}) \\ &= \frac{1}{Z_{\mathbf{n}}} \sum_{L \in \mathcal{L}} \left(\prod_{\ell \in L} \rho(\ell) \right) \sqrt{q}^{|L|} \left(\frac{2}{\sqrt{q}} \right)^{|L_{\text{nctr}}|} \\ &= \mathbf{E}_{\phi_{\mathbf{n}}} \left[\prod_{\ell \in L} \rho(\ell) \right] \end{split}$$

where

$$\rho(\ell) = \frac{e^{i\lambda \text{wind}(\vec{\ell})} \epsilon(\vec{\ell}) + e^{i\lambda \text{wind}(-\vec{\ell})} \epsilon(-\vec{\ell})}{e^{i\lambda \text{wind}(\vec{\ell})} + e^{i\lambda \text{wind}(-\vec{\ell})}}$$

Let u_1, \ldots, u_{2m} be black faces. We call a face *source* if one of the fixed paths starts at this face, and otherwise the face is a *sink*. For a contractible loop ℓ , let $\delta(\ell)$ be the number of sources minus the number o sinks enclosed by the loop. Then

$$\rho(\ell) = \begin{cases} 1 & \text{if } \delta(\ell) = 0 \bmod 4, \\ -\tan \lambda & \text{if } \delta(\ell) = 1 \bmod 4, \\ -1 & \text{if } \delta(\ell) = 2 \bmod 4, \\ \tan \lambda & \text{if } \delta(\ell) = 3 \bmod 4 \end{cases}$$

Proposition [L. '20]

$$\mathbf{E}_{\mu_{\mathbf{n}}}[\sigma(u_1)\cdots\sigma(u_{2m})] = \mathbf{E}_{\phi_{\mathbf{n}}}\Big[\prod_{\ell\in\mathcal{L}}\rho(\ell)\Big]$$

End of proof of Theorem 1

By "quasilocality" of the loop observables and non-percolation of ϕ , we have

$$\mathbf{E}_{\phi_{\mathbf{n}}}\Big[\prod_{\ell\in\mathcal{L}}\rho(\ell)\Big] o \mathbf{E}_{\phi}\Big[\prod_{\ell\in\mathcal{L}}\rho(\ell)\Big] \quad \text{ as } \quad \mathbf{n} o\infty$$

Outline of proof of Theorem 2

(i) The fact that there is no infinite cluster under ϕ , implies that

$$\mathbf{E}_{\mu}[\sigma(u)\sigma(u')]\to 0 \qquad \text{as} \quad |u-u'|\to \infty$$
 for $c\in (\sqrt{2+\sqrt{2}},2].$

- (ii) Decorrelation of spins implies no infinite cluster in the *FK-type* representation ω of σ
- (iii) No percolation of ω implies delocalization of the height function (L. '19).

Decorrelation of spins

For two black faces u, u', we get

$$\mathbf{E}_{\mu}[\sigma(u)\sigma(u')] = \mathbf{E}_{\phi}\left[\rho^{2N(u,u')}(-1)^{N(u,u',\infty)}\right],$$

where

$$ho = an \lambda$$
 with $\sqrt{q} = 2\cos \lambda$

Here

- ▶ N(u, u') is the number of clusters in the random cluster model on \mathbb{Z}_{\circ}^2 that *disconnect u* from u'
- ▶ $N(u, u', \infty)$ is the number of clusters that *disconnect* all three points u, u', and ∞ from each other

$$\rho < 1 \quad \Leftrightarrow \quad c \in \left(\sqrt{2 + \sqrt{2}, 2}\right]$$

Draw primal and dual contours between spins of different value

Condition on $\mathcal{O}_{\mathbf{n}}^0$ so that σ is globally well-defined

Condition on $\mathcal{O}_{\mathbf{n}}^0$ so that σ is globally well-defined

Open primal and dual edges with probability $1 - c^{-1}$

Call the resulting yellow configuration ω and its law $\mathbf{P_n}$

Properties of the coupling (σ, ω)

We have the following *Edwards–Sokal property*

Proposition [Glazman & Peled '18, L. '19]

Under P_n , conditionally on ω , the spins σ are distributed like an *independent* uniform assignment of a ± 1 spin to each connected component of ω .

One can show that conditioning on \mathcal{O}_n^0 does not change the limit distribution. This implies that P_n converges to an ergodic infinite-volume limit P

In particular,

$$\mathbf{E}_{\mu}[\sigma(u)\sigma(u')] = \mathbf{P}(u \stackrel{\omega}{\longleftrightarrow} u'),$$

where $\{u \stackrel{\omega}{\longleftrightarrow} u'\}$ is the event that u and u' are in the same cluster of ω .

Hence if spins decorrelate, then ω does not percolate!

Properties of the coupling (σ, ω)

For two black faces u, u', let N(u, u') be the number of clusters of ω disconnecting u from u'

Proposition [L. '19]

$$\mathbf{Var}_{\mu}[h(u) - h(u')] \asymp \mathbf{E}_{\mathbf{P}}[N(u, u')]$$

Properties of the coupling (σ, ω)

Theorem [L. '19]

If

$$\mathbf{P}(\omega \text{ percolates}) = 0,$$

then

P(infinitely many clusters of ω surround the origin) = 1

and

$$\mathbf{Var}_{\mu}[h(u)] \to \infty$$
 as $|\mathbf{n}| \to \infty$

What next?

0.
$$c = \sqrt{2 + \sqrt{2}}$$

1.
$$\sqrt{3} \le c < \sqrt{2 + \sqrt{2}}$$

- 2. Polynomial decay of correlations
- 3. Other boundary conditions
- 4. Scaling limit at $c = \sqrt{2 + \sqrt{2}}$? Then $q = (c^2 2)^2 = 2$
- 5. Connection to Gaussian imaginary chaos

Thank you for your attention!