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Outline

1. The six-vertex model and its height function on a finite torus

2. Two results:

1. Existence and ergodicity of the infinite volume limit for c ∈ [
√

3, 2]

2. Delocalization of the height function for c ∈ (
√

2 +
√

2, 2]

3. Ingredients of proofs:

I Baxter–Kelland–Wu ’73 correspondence with the critical random cluster
model with q ∈ [1, 4]

I continuity of phase transition in the random cluster model with q ∈ [1, 4]
(Duminil–Copin & Sidoravicius & Tassion ’15)

I spin representation of the six-vertex model (Rys ’63)

I FK-type representation of the spin model (Glazman & Peled ’18, Ray &
Spinka ’19, L. ’19)
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The six-vertex model

A six-vertex (or arrow) configuration on a 4-regular graph is an assignment
of an arrow to each edge which yields a conservative flow, i.e., such that
there are two incoming and two outgoing arrows at every vertex

For n = (n1, n2) ∈ N2, let Tn = (Z/2n1Z)× (Z/2n2Z), and let On and O
be the set of arrow configurations on Tn and Z2 respectively

We consider the six-vertex model (or more precisely the F-model) on Tn
with parameter c > 0. This is a probability measure on On given by

µn(α) ∝ cN(α), α ∈ On,

where N(α) is the number of vertices of type 3a or 3b in α
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The six-vertex model
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Existence of the infinite-volume limit

Theorem 1. (Dumnil-Copin et al. ’20, L. ’20)

For c ∈ [
√

3, 2],
(i) there exists a translation invariant probability measure µ on O such that

µn → µ as |n| → ∞

(ii) the limiting measure µ is ergodic with respect to translations by the
even sublattice of Z2

c ∈ [
√

3, 2] corresponds to q ∈ [1, 4] in the BKW representation
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The height function

h(u) = #← −#→ on a path from u0 to u
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Behaviour of the height function

Question
What is the behaviour of

Varµ[h(u)] as |u| → ∞

where u is a face of Z2?
I variance bounded↔ localization
I variance unbounded↔ delocalizatoin

So far
I localization was proved for c > 2 (Duminil-Copin et al. ’16, Glazman

& Peled ’18)
I delocalization for c = 2 (Duminil-Copin & Sidoravicius & Tassion ’15,

Glazman & Peled ’18), c =
√

2 (Kenyon ’99) and its small
neighbourhood (Giuliani & Mastropietro & Toninelli ’14), and c = 1
(Chandgotia et al. ’18, Duminil-Copin et al. ’19)
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Delocalization of the height function

Theorem 2. (Dumnil-Copin et al. ’20, L. ’20)

For c ∈ (
√

2 +
√

2, 2],

Varµ[h(u)]→∞ as |u| → ∞

The result of Dumnil-Copin & Karrila & Manolescu & Oulamara uses
different techniques, works for all c ∈ [1, 2] and gives logarithmic
divergence of the variance

c ∈ (
√

2 +
√

2, 2] corresponds to q ∈ (2, 4] in the BKW representation
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BKW representation
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BKW representation

w(α) = cN3(α)
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BKW representation

w(~L) = e
iλ
4 (left(~L)−right(~L)) =

∏
~̀∈~L

e
iλ
4 (left(~̀)−right(~̀)) =

∏
~̀∈~L

eiλwind(~̀)
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BKW representation

w(~L) =
∏
~̀∈~L

eiλwind(~̀)
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BKW representation

φn(L) ∝
∏
`∈L

(eiλwind(~̀)+e−iλwind(~̀)) ∝ √q|L|
( 2√

q

)|Lnctr|
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BKW representation

φn(ξ) ∝
√

q|L(ξ)|( 2√
q

)|Lnctr(ξ)| (“almost” FK(q) measure)
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BKW representation

φFK
n (ξ) ∝ √q|L(ξ)|qs(ξ) (FK(q) measure)
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Convergence of φn to φ

I All subsequential limits of φn satisfy the DLR conditions of a critical
random cluster measure

I By uniqueness of the critical random cluster measure φ, we get
convergence of φn to φ

Question

How to infer convergence of µn without a probabilistic coupling between µn
and φn?
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The spin model

σ(u) = ih(u)

Answer

It is enough to prove convergence of spin correlations!
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Outline of proof of Theorem 1

(i) use the BKW representation to get

Eµn [σ(u1) · · ·σ(u2m)] = Eφn

[∏
`∈L

ρ(`)
]

(ii) use percolation properties of the critical random cluster measure φ
obtained by Duminil-Copin, Sidoravicius & Tassion ’15, to get
convergence

Eφn

[∏
`∈L

ρ(`)
]
→ Eφ

[∏
`∈L

ρ(`)
]

as n→∞

(iii) conclude convergence in distribution of µn to an infinite volume
measure µ

(iv) use mixing of φ to get ergodicity of µ
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BKW representation of spin correlations

Eµn [σ(u)σ(u
′)] = Eµn [i

h(u)+h(u′)] = Eµn [i
h(u)−h(u′)]
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BKW representation of spin correlations

Eµn [σ(u)σ(u
′)] = Eµn [i

|Γ∩α|(−i)|Γ∩(−α)|] =: Eµn [ε(α)]
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BKW representation of spin correlations

Eµn [σ(u)σ(u
′)] = Eµn [i

|Γ∩α|(−i)|Γ∩(−α)|] =: Eµn [ε(α)]
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BKW representation of spin correlations

Eµn [σ(u)σ(u
′)] = Eµn [i

|Γ∩α|(−i)|Γ∩(−α)|] =: Eµn [ε(α)]
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BKW representation of spin correlations

Eµn [σ(u)σ(u
′)] = Eµn [ε(α)]

=
1
Zn

∑
~L∈ ~L

ε(~L)w(~L)

=
1
Zn

∑
~L∈ ~L

∏
~̀∈~L

eiλwind(~̀)ε(~̀)

=
1
Zn

∑
L∈L

(∏
`∈L

ρ(`)
)√

q|L|
( 2√

q

)|Lnctr|

= Eφn

[∏
`∈L

ρ(`)
]

where

ρ(`) =
eiλwind(~̀)ε(~̀) + eiλwind(−~̀)ε(−~̀)

eiλwind(~̀) + eiλwind(−~̀)
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BKW representation of spin correlations

Let u1, . . . , u2m be black faces. We call a face source if one of the fixed paths
starts at this face, and otherwise the face is a sink. For a contractible loop `,
let δ(`) be the number of sources minus the number o sinks enclosed by the
loop. Then

ρ(`) =


1 if δ(`) = 0 mod 4,
− tanλ if δ(`) = 1 mod 4,
−1 if δ(`) = 2 mod 4,
tanλ if δ(`) = 3 mod 4

Proposition [L. ’20]

Eµn [σ(u1) · · ·σ(u2m)] = Eφn

[∏
`∈L

ρ(`)
]
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End of proof of Theorem 1

I By “quasilocality” of the loop observables and non-percolation of φ,
we have

Eφn

[∏
`∈L

ρ(`)
]
→ Eφ

[∏
`∈L

ρ(`)
]

as n→∞ 2
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Outline of proof of Theorem 2

(i) The fact that there is no infinite cluster under φ, implies that

Eµ[σ(u)σ(u′)]→ 0 as |u− u′| → ∞

for c ∈ (
√

2 +
√

2, 2].

(ii) Decorrelation of spins implies no infinite cluster in the FK-type
representation ω of σ

(iii) No percolation of ω implies delocalization of the height function (L.
’19).
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Decorrelation of spins

For two black faces u, u′, we get

Eµ[σ(u)σ(u′)] = Eφ
[
ρ2N(u,u′)(−1)N(u,u′,∞)

]
,

where

ρ = tanλ with
√

q = 2 cosλ

Here
I N(u, u′) is the number of clusters in the random cluster model on Z2

◦
that disconnect u from u′

I N(u, u′,∞) is the number of clusters that disconnect all three points u,
u′, and∞ from each other

ρ < 1 ⇔ c ∈
(√

2 +
√

2, 2
]
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FK representation of σ
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FK representation of σ

Draw primal and dual contours between spins of different value
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FK representation of σ

Condition on O0
n so that σ is globally well-defined
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FK representation of σ

Condition on O0
n so that σ is globally well-defined
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FK representation of σ
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FK representation of σ

Open primal and dual edges with probability 1− c−1

Call the resulting yellow configuration ω and its law Pn
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Properties of the coupling (σ, ω)

We have the following Edwards–Sokal property

Proposition [Glazman & Peled ’18, L. ’19]

Under Pn, conditionally on ω, the spins σ are distributed like an independent
uniform assignment of a ±1 spin to each connected component of ω.

One can show that conditioning on O0
n does not change the limit distribution.

This implies that Pn converges to an ergodic infinite-volume limit P

In particular,
Eµ[σ(u)σ(u′)] = P(u ω←→ u′),

where {u ω←→ u′} is the event that u and u′ are in the same cluster of ω.

Hence if spins decorrelate, then ω does not percolate!
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Properties of the coupling (σ, ω)

For two black faces u, u′, let N(u, u′) be the number of clusters of ω
disconnecting u from u′

Proposition [L. ’19]

Varµ[h(u)− h(u′)] � EP
[
N(u, u′)

]
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Properties of the coupling (σ, ω)

Theorem [L. ’19]
If

P(ω percolates) = 0,

then

P(infinitely many clusters of ω surround the origin) = 1

and

Varµ[h(u)]→∞ as |n| → ∞
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What next?

0. c =
√

2 +
√

2

1.
√

3 ≤ c <
√

2 +
√

2

2. Polynomial decay of correlations

3. Other boundary conditions

4. Scaling limit at c =
√

2 +
√

2? Then q = (c2 − 2)2 = 2

5. Connection to Gaussian imaginary chaos
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Thank you for your attention!
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