From the Ising model star-triangle move to a bicolor loop model

Paul Melotti
Université de Fribourg
Les Diablerets
10 February 2020

(1) The cube recurrence and groves
(2) Kashaev's recurrence and bicolor loops
(3) Limit shapes

4 Relation Ising-loops

Star-triangle move in resistor networks [Kennelly 1899]

$$
R_{1}^{\prime}=\frac{R_{2} R_{3}}{R_{1}+R_{2}+R_{3}} \quad R_{2}^{\prime}=\frac{R_{1} R_{3}}{R_{1}+R_{2}+R_{3}} \quad \quad R_{3}^{\prime}=\frac{R_{1} R_{2}}{R_{1}+R_{2}+R_{3}}
$$

$$
R_{1}=\frac{R_{1}^{\prime} R_{2}^{\prime}+R_{2}^{\prime} R_{3}^{\prime}+R_{3}^{\prime} R_{1}^{\prime}}{R_{1}^{\prime}} \quad R_{2}=\frac{R_{1}^{\prime} R_{2}^{\prime}+R_{2}^{\prime} R_{3}^{\prime}+R_{3}^{\prime} R_{1}^{\prime}}{R_{2}^{\prime}} \quad R_{3}=\frac{R_{1}^{\prime} R_{2}^{\prime}+R_{2}^{\prime} R_{3}^{\prime}+R_{3}^{\prime} R_{1}^{\prime}}{R_{3}^{\prime}}
$$

Star-triangle move in resistor networks [Kashaev 1995]

Let $G=(V, E)$ be a planar graph.
Suppose that

v

$$
R_{e}=\frac{f_{u} f_{v}}{f_{x} f_{y}}
$$ for some variables $\left(f_{i}\right)_{i \in V \cup F}$ on the vertices and faces of G.

Star-triangle move in resistor networks [Kashaev 1995]

Let $G=(V, E)$ be a planar graph.
Suppose that

$$
R_{e}=\frac{f_{u} f_{v}}{f_{x} f_{y}}
$$

for some variables $\left(f_{i}\right)_{i \in V \cup F}$ on the vertices and faces of G. Then

The cube recurrence

$$
\begin{aligned}
f_{i, j, k} f_{i+1, j+1, k+1} & =f_{i+1, j, k} f_{i, j+1, k+1} \\
& +f_{i, j+1, k} f_{i+1, j, k+1} \\
& +f_{i, j, k+1} f_{i+1, j+1, k}
\end{aligned}
$$

The cube recurrence

$$
\begin{aligned}
f_{i, j, k} f_{i+1, j+1, k+1} & =f_{i+1, j, k} f_{i, j+1, k+1} \\
& +f_{i, j+1, k} f_{i+1, j, k+1} \\
& +f_{i, j, k+1} f_{i+1, j+1, k}
\end{aligned}
$$

The cube recurrence

$$
\begin{aligned}
f_{i, j, k} f_{i+1, j+1, k+1} & =f_{i+1, j, k} f_{i, j+1, k+1} \\
& +f_{i, j+1, k} f_{i+1, j, k+1} \\
& +f_{i, j, k+1} f_{i+1, j+1, k}
\end{aligned}
$$

The cube recurrence

$$
\begin{aligned}
f_{i, j, k} f_{i+1, j+1, k+1} & =f_{i+1, j, k} f_{i, j+1, k+1} \\
& +f_{i, j+1, k} f_{i+1, j, k+1} \\
& +f_{i, j, k+1} f_{i+1, j+1, k}
\end{aligned}
$$

The cube recurrence

$$
\begin{aligned}
f_{i, j, k} f_{i+1, j+1, k+1} & =f_{i+1, j, k} f_{i, j+1, k+1} \\
& +f_{i, j+1, k} f_{i+1, j, k+1} \\
& +f_{i, j, k+1} f_{i+1, j+1, k}
\end{aligned}
$$

The cube recurrence

$$
\begin{aligned}
f_{i, j, k} f_{i+1, j+1, k+1} & =f_{i+1, j, k} f_{i, j+1, k+1} \\
& +f_{i, j+1, k} f_{i+1, j, k+1} \\
& +f_{i, j, k+1} f_{i+1, j+1, k}
\end{aligned}
$$

The cube recurrence

$$
\begin{aligned}
f_{i, j, k} f_{i+1, j+1, k+1} & =f_{i+1, j, k} f_{i, j+1, k+1} \\
& +f_{i, j+1, k} f_{i+1, j, k+1} \\
& +f_{i, j, k+1} f_{i+1, j+1, k}
\end{aligned}
$$

The cube recurrence

Laurent polynomial in the initial conditions.

Question (Propp, 2001)

Is the solution of the cube recurrence a partition function of some model?

Cube groves [Carroll - Speyer, 2004]

A cube grove \mathbf{g}
is a choice of one diagonal per face, such that the union is a spanning forest (with some boundary coniditions).

Cube groves [Carroll - Speyer, 2004]

A cube grove \mathbf{g}
is a choice of one diagonal per face, such that the union is a spanning forest (with some boundary coniditions). Given weights $\left(f_{i}\right)$ on the vertices,

$$
\begin{aligned}
w(\mathbf{g}) & =\prod_{i} f_{i} \operatorname{deg}_{\mathbf{g}}(i)-2 \\
\mathcal{Z} & =\sum_{\mathbf{g}} w(\mathbf{g}) .
\end{aligned}
$$

Solution of the cube recurrence [Carroll - Speyer 2004]

Theorem (Carroll, Speyer)

For initial conditions $\left(f_{i}\right)_{i \in I}$ on $I \subset \mathbb{Z}^{3}$, and for a $z \in \mathbb{Z}^{3}$ whose value f_{z} is defined by the cube recurrence,

$$
f_{z}=\sum_{\mathbf{g}} \prod_{i} f_{i} \operatorname{deg}_{\mathbf{g}}(i)-2 .
$$

Limit shape

Ising model

Let $G=(V, E)$ be a planar graph, with positive coupling constants $\left(J_{e}\right)_{e \in E}$. $\sigma: V \rightarrow\{-1,+1\}$.

$$
\mathbb{P}(\sigma)=\frac{1}{Z_{\mathrm{lsing}}(G, J)} \prod_{e=u v \in E} \exp \left(J_{e} \sigma_{u} \sigma_{v}\right)
$$

Partition function:

$Z_{\text {lsing }}(G, J)=\sum_{\sigma \in\{-1,1\}^{v}} \prod_{e=u v \in E} \exp \left(J_{e} \sigma_{u} \sigma_{v}\right)$.

Let $x_{e}=\exp \left(-2 J_{e}\right)$.

Star-triangle for the Ising model [Wannier 1945]

The Ising model is invariant in distribution iff

$$
\begin{aligned}
& x_{1}^{\prime}=\sqrt{\frac{\left(x_{2}+x_{1} x_{3}\right)\left(x_{3}+x_{1} x_{2}\right)}{\left(x_{1} x_{2} x_{3}+1\right)\left(x_{1}+x_{2} x_{3}\right)}} \\
& x_{2}^{\prime}=\sqrt{\frac{\left(x_{1}+x_{2} x_{3}\right)\left(x_{3}+x_{1} x_{2}\right)}{\left(x_{1} x_{2} x_{3}+1\right)\left(x_{2}+x_{1} x_{2}\right)}} \\
& x_{3}^{\prime}=\sqrt{\frac{\left(x_{1}+x_{2} x_{3}\right)\left(x_{2}+x_{1} x_{3}\right)}{\left(x_{1} x_{2} x_{3}+1\right)\left(x_{3}+x_{1} x_{2}\right)}}
\end{aligned}
$$

Star-triangle for the Ising model [Kashaev 1995]

Suppose that

$$
\left(\frac{x_{e}-x_{e}^{-1}}{2}\right)^{2}=\frac{g_{s} g_{t}}{g_{u} g_{v}}
$$

for some potentials $\left(g_{i}\right)_{i \in V \cup F}$ on the vertices and faces of G.

Star-triangle for the Ising model [Kashaev 1995]

Suppose that

$$
\left(\frac{x_{e}-x_{e}^{-1}}{2}\right)^{2}=\frac{g_{s} g_{t}}{g_{u} g_{v}}
$$

for some potentials $\left(g_{i}\right)_{i \in V \cup F}$ on the vertices and faces of G.

The Ising model is invariant in distribution iff

$$
\begin{aligned}
& g_{0}^{2} g_{0}^{\prime 2}+g_{1}^{2} g_{4}^{2}+g_{2}^{2} g_{5}^{2}+g_{3}^{2} g_{6}^{2}-2\left(g_{1} g_{3} g_{4} g_{6}+g_{2} g_{3} g_{5} g_{6}+g_{1} g_{2} g_{4} g_{5}\right) \\
&-2 g_{0} g_{0}^{\prime}\left(g_{1} g_{4}+g_{2} g_{5}+g_{3} g_{6}\right)-4\left(g_{0} g_{2} g_{4} g_{6}+g_{0}^{\prime} g_{1} g_{3} g_{5}\right)
\end{aligned}=0
$$

Principal minors

Let M be a square matrix of size n.
For $I \subset[n]$, let $a_{I}=\operatorname{det}\left(M_{l}^{\prime}\right)$ be a principal minors.
What are the polynomial relations amongst the a_{l} ? Polynomials in $\mathbb{C}\left[\left(a_{l}\right)_{I \subset[n]}\right]$ that are always null?

Principal minors

Let M be a square matrix of size n.
For $I \subset[n]$, let $a_{I}=\operatorname{det}\left(M_{I}^{\prime}\right)$ be a principal minors.
What are the polynomial relations amongst the a_{l} ? Polynomials in $\mathbb{C}\left[\left(a_{l}\right)_{I \subset[n]}\right]$ that are always null?

Theorem [Holtz \& Sturmfels 2006; Oeding 2011]

If M is symmetric,

$$
\begin{array}{r}
a_{\emptyset}^{2} a_{123}^{2}+a_{3}^{2} a_{12}^{2}+a_{2}^{2} a_{13}^{2}+a_{1}^{2} a_{23}^{2} \\
-2 a_{\emptyset} a_{3} a_{12} a_{123}-2 a_{\emptyset} a_{2} a_{13} a_{123}-2 a_{\emptyset} a_{23} a_{1} a_{123} \\
-2 a_{3} a_{2} a_{13} a_{12}-2 a_{3} a_{23} a_{12} a_{1}-2 a_{2} a_{23} a_{13} a_{1} \\
+4 a_{\emptyset} a_{23} a_{13} a_{12}+4 a_{3} a_{2} a_{1} a_{123}=0
\end{array}
$$

and all the relations of the $\left(a_{l}\right)$ are generated by this.

Kashaev's recurrence

$$
\begin{aligned}
& g^{2} g_{123}^{2}+g_{1}^{2} g_{23}^{2}+g_{2}^{2} g_{13}^{2}+g_{3}^{2} g_{12}^{2} \\
& -2\left(g_{2} g_{3} g_{13} g_{12}+g_{1} g_{3} g_{23} g_{12}+g_{1} g_{2} g_{23} g_{13}\right) \\
& -2 g g_{123}\left(g_{1} g_{23}+g_{2} g_{13}+g_{3} g_{12}\right) \\
& -4\left(g g_{23} g_{13} g_{12}+g_{123} g_{1} g_{2} g_{3}\right)=0
\end{aligned}
$$

Kashaev's recurrence

This recurrence also generates Laurent polynomials.

Question [Kenyon, Pemantle 2016]

Can one identify the solution of this recurrence with the partition function of a model?

Bicolor loops

For initial conditions $I \subset \mathbb{Z}^{3}$, with potentials $\left(g_{i}\right)_{i \in I \text {, }}$ allowed local configurations at a face f :

with boundary conditions.

Bicolor loops

For initial conditions $I \subset \mathbb{Z}^{3}$, with potentials $\left(g_{i}\right)_{i \in I}$, allowed local configurations at a face f : and weight $w_{f}(\omega)$

双 $)<\sqrt{g_{u} g_{v}} \sqrt{g_{s} g_{t}+g_{u} g_{v}}$
$\nless \gg \sqrt{g_{s} g_{t} g_{u} g_{v}}$
with boundary conditions.

Bicolor loops

For initial conditions $I \subset \mathbb{Z}^{3}$, with potentials $\left(g_{i}\right)_{i \in I}$, allowed local configurations at a face f : and weight $w_{f}(\omega)$

准 $<\sqrt{g_{u} g_{v}} \sqrt{g_{s} g_{t}+g_{u} g_{v}}$
$\longleftrightarrow \quad \sqrt{g_{s} g_{t} g_{u} g_{v}}$
with boundary conditions. Global weight of a loop configuration ω :

$$
2^{N(\omega)} \prod_{f} w_{f}(\omega)
$$

where $N(\omega)$ is the number of finite loops in ω.

Solution of Kashaev's recurrence

Theorem [M. 2018]

The partition function

$$
Z_{\text {loops }}(I, g)=\sum_{\text {loop conf. } \omega}\left(2^{N(\omega)} \prod_{\mathrm{f}} w_{\mathrm{f}}(\omega) \prod_{i \in I} g_{i}^{-2}\right)
$$

is the solution of Kashaev's recurrence with initial conditions $\left(g_{i}\right)_{i \in l}$. There is a one-to-one correspondence between loop configurations and monomials of the solution.

Solution of Kashaev's recurrence

Theorem [M. 2018]

The partition function

$$
Z_{\text {loops }}(I, g)=\sum_{\text {loop conf. } \omega}\left(2^{N(\omega)} \prod_{\mathrm{f}} w_{\mathrm{f}}(\omega) \prod_{i \in I} g_{i}^{-2}\right)
$$

is the solution of Kashaev's recurrence with initial conditions $\left(g_{i}\right)_{i \in I}$. There is a one-to-one correspondence between loop configurations and monomials of the solution.

Consequences

- Laurent polynomial in the g_{i} and the $X_{\mathrm{f}}=\sqrt{g_{s} g_{t}+g_{u} g_{v}}$; interpretation of coefficients and exponents.
- Limit shapes.

Idea of proof:

- $Z_{\text {loops }}(I, g)$ is invariant when a cube is added to I, updating g with Kashaev's recurrence.

$$
\begin{aligned}
& { }^{3} \mathrm{~K} \\
& \leftrightarrow S_{r}
\end{aligned}
$$

$$
\begin{aligned}
& \forall \underbrace{}_{n} \quad \rightarrow \frac{X}{\infty}
\end{aligned}
$$

$$
\begin{aligned}
& \ngtr \\
& \leftrightarrow \underset{\sim}{x} \\
& { }_{3}{ }^{\circ} \mathrm{C} \\
& -X_{r} X_{r}
\end{aligned}
$$

Idea of proof:

- $Z_{\text {loops }}(I, g)$ is invariant when a cube is added to I, updating g with Kashaev's recurrence.
- When we get to the target vertex $z, Z_{\text {loops }}$ is equal to g_{z}.

Idea of proof:

- $Z_{\text {loops }}(I, g)$ is invariant when a cube is added to I, updating g with Kashaev's recurrence.
- When we get to the target vertex $z, Z_{\text {loops }}$ is equal to g_{z}.
- Uniqueness: each monomial corresponds to a single configuration.

Reconstruction algorithm of a configuration from its weight.

Limit shapes

Periodic initial conditions:

Sample a configuration with a probability proportional to its global weight.

$$
\begin{aligned}
& R=\frac{a c}{b^{2}}, \\
& N \rightarrow \infty,
\end{aligned}
$$

Limit shapes

Limit shapes

Periodic initial conditions: $\quad R \neq 3, \quad N \rightarrow \infty$

Limit shapes

Periodic initial conditions:

$$
R \neq 3, \quad N \rightarrow \infty
$$

Limit shape: an explicit algebraic curve of degree 8.

Limit shapes

In the periodic initial conditions, for any vertex $z \in I$, consider the observable

$$
\rho(z)=\mathbb{E}\left[n_{z}(\omega)+\frac{1}{2(1+R)} \sum_{\mathrm{f} \sim z} \epsilon_{\mathrm{f}}(\omega)\right]
$$

where $n_{z}(\omega)$ is the power of g_{z} in the total weight of ω, and $\epsilon_{\mathrm{f}}(\omega)$ the power of X_{f}.

Limit shapes

In the periodic initial conditions, for any vertex $z \in I$, consider the observable

$$
\rho(z)=\mathbb{E}\left[n_{z}(\omega)+\frac{1}{2(1+R)} \sum_{\mathrm{f} \sim z} \epsilon_{\mathrm{f}}(\omega)\right]
$$

liquid
where $n_{z}(\omega)$ is the power of g_{z} in the total weight of ω, and $\epsilon_{\mathrm{f}}(\omega)$ the power of X_{f}.

Theorem [M. 2018]

For periodic initial conditions of order N, and
$z=(\lfloor N u\rfloor,\lfloor N v\rfloor,\lfloor N w\rfloor)$, when $N \rightarrow \infty$,

- if $[u: v: w]$ is in the solid region, $\rho(z) \sim \operatorname{cste} e^{-\kappa_{u v w} N}$,
- if $[u: v: w]$ is in the liquid region, $\rho(z) \sim \operatorname{cste} N^{-\theta_{u v w}}$,
- if $[u: v: w]$ is in the gas region, $\rho(z) \rightarrow \frac{1}{3}$.
[Petersen, Speyer 2004; Di Francesco, Soto-Garrido 2014; Kenyon, Pemantle 2016;...] Spatial recurrences induce models with limit shapes.

[Petersen, Speyer 2004; Di Francesco, Soto-Garrido 2014; Kenyon, Pemantle 2016;...]

Spatial recurrences induce models with limit shapes.
For different
values of z, the partition functions
$g_{z}=Z_{\text {loops }}\left(I_{z}, g\right)$ satisfy Kashaev's recurrence (a polynomial relation).

[Petersen, Speyer 2004; Di Francesco, Soto-Garrido 2014; Kenyon, Pemantle 2016;...]

Spatial recurrences induce models with limit shapes.
For different
values of z, the partition functions
$g_{z}=Z_{\text {loops }}\left(I_{z}, g\right)$
satisfy Kashaev's recurrence (a polynomial relation).
\rightarrow the observables $\rho_{z}:=g_{0} \frac{\partial \ln \left(g_{z}\right)}{\partial g_{0}}$
satisfy a linear relation.

[Petersen, Speyer 2004; Di Francesco, Soto-Garrido 2014; Kenyon, Pemantle 2016;...]

Spatial recurrences induce models with limit shapes.
For different
values of z, the partition functions
$g_{z}=Z_{\text {loops }}\left(I_{z}, g\right)$
satisfy Kashaev's recurrence (a polynomial relation).
\rightarrow the observables $\rho_{z}:=g_{0} \frac{\partial \ln \left(g_{z}\right)}{\partial g_{0}}$
satisfy a linear relation.
$\rightarrow F(x, y, z)=\sum_{i, j, k} \rho_{i, j, k} x^{i} y^{j} z^{k}:$
$F(x, y, z)=\frac{P(x, y, z)}{H(x, y, z)}$.

Spatial recurrences induce models with limit shapes.
For different
values of z, the partition functions
$g_{z}=Z_{\text {loops }}\left(I_{z}, g\right)$
satisfy Kashaev's
recurrence (a polynomial relation).
\rightarrow the observables $\rho_{z}:=g_{0} \frac{\partial \ln \left(g_{z}\right)}{\partial g_{0}}$
satisfy a linear relation.
$\rightarrow F(x, y, z)=\sum_{i, j, k} \rho_{i, j, k} x^{i} y^{j} z^{k}:$
$F(x, y, z)=\frac{P(x, y, z)}{H(x, y, z)}$.

Analytic combinatorics in several variables [Pemantle, Wilson] (analysis of singularities of F) yield the asymptotic behaviour of its coefficients.

Link Ising - loops

Question

Is there a direct relation between Ising configurations and bicolor loops?

Link Ising - loops

Let $G=(V, E)$ be a finite planar graph with Ising compling constants $\left(J_{e}\right)_{e \in E}$. Let G^{\diamond} be its diamond quadrangulation.

Link Ising - loops

Let $G=(V, E)$ be a finite planar graph with Ising compling constants $\left(J_{e}\right)_{e \in E}$. Let G^{\diamond} be its diamond quadrangulation.

Consider the bicolor loop model on G^{\diamond} with local weights
$\lambda=\left(a_{e}^{2}, b_{e}^{2}, a_{e}, b_{e}, a_{e} b_{e}\right)_{e \in E}$, where $a_{e}=\tanh 2 J_{e}$ and $b_{e}=\left(\cosh 2 J_{e}\right)^{-1}$.

Link Ising - loops

Let $G=(V, E)$ be a finite planar graph with Ising compling constants $\left(J_{e}\right)_{e \in E}$. Let G^{\diamond} be its diamond quadrangulation.

Consider the bicolor loop model on G^{\diamond} with local weights
$\lambda=\left(a_{e}^{2}, b_{e}^{2}, a_{e}, b_{e}, a_{e} b_{e}\right)_{e \in E}$, where $a_{e}=\tanh 2 J_{e}$ and $b_{e}=\left(\cosh 2 J_{e}\right)^{-1}$.

Theorem [M. 2018]

$$
\left(Z_{\text {lsing }}(G, J)\right)^{4}=\left(2^{2|V|} \prod_{e \in E} \cosh ^{2} 2 J_{e}\right) Z_{\mathrm{loops}}\left(G^{\diamond}, \lambda\right)
$$

Idea of proof:

$$
w(\omega)=2^{N(\omega)} \prod_{\mathrm{f}} w_{\mathrm{f}}(\omega)
$$

10 local configurations.

Idea of proof:

$$
w(\vec{\omega})=\prod_{\mathrm{f}} w_{\mathrm{f}}(\vec{\omega})
$$

40 local configurations.

Idea of proof:

$$
w(\hat{\vec{w}})=\prod_{t}^{\hat{w}_{i}(\hat{\vec{w}})} .
$$

36 local configurations.

Idea of proof:

$$
w(\hat{\vec{\omega}})=\prod_{\mathrm{f}} \hat{w}_{\mathrm{f}}(\hat{\vec{\omega}})=w_{6} V\left(\tau_{1}\right) w_{6} V\left(\tau_{2}\right) .
$$

where τ_{1}, τ_{2} are two six-vertex configurations with local weights $a_{e}, b_{e}, 1$.
They satisfy $a_{e}^{2}+b_{e}^{2}=1$ (free-fermion).

Hence

$$
Z_{\text {loops }}\left(G^{\diamond}, \lambda\right)=Z_{6 V}\left(G^{\diamond},(a, b, 1)\right)^{2}
$$

Hence

$$
Z_{\text {loops }}\left(G^{\diamond}, \lambda\right)=Z_{6 V}\left(G^{\diamond},(a, b, 1)\right)^{2}
$$

Moreover, by bosonization [Dubédat 2011],

$$
\begin{aligned}
& \qquad Z_{6 V}\left(G^{\diamond},(a, b, 1)\right)=C Z_{\text {lsing }}(G, J)^{2} \\
& \text { for } C=2^{-|V|} \prod_{e \in E} \cosh ^{-1} 2 J_{e} .
\end{aligned}
$$

Hence

$$
Z_{\text {loops }}\left(G^{\diamond}, \lambda\right)=Z_{6 V}\left(G^{\diamond},(a, b, 1)\right)^{2}
$$

Moreover, by bosonization [Dubédat 2011],

$$
\begin{aligned}
& \qquad Z_{6 V}\left(G^{\diamond},(a, b, 1)\right)=C Z_{\text {lsing }}(G, J)^{2} \\
& \text { for } C=2^{-|V|} \prod_{e \in E} \cosh ^{-1} 2 J_{e} .
\end{aligned}
$$

Therefore $Z_{\text {loops }}\left(G^{\diamond}, \lambda\right)=C^{2} Z_{\text {lsing }}(G, J)^{4}$.

Hence

$$
Z_{\text {loops }}\left(G^{\diamond}, \lambda\right)=Z_{6 V}\left(G^{\diamond},(a, b, 1)\right)^{2}
$$

Moreover, by bosonization [Dubédat 2011],

$$
Z_{6 V}\left(G^{\diamond},(a, b, 1)\right)=C Z_{\operatorname{lsing}}(G, J)^{2}
$$

for $C=2^{-|V|} \prod_{e \in E} \cosh ^{-1} 2 J_{e}$.
Therefore $Z_{\text {loops }}\left(G^{\diamond}, \lambda\right)=C^{2} Z_{\text {lsing }}(G, J)^{4}$.

Remark

The blue loops are the interface of the product of 4 Ising models.

Other limit shapes?

For periodic initial conditions, let $R \rightarrow 0$ as $N \rightarrow \infty$.

Other limit shapes?

For periodic initial conditions, let $R \rightarrow 0$ as $N \rightarrow \infty$.

