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Abstract
Several applications in optimization, image and signal processing deal with data that belong to

the Stiefel manifold St(n, p), that is, the set of n × p matrices with orthonormal columns. Some
applications, like the Karcher mean, require evaluating the geodesic distance between two arbitrary
points on St(n, p). This can be done by explicitly constructing the geodesic connecting these two
points. An existing method for finding geodesics is the leapfrog algorithm of J. L. Noakes. This
algorithm is related to the Gauss–Seidel method, a classical iterative method for solving a linear
system of equations that can be extended to nonlinear systems. We propose a convergence proof of
leapfrog as a nonlinear Gauss–Seidel method. Our discussion is limited to the case of the Stiefel
manifold, however it may be generalized to other embedded submanifolds. We discuss other aspects
of leapfrog and present some numerical experiments.

Keywords Riemannian manifolds geodesics Stiefel manifold nonlinear Gauss–Seidel

1 Introduction

The object of study in this paper is the compact Stiefel manifold, i.e., the set of orthonormal n-by-p
matrices

St(n, p) = {X ∈ Rn×p : X>X = Ip}.
Here, we are concerned with computing the minimal distance between two points on the Stiefel man-
ifold. To define a distance on a manifold, one has to introduce the concept of geodesics. A geodesic
γ : [0, t] → M is a curve with zero acceleration, which generalizes the notion of straight lines in Eu-
clidean space to a Riemannian manifold [1]. Geodesics allow us to introduce the Riemannian exponen-
tial Expx : TxM→M that maps a tangent vector ξ = γ̇(0) ∈ TxM to the geodesic endpoint γ(1) = y
such that Expx(ξ) = y. The Riemannian exponential is a local diffeomorphism, i.e., it is locally invert-
ible and its inverse is called the Riemannian logarithm of y at x satisfying Logx(y) = ξ. The injectivity
radius at a point p of a Riemannian manifold M is the largest radius for which the exponential map
Expx is a diffeomorphism from the tangent space to the manifold. The global injectivity radius of a
manifold is the infimum of all the injectivity radii over all points of the manifold. Given two points x
and y on a manifoldM, if the Riemannian distance d(x, y) is smaller than inj(M), then there exists a
unique geodesic from x to y. For the Stiefel manifold, the injectivity radius is at least 0.89π; see [19,
Eq. (5.13)].

The distance on the Stiefel manifold is involved in numerous fields of applications, among which,
computer vision [5, 22, 24, 25], statistics [20], reduced-order models [2, 4]. Given two points on the
Stiefel manifold, our goal is to compute the length of the minimal geodesic connecting them. For some
manifolds, there are explicit formulas available for computing the geodesic distance. For the Stiefel
manifold there is no closed-form solution known. In general, the problem of finding the geodesic dis-
tance given two points on a Riemannian manifold is related to the Riemannian logarithm. The problem
of computing the Riemannian logarithm on the Stiefel manifold has already been tackled by several au-
thors, who proposed some numerical algorithms. Rentmeesters [19] and Zimmermann [26, 27] proposed
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a similar algorithm which is only locally convergent and depends upon the definition of the (standard)
matrix logarithm function.

Another method for finding geodesics is the leapfrog algorithm introduced by J. L. Noakes [17].
This method has global convergence properties, but it slows down when the solution is approached [14,
p. 2796]. Moreover, Noakes realized that his leapfrog algorithm was related to the Gauss–Seidel method
[17, p. 39]. The link between leapfrog and nonlinear Gauss–Seidel was not further investigated, since
there is no trace of this idea being developed in the other related papers [13, 14]. In this paper, we will
prove convergence of leapfrog as a nonlinear block Gauss–Seidel method. Even though our focus will
be on St(n, p), most of our discussion may be generalized to other embedded submanifolds.

A Riemannian metric has to be specified in order to turn St(n, p) into a Riemannian manifold, and
in general different choices are possible. In this paper, we consider the non-Euclidean canonical metric
inherited by St(n, p) from its definition as a quotient space of the orthogonal group [6, Eq. (2.39)]

gc(ξ, ξ) = trace
(
ξ>(I − 1

2Y Y
>) ξ

)
. (1)

Tangent vectors to the Stiefel manifold may be expressed in the form

ξ = Y0Ω + Y0⊥K, with Ω ∈ Sskew(p), K ∈ R(n−p)×p,

with Sskew(p) the vector space of p-by-p skew-symmetric matrices.
An explicit formula for a geodesic with initial acceleration the tangent vector ξ and base point Y0

has been provided by Ross Lippert [6, Eq. (2.42)]

Y (t) = Q exp

([
Ω −K>
K On−p

]
t

)[
Ip

O(n−p)×p

]
, (2)

with Q =
[
Y0 Y0⊥

]
and Y0⊥ being any matrix whose range is (span(Y0))

⊥.
Given two points Y0, Y1 on St(n, p) that are sufficiently close to each other, finding the minimal

geodesic distance between them is equivalent to finding the tangent vector ξ∗ ∈ TY0St(n, p) with the
shortest possible length such that ExpY0(ξ∗) = Y1. The solution to this problem is equivalent to the
Riemannian logarithm of Y1 with base point Y0, i.e., ξ∗ = LogY0(Y1). Given the endpoints Y0 and Y1,
we do not know what the matrices Ω and K in (2) are. So the problem becomes: Find the matrices Ω
and K such that the explicit formula (2) gives the endpoint Y1.

2 Leapfrog algorithm

When X,Y ∈ M are sufficienlty close, their connecting geodesic can be found by applying Newton’s
method to (2) such that Y (1) = Y with Y (0) = X . This is more generally known as single shooting1.
However, when X and Y are far apart, it is well-known that single shooting will have difficulty finding
the connecting geodesic. The main idea behind the leapfrog algorithm of Noakes [17] is to exploit
the success of single shooting by subdividing the global problem into several local problems, where
intermediate pointsXi ∈M are introduced betweenX and Y , for which the endpoint geodesic problem
can be solved again by single shooting. The algorithm then iteratively updates a piecewise geodesic to
obtain a globally smooth geodesic between X and Y . This idea is actually not new and goes back as
early as 1963 by Milnor [16, III.§16]. It also resembles the better known multiple shooting method for
boundary value problems but it is different.

1In this context, there is no need to solve an ordinary differential equation as in a normal shooting method, because we
have the solution (2). Hence, it is actually Newton’s method, but we keep the shooting terminology because it is typical for
boundary value problems.
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Figure 1: Illustration of one full iteration of the leapfrog scheme for some non-Euclidean metric (the
lengths for the Euclidean metric clearly increase during iteration).

2.1 Formal description of the algorithm

In this section we describe the leapfrog algorithm by following the presentation in [17]. Let M be
a C∞ path-connected Riemannian manifold. Consider a piecewise (or broken) geodesic geodesic ωX
joining X0 to Xm−1, having m − 1 geodesic segments. Assuming Xi and Xi+1 are sufficiently close
to each other, ωX is uniquely identified by the m-tuple X = (X0, X1, . . . , Xm−1) ∈ Mm, where
Xi are the junctions of the geodesic segments. The leapfrog algorithm now proceeds as follows: For
i = 1, . . . ,m− 2, each Xi is mapped onto the minimal geodesic joining Xi−1 and Xi+1. This achieves
the largest possible decrease in length while keeping other variables fixed. Though there are several
choices to do this, leapfrog maps Xi onto the midpoint of the geodesic joining Xi−1 and Xi+1. By
iterating this procedure, the algorithm generates a sequence Ω = {ωX(k) : [0, 1]→M : k = 0, 1, . . .}
of broken geodesics whose lengths are decreasing. Figure 1 illustrates one iteration of the leapfrog
algorithm. It is clear that leapfrog generates a sequence of broken geodesics ωX(k) that are defined from
X(k). In addition, the length of ωX(k) is non-increasing in k since at each step two neighboring geodesics
get replaced by one global geodesic connecting their endpoints.

2.2 Known results

Let Y be the set of all tuples X = (X0, X1, . . . , Xm−1) ∈ Mm satisfying d(Xi−1, Xi) 6 δ for all
i = 1, 2, . . . ,m − 2. In [17, §2], δ is related to the notion of Lebesgue number of an open cover.
Here, we can assume that δ is equal to 1

2 inj
(
M
)
, where inj is the injectivity radius (see Sect. 1). Let

F : Y → Y represent one full leapfrog iteration and let X∗ be the limit of any convergent subsequence
of S = {Fk(X(0)) : k > 1} with X(0) ∈ Y . By compactness, [17] shows that at least one convergent
subsequence of S exists and that the limit of this subsequence are points that lie on a global geodesic
connecting the endpoints X0 and Xm−1. The following result is stated in [14, Theorem 5.2].

Theorem 2.1. S has a unique accumulation point.

The theorem guarantees convergence of the iterates X(k) = F(X(k−1)) with X(0) ∈ Y . From
[17, Lemma 3.2] we also know that leapfrog will converge to a uniformly distributed m-tuple X∗ =
(X0, X

∗
1 . . . , X

∗
m−2, Xm−1), i.e., d(X∗i , X

∗
i+1) are all equal, for i = 0, . . . ,m − 2. In other words, at

convergence, the geodesic segments connecting the junction points will all have the same length.
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An apparent drawback in the current theory is that it lacks a classical convergence proof as a fixed
point iteration method, although leapfrog can be easily recognized as such. In the next section, we will
provide the details of how to analyze leapfrog as a nonlinear block Gauss–Seidel method.

3 Convergence of leapfrog as nonlinear Gauss–Seidel

LetM = St(n, p) with the Riemannian distance function d. The starting point is to realize that leapfrog
solves the optimization problem

min
X1,...,Xm−2∈St(n,p)

F (X1, . . . , Xm−2) with F (X1, . . . , Xm−2) =

m−1∑

i=1

d2(Xi−1, Xi),

by cyclically minimizing over each variable Xi for i = 1, 2, . . . ,m−2. Specifically, at the kth iteration,
leapfrog updates X(k−1)

i by the minimizer of the problem

min
Xi∈St(n,p)

F (X
(k)
1 , . . . , X

(k)
i−1, Xi, X

(k−1)
i+1 , . . . , X

(k−1)
m−2 )

= min
Xi∈St(n,p)

d2(X
(k)
i−1, Xi) + d2(Xi, X

(k−1)
i+1 ) + constant.

(3)

Since d is the Riemannian distance, this problem coincides with the definition of the Karcher mean2

between the two points X(k)
i−1 and X(k−1)

i+1 ; see [12, Eq. (1.1)]. For the compact Stiefel manifold, a
Karcher mean always exists, but it does not need to be unique [19, p. 37]. However, a sufficient condition
for uniqueness is d(X

(k)
i−1, X

(k−1)
i+1 ) < inj

(
St(n, p)

)
, where inj is the injectivity radius (see Sect. 1). This

is true if all Xi are close enough (we will make this more precise later). In that case, the unique solution
that solves (3) is the midpoint of the minimizing geodesic between X(k)

i−1 and X(k−1)
i+1 . Leapfrog now

proceeds to update the Xi in a Gauss–Seidel fashion where the most recent X(k)
i−1 is used to update

X
(k−1)
i . This kind of optimization scheme is known as block coordinate descent method of Gauss–

Seidel type [18].

3.1 Nonlinear block Gauss–Seidel method

Let us first consider the case of Gauss–Seidel in Rn. Let the variable x ∈ Rn be partitioned as
x = (x1, x2, . . . , xm), where xi ∈ Rqi and

∑
i qi = n, and group correspondingly the components

of F̃ : D ⊂ Rn → Rn into mappings F̃i : Rn → Rqi , i = 1, . . . ,m. The minimizers of the function
F̃ (x) satisfy the first-order optimality condition ∇F̃ (x) = 0. Let us define Gi = ∇F̃i, i = 1, . . . ,m. If
we interpret the linear Gauss–Seidel iteration in terms of obtaining x(k)i as the solution of the ith equa-
tion of the system with the other m − 1 block variables held fixed, then we may immediately consider
the same prescription for nonlinear equations [18, p. 219]. Then solving

Gi(x(k)1 , . . . , x
(k)
i−1, y, x

(k−1)
i+1 , . . . , x(k−1)m ) = 0 (4)

for y and defining x(k)i = y describes a nonlinear block Gauss–Seidel process in which a complete
iteration requires the solution of m nonlinear systems of dimensions qi, i = 1, . . . ,m; see [18, p. 225].
The convergence theory in [18] applies only to functions whose domain of definition is Euclidean space
Rn. It cannot be applied to functions which are defined on manifolds, such as the Riemannian distance
d that is only defined on a subset of Rn, namely, the embedded submanifold. For this reason, in the
next section we will introduce a smooth extension of the Riemannian distance function that can also be
evaluated for points that do not belong to the manifold.

2Also known as Riemannian center of gravity or Riemannian center of mass; see [15, Theorem 9.1, p. 109]. A numerical
experiment involving the Karcher mean on the Stiefel manifold is discussed in Sect. 5.
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Figure 2: The extended distance function.

3.2 Extended objective function

As we have seen above, leapfrog solves in an alternating way the problem

min
X1,...,Xm−2∈St(n,p)

F (X1, . . . , Xm−2) =
m−1∑

i=1

d2(Xi−1, Xi),

where X0 and Xm−1 are the fixed endpoints. This objective function F is only defined on the manifold
St(n, p). In this section, we will identify an extended objective function F̃ that is defined on Rn×p for
which the standard nonlinear block Gauss–Seidel method produces the same iterates as the leapfrog
algorithm. The key result of this section is stated in Prop. 3.1. This will allow us to analyze the conver-
gence of leapfrog using standard results for nonlinear Gauss–Seidel.

We claim the extended cost function can be chosen as

min
X1,...,Xm−2∈Rn×p

F̃ (X1, . . . , Xm−2) =
m−1∑

i=1

d̃2(Xi−1, Xi),

with extended distance function

d̃2(X̃, Ỹ ) =

{
d2(PStX̃,PStỸ ) + ‖X̃ − PStX̃‖2F + ‖Ỹ − PStỸ ‖2F, if σp(X̃) > 0 and σp(Ỹ ) > 0;
+∞, otherwise,

(5)
where PSt denotes the orthogonal projector onto the Stiefel manifold.

The condition σp(X̃) > 0 is equivalent to the existence of a unique best approximation of X̃ in
St(n, p). In other words, PStX̃ is well defined. Concretely, we can define the projector PSt : Rn×p →
St(n, p) by PSt(Z) = Z(Z>Z)−1/2, that is, the orthogonal factor of the polar decomposition of Z [1,
p. 58]. Figure 2 illustrates the extended distance function d̃2(X̃, Ỹ ).

3.3 Leapfrog as nonlinear Gauss–Seidel

In order to show that nonlinear Gauss–Seidel applied to F̃ is equivalent to leapfrog for F , we need a few
lemmas. The first one addresses the problem of how close the points on St(n, p) need to be so that their
connecting geodesic is unique.

Lemma 3.1. Let X,Y ∈ St(n, p) such that d(X,Y ) 6 δg, with δg = 0.89π. Then there exists a unique
length-minimizing geodesic between X and Y . As a consequence, also the Karcher mean between X
and Y exists and is uniquely defined.

Proof. By definition of injectivity radius, if d(X,Y ) < inj(St(n, p)), then there is only one length-
minimizing geodesic between X and Y . From [19, Eq. (5.13)], we know that the injectivity radius is
lower bounded by 0.89π.
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Remark 3.1. We can compare the Riemannian and Euclidean distances between X and Y ∈ St(n, p)
asymptotically in the following way3. From the expansion of the canonical distance in (19), it is clear
that

d(X,Y ) 6 ‖X − Y ‖F +O(‖X − Y ‖2F) for ‖X − Y ‖F → 0.

By neglecting O(‖X − Y ‖2F), we thus have d(X,Y ) . ‖X − Y ‖F. In particular, ‖X − Y ‖F 6 δg
implies d(X,Y ) . δg.

Let Xi−1, Xi+1 ∈ St(n, p). Denote

Fi(Y ) = d2(Xi−1, Y ) + d2(Y,Xi+1), F̃i(Ỹ ) = d̃2(Xi−1, Ỹ ) + d̃2(Ỹ , Xi+1),

where Xi−1, Xi+1 are constant and hidden in the notation.

Lemma 3.2. With the notation from above assume that d(Xi−1, Xi+1) 6 δg, then the ith substep of
leapfrog produces the same solution Y ∗ as the minimization of F̃i

arg min
Y ∈St(n,p)

Fi(Y ) = arg min
Ỹ ∈Rn×p

F̃i(Ỹ ) = Y ∗,

with Y ∗ the Karcher mean on St(n, p) of Xi−1 and Xi+1.

Proof. Since d(Xi−1, Xi+1) 6 δg, Lemma 3.1 gives that the minimizer of Fi on St(n, p) is unique
and equals the Karcher mean Y ∗. To show that it also equals the minimizer of F̃i on Rn×p, take any
Ỹ ∈ Rn×p. If σk(Ỹ ) > 0, then we can write

Ỹ = Y + ∆, Y = PStỸ ∈ St(n, p).

Using that Y ∗ is the minimizer of Fi on St(n, p), we thus get

F̃i(Ỹ ) = d2(Xi−1, Y ) + d2(Y,Xi+1) + 2‖∆‖2F > Fi(Y ) > Fi(Y
∗).

The same inequality holds trivially if σk(Ỹ ) = 0 since then F̃i(Ỹ ) = +∞. Finally, since F̃i(Y ∗) =
Fi(Y

∗), we obtain that F̃i is also uniquely minimized by Y ∗.

Lemma 3.3. Suppose that for all iterations k = 0, 1, . . ., the iterates of leapfrog satisfy

d(X
(k)
i−1, X

(k−1)
i+1 ) 6 δg,

for all i = 1, 2, . . . ,m− 2. Then, the leapfrog algorithm started in X(0) generates the same iterates as
the nonlinear Gauss–Seidel algorithm started in X(0) and applied to

min
X1,...,Xm−2∈Rn×p

F̃ (X1, . . . , Xm−2).

Proof. By induction. Suppose true until substep i − 1 of iteration k. Then, leapfrog computes the new
iterate as

X
(k)
i = arg min

Y ∈St(n,p)
d2(X

(k)
i−1, Y ) + d2(Y,X

(k−1)
i+1 ).

The uniqueness of the minimizer follows from Lemma 3.1 and d(X
(k)
i−1, X

(k−1)
i+1 ) 6 δg. Likewise, non-

linear Gauss–Seidel computes

X̃
(k)
i = arg min

Ỹ ∈Rn×p

F̃ (X
(k)
1 , . . . , X

(k)
i−1, Ỹ , X

(k−1)
i+1 , . . . , X

(k−1)
m−2 ),

3For the Riemannian distance de based on the embedded metric, it is easy to see that ‖X − Y ‖F 6 de(X,Y ) since the
Euclidean length of a geodesic on St(n, p) is always larger than that of a straight line.
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and the uniqueness of the minimizer follows from our reasoning below. Both minimization problems
are the same as minimizing Fi and F̃i from Lemma 3.2 but with X(k)

i−1 and X(k−1)
i+1 taking the roles of

Xi−1 and Xi+1, respectively. By Lemma 3.2, the minimizers of both problems are the same and hence
X

(k)
i = X̃

(k)
i . The above reasoning can also be applied to the base case k = i = 1 since X(1)

0 = X
(0)
0 .

Hence, we have proven the result.

If the initial points are close enough, the iterates in leapfrog stay close.

Lemma 3.4. Let X(0) ∈ St(n, p)m be such that d(X
(0)
i−1, X

(0)
i ) 6 1

2δg for all 1 6 i 6 m − 1. Then,
leapfrog started at X(0) is well defined and all its iterates X(k) satisfy for all 1 6 i 6 m− 2 and k > 1

d(X
(k)
i−1, X

(k)
i ) = d(X

(k)
i , X

(k−1)
i+1 ) 6 1

2δg. (6)

Proof. By induction. Suppose true for all substeps i until iteration k − 1 and until substep i − 1 of
iteration k. This implies in particular

d(X
(k)
i−1, X

(k−1)
i ) 6 1

2δg, d(X
(k−1)
i , X

(k−1)
i+1 ) 6 1

2δg.

By triangle inequality for the Riemannian distance,

d(X
(k)
i−1, X

(k−1)
i+1 ) 6 d(X

(k)
i−1, X

(k−1)
i ) + d(X

(k−1)
i , X

(k−1)
i+1 ) 6 δg,

Lemma 3.1 gives that the leapfrog iteration is well defined and produces the unique minimizer

X
(k)
i = arg min

Y ∈St(n,p)
d2(X

(k)
i−1, Y ) + d2(Y,X

(k−1)
i+1 ).

We thus have

d2(X
(k)
i−1, X

(k)
i ) + d2(X

(k)
i , X

(k−1)
i+1 ) 6 d2(X

(k)
i−1, X

(k−1)
i ) + d2(X

(k−1)
i , X

(k−1)
i+1 ) 6 1

2δ
2
g .

Since X(k)
i is the midpoint of the geodesic connecting X(k)

i−1 to X(k−1)
i+1 , we also have

d(X
(k)
i−1, X

(k)
i ) = d(X

(k)
i , X

(k−1)
i+1 ).

Combining these two results proves (6) until substep i at iteration k. Since X(k+1)
0 = X

(k)
0 = X

(0)
0 , the

case for substep i = 1 and iteration k+ 1 satisifes the same reasoning as above. The same is true for the
base case i = k = 1, which ends the proof.

Hence, combining Lemmas 3.3 and 3.4, we get our desired result:

Proposition 3.1. Let X(0) ∈ St(n, p)m be such that d(X
(0)
i−1, X

(0)
i ) 6 1

2δg for all 1 6 i 6 m. Then the
leapfrog algorithm applied to F is equivalent to the nonlinear Gauss–Seidel method applied to F̃ .

We can now proceed and analyze the convergence of this nonlinear Gauss–Seidel method using
standard theory.
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3.4 First-order optimality

From Prop. 3.1, we know that at iteration k > 1 and for subinterval i ∈ {1, . . . ,m− 2}, leapfrog solves
the following unconstrained optimization problem

min
Xi∈Rn×p

F̃ ki (Xi),

where the objective function is defined as

F̃ ki (Y ) = d̃2(X
(k)
i−1, Y ) + d̃2(Y,X

(k−1)
i+1 ).

Recall that X(k)
i−1, X

(k−1)
i+1 ∈ St(n, p) are the neighboring points of Xi and that X(k)

i−1 was previously

updateds and that X(k−1)
i+1 will be updated next.

Let us define

Gi(Y ) = ∇Y F̃ ki (Y ) = ∇Y d̃2(X(k)
i−1, Y ) +∇Y d̃2(X(k−1)

i+1 , Y ).

At the minimizer Xi, the gradient of F̃ ki vanishes, i.e., Gi(Xi) = 0. Likewise, if we take all the mini-
mizers X = (X1, . . . , Xm−2) together, they will satisfy





G1(X) = ∇X1 d̃
2(X0, X1) +∇X1 d̃

2(X1, X2) = 0,

G2(X) = ∇X2 d̃
2(X1, X2) +∇X2 d̃

2(X2, X3) = 0,
...

Gm−2(X) = ∇Xm−2 d̃
2(Xm−3, Xm−2) +∇Xm−2 d̃

2(Xm−2, Xm−1) = 0.

This can be written compactly as G(X) = 0, where G is defined component-wise Gi : Rn×p → Rn×p,
for i = 1, . . . ,m− 2.

3.5 Known results on local convergence

Assuming convergence to the limit point X∗1 , X
∗
2 , . . . , X

∗
m−2, the asymptotic convergence rate is deter-

mined by the spectral radius of a certain blockwise partitioning of the Hessian of F̃ at this limit point.

Theorem 3.5 (Nonlinear block Gauss–Seidel theorem). Let G : D ⊂ R(m−2)np → R(m−2)np be con-
tinuously differentiable in an open neighborhood B0 ⊂ D of a point X∗ ∈ D for which G(X∗) =
0. Consider the decomposition of G′ = D − L − U into its block diagonal, strictly lower-, and
strictly upper-triangular parts, and suppose that D(X∗) is nonsingular and ρ(MBGS(X∗)) < 1, where
MBGS = (D − L)−1U . Then there exists an open ball B = B(X∗, δ) in B0 such that, for any
X(0) ∈ B, there is a unique sequence {X(k)} ⊂ B which satisfies the nonlinear Gauss–Seidel pre-
scription. Moreover, limk→∞X

(k) = X∗ and for any X(0) ∈ B0, the convergence rate in the form
lim supk→∞

k
√
‖X(k) −X∗‖ is upper bounded by ρ(MBGS(X∗)).

Proof. As a direct extension of [18, Theorem 10.3.5].

This theorem shows the need for the Hessian of F̃ (i.e., G′) and its block D−L−U decomposition.
As we shall see, our matrix G′ is given by the sum of two matrices G′ = A+ E, where A is symmetric
block tridiagonal and positive definite, and E can be regarded as a perturbation matrix. Since it is very
difficult to compute the spectral radius of MBGS with this perturbation E, we will not use Theorem 3.5
directly. Instead, we will use the Householder–John theorem [10, Corollary 3.42], which states that
if G′ is positive definite, then the MBGS from Theorem 3.5 satisfies ρ(MBGS) < 1. In other words,
(linear) block Gauss–Seidel for a symmetric and positive definite G′ always converges monotonically in
the energy norm [10, Theorem 3.53]. Therefore, we only need to restrict the perturbationE such that the
whole matrix G′ is symmetric and positive definite. In order to do that, we will also use a block version
of the Gershgorin circle theorem [7, Theorem 2].
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3.6 Local convergence
As required in Theorem 3.5, we compute the Hessian as the Jacobian matrix G′(X), a square matrix of
size (m− 2)np.

G′ =

∇2
X1

d̃2(X0, X1) +∇2
X1

d̃2(X1, X2) ∇X2∇X1 d̃
2(X1, X2)

∇X1∇X2 d̃
2(X1, X2) ∇2

X2
d̃2(X1, X2) +∇2

X2
d̃2(X2, X3) ∇X3∇X2 d̃

2(X2, X3)
...

...
...

 .

By symmetry of the Hessian, we can write this compactly as

G′ =




D10 +D12 L>12
L12 D21 +D23 L>23

. . .
. . .

. . .
Lm−3,m−2 Dm−2,m−3 +Dm−2,m−1


 ,

where
Lij = ∇Xi∇Xj d̃

2(Xi, Xj) and Dij = ∇2
Xi
d̃2(Xi, Xj)

denote the mixed and double derivatives4.
We now turn to the computation of these derivativesLij andDij . To that end, the following lemma is

convenient since it writes d̃2(Xi, Xj) as an expansion that does not explicitly use the geodesic distance.

Lemma 3.6. Let X̃, Ỹ ∈ Rn×p such that σp(X̃) > 0 and σp(Ỹ ) > 0, then

d̃2(X̃, Ỹ ) = ‖PStX̃ − PStỸ ‖2F − 1
2‖Ip −

(
PStX̃

)>
PStỸ ‖2F

+ ‖X̃ − PStX̃‖2F + ‖Ỹ − PStỸ ‖2F +O(‖PStX̃ − PStỸ ‖4F).
(7)

Proof. See App. A.

In the following, denote δij = ‖Xi −Xj‖2 for any Xi, Xj ∈ St(n, p).

Lemma 3.7. Let Xi ∈ St(n, p). Then

Dij = 2Inp + 1
2 (X>i ⊗Xi) Πp,n − 1

2 (Ip ⊗XiX
>
i ) + ∆ij , (8)

Lij = −2Inp + 1
2(X>i ⊗Xi) Πp,n + 3

2(Ip ⊗XiX
>
i ) + Λij , (9)

with ‖∆ij‖2 6 14δij + 10δ2ij and ‖Λij‖2 6 11
2 δij + 10δ2ij + 4δ3ij . Here, Πp,n is the vec-permutation

matrix defined as the permutation matrix that satisfies vec(X) = Πn,p vec(X>); see, e.g., [11, Eq. (5)].

Proof. See App. B.

Our aim is to diagonalize G′. We will do this in a few steps. First, observe that G′ remains block-
tridiagonal if it is transformed using a compatible block diagonal matrixQ = diag{Q1, Q2, . . . , Qm−2}:

Q>G′Q =



Q>1 (D10 +D12)Q1 Q>1 L

>
12Q2

Q>2 L12Q1 Q>2 (D21 +D23)Q2 Q>2 L
>
23Q3

. . .
. . .

. . .


 , (10)

Here, the Q1, . . . , Qm−2 ∈ Rnp×np can be any orthogonal matrices. The lemma below shows us how to
choose these matrices so that we obtain diagonal blocks in Q>G′Q, up to first order in δij .

4Observe that Lij = L>ji by equality of mixed derivatives but in general Dij 6= D>ji since only the variable corresponding
to the first index is derived.
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Lemma 3.8. Let X⊥i ∈ Rn×(n−p) be such that X>i X
⊥
i = Op×(n−p) and (X⊥i )>X⊥i = I(n−p). Define

the orthogonal matrices
Q̄i =

[
Ip ⊗Xi Ip ⊗X⊥i

]
,

and similarly for Q̄j . Then, there exists an orthogonal matrix Q̂, only depending on n and p, such that
Qi = Q̄iQ̂ and Qj = Q̄jQ̂ satisfy

‖Q>i DijQi −D‖2 6 C
(ij)
D , D = diag

{
Ip(p−1)/2, 2 Inp−p(p−1)/2

}
, (11)

‖Q>j LijQi − L‖2 6 C
(ij)
L , L = diag

{
−Ip(p−1)/2, −2I(n−p)p, Op(p+1)/2

}
, (12)

where C(ij)
D = 14δij + 10δ2ij and C(ij)

L = 15
2 δij + 31

2 δ
2
ij + 14δ3ij + 4δ4ij .

Proof. See App. C.

The matrix Q̂ above is related to the diagonalizaton of the vec-permutation matrix Πp,p; see (25) in
App. C for its definition. It is therefore also independent of Xi. This is a crucial property to obtain the
following result.

Lemma 3.9. Define δ = max06i6m−2 δi,i+1 and assume δ 6 1. Then the minimal eigenvalue of G′ is
bounded by

λmin(G′) > 2− 2 cos π
m−1 − 43δ − 90δ2.

As a consequence, G′ is symmetric and positive definite when

δ <
1

180

(√
2 569− 720 cos π

m−1 − 43
)
.

Proof. From Lemma 3.8, recall the diagonal matrices D and L, and the orthogonal matrices Q1, . . .,
Qm−2. Define Q = diag{Q1, Q2, . . . , Qm−2}. Substituting the nonzero blocks in (10) by

Q>i (Di,i−1 +Di,i+1)Qi = 2D + Eii, Q>i+1Li,i+1Qi = L+ Ei,i+1,

we can write Q>G′Q as

Q>G′Q =




2D L
L 2D L

. . .
. . .

. . .


+



E11 E>12
E12 E22 E>23

. . .
. . .

. . .


 =: A+ E. (13)

Eq. (13) is an approximate tridiagonalization of the matrix G′. Observe that the symmetric matrices A
and E have compatible block partitioning. Furthermore, from Lemma 3.8, we get immediately that

‖Eii‖2 6 28δ + 20δ2 =: CD, ‖Ei,i+1‖2 6 15
2 δ + 31

2 δ
2 + 14δ3 + 4δ4 =: CL.

We will regard Q>G′Q as an O(δ) perturbation of A. Using properties of Kronecker products, we
can write

A = 2Im−2 ⊗D +M ⊗ L, M =




0 1

1
. . .

. . .
. . .

. . . 1
1 0



∈ R(m−2)×(m−2). (14)

Thanks to the Kronecker structure in (14) and the diagonal matrices D and L, the eigenvalues of A are
easily determined as

λjk = 2dj + µk`j , j = 1, . . . , np, k = 1, . . . ,m− 2,
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where dj and `j are the diagonal entries of D and L, respectively, and µk are the eigenvalues of the
Toeplitz matrix M . Using [8, Eq. (2.7)], we find

µk = −2 cos kπ
m−1 , k = 1, . . . ,m− 2.

Together with (11) and (12), this allows us to determine that the minimal value among all λjk corre-
sponds to j = 1 and k = m− 2. We thus obtain

λmin(A) = 2− 2 cos π
m−1 > 0 for all m > 2.

By Weyl’s inequality [21, Corollary 4.9], λmin(G′) = λmin(A + E) > 0 is guaranteed if ‖E‖2 <
λmin(A). To bound ‖E‖2, we use a block version of the Gershgorin circle theorem (see [7, Theorem 2]
and also [23, Remark 1.13.2]). Applied to the symmetric block tridiagonal matrix E, it guarantees that
its eigenvalues are included in the union of intervals

m−2⋃

i=1

np⋃

k=1

[ε
(i)
k −Ri, ε

(i)
k +Ri], Ri = ‖Ei−1,i‖2 + ‖E>i,i+1‖2 6 2CL,

where ε(i)k is the kth eigenvalue of Eii. These eigenvalues ε(i)k are all bounded in magnitude by CD.
Hence ‖E‖2 6 CD + 2CL = 43δ + 51δ2 + 28δ3 + 8δ4. Since δ < 1, it is easily verified that
‖E‖2 6 43δ + 90δ2 and thus the matrix G′ remains positive definite if 43δ + 90δ2 < λmin(A), i.e.,

δ <
1

180

(√
2 569− 720 cos π

m−1 − 43
)
.

All put together, we have the final result of local convergence.

Theorem 3.10. If the leapfrog algorithm is started with δ satisfying the condition of Lemma 3.9, then it
converges to the unique length-minimizing geodesic connecting X0 and Xm−1, provided that the initial
intermediate points are sufficiently close to that geodesic.

Proof. We use [10, Corollary 3.42] which states that if G′ is positive definite and can be split into the
sum of an arbitrary positive definite matrix and an arbitrary symmetric matrix, then the scalar Gauss–
Seidel converges, i.e., ρ(MBGS) < 1, and the convergence is monotone with respect to the energy norm
‖ · ‖G′ . By [10, Theorem 3.53], we know that this theorem remains valid for any block version.

Now, the splitting (13) has exactly the form prescribed by [10, Corollary 3.42], because A is
positive definite and E is symmetric. By Lemma 3.9, we know that G′ remains positive definite if
δ < 1

180

(√
2 569− 720 cos π

m−1 − 43
)

. Under these conditions, the leapfrog algorithm converges as a
block Gauss–Seidel method to the length-minimizing geodesic connecting X0 and Xm−1.

4 Some observations and open problems

For m large, Lemma 3.9 gives that G′ is positive definite when δ . π2/43m2. Let d0 = ‖X0−Xm−1‖2
be the distance between the two endpoints. Then by equidistant partitioning of the intermediate points,
one has δ ' d0/m. To guarantee a positive definite G′, we would then need d0/m . π2/43m2 which
implies m . 0.23/d0.

This result is unsatisfactory, since it would have been desirable to guarantee positive definiteness
of Q>G′Q = A + E with orthogonal Q by increasing the number of points m given a fixed d0.
Unfortunately, we cannot guarantee this with our proof. The problem is that ‖E‖2 = O(δ) whereas
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Figure 3: Eigenvalue perturbations – not at the
limiting geodesic.

Figure 4: Eigenvalue perturbations – at the limit-
ing geodesic.

λmin(A) = O(1/m2), which lead to our condition that m needed to be smaller than some fixed frac-
tion of the original distance d0. If ‖E‖2 = O(δ2), then there would be no condition on m since
δ2 ' d20/m

2 . 1/m2 is sufficient to guarantee λmin(A + E) > 0. However, it would still not be
satisfactory since the perturbation does not lead to an improvement with increasing m, for which one
probably needs ‖E‖2 = O(δ3). As we show below, there is strong numerical indication that with our
choice of extended distance function this is not the case.

Numerical experiments reported in Figure 3 suggest that the minimal eigenvalues of G′ and A differ
by O(δ2), whereas our perturbation analysis only showed ‖E‖2 = O(δ). It is however not trivial to
prove this result. Indeed, up to first order, we can study the eigenvalues of the symmetric matrix A+ E
by using the derivative formula [21, Theorem 2.3]

λmin(A+ E) = λmin(A) + v>minEvmin +O(‖E‖2), (15)

where λmin(A) is assumed to be isolated (as it is the case) and vmin is its associated eigenvector. One
possibility to improve on our bounds, at least asymptotically, would be to prove that |v>minEvmin| =
O(δ3). However, in the same figure, |v>minEvmin| seems to be again O(δ2). In addition, all these
conclusions remain true in the limiting geodesic.

Another problem with the matrix A and G′ is that it has a bad spectral gap γ (i.e., the difference
of smallest and second smallest eigenvalue) when m grows. Numerical observations suggest that the
spectral gap might be O(1/m) which complicates non-asymptotic bounds.

As a last remark, one could resort to a more general theory for the convergence of nonlinear block
Gauss–Seidel for a quasi-convex objective function [9], which requires quasi-convexity for each Xi

alone. Looking at the Hessian G′ where all Xj except Xi are constant, the only block that is left in
the matrix G′ is the diagonal one, namely Di,i−1 + Di,i+1. Using Lemma 3.8, we immediately get
the eigenvalues of this block. Now, for C(ij)

D < 1 in (11) we get strong convexity in Xi alone. One
problem with this approach is that the feasible set has to be a Cartesian product of convex subsets of
Rn×p. Moreover, the result in [9] only guarantees subsequence convergence, and there is no rate of
convergence or contraction rate for the whole sequence. Hence the convergence behavior could also be
slower than linear.

5 Numerical experiments and applications

As a concrete example to demonstrate the leapfrog algorithm, let us consider the Stiefel manifold
St(12, 3). We fix one point X = [Ip O(n−p)×p]

>, while the other point Y is placed at the geodesic

12



Figure 5: Convergence behavior of err-k for in-
creasing values of m.

Figure 6: Boxplot of maxk{µ
(i)
k } for increasing

values of m.

distance L∗ = 0.95π from X . This is done by creating a tangent vector to St(12, 3) at X of length L∗,
and then mapping it to St(12, 3) via the Riemannian exponential (2). For this choice of L∗, single shoot-
ing will not work (recall that the injectivity radius on St(n, p) is at least 0.89π). We want to recover this
geodesic distance using the leapfrog algorithm and study its convergence.

For each value of m ∈ {10, 20, 50, 100}, we construct an initial guess X(0) by placing m − 2
intermediate points randomly along the linear segment connecting X and Y in the embedding space,
and projecting them to the Stiefel manifold. We then apply leapfrog for 300 iterations and monitor the
convergence behavior of

err-k = ‖X(k) −X∗‖F,
where X∗ is the solution of leapfrog (i.e., a uniformly distributed tuple corresponding to the global
geodesic that was constructed above), and X(k) is the approximate solution at iteration k of leapfrog.
This is illustrated in Figure 5, from which it is clear that for large m leapfrog always converges albeit
very slowly.

Next, we apply leapfrog for 50 iterations and for each m ∈ {4, 6, 8, 10, . . . , 100} we repeat this
experiment for 100 random initializations of the initial guess X(0). For each experiment i, we define the
error reduction rate5 as

µ
(i)
k =

err-(k + 1)

err-k
, for k = 0, 1, . . . , 49, i = 1, . . . , 100,

and we compute the worst and the median reduction rates across all the experiments, maxi,k{µ
(i)
k } and

medi maxk{µ
(i)
k }. Since during the first iterations leapfrog is faster, we also compute the convergence

factor given by maxi{µ(i)0 }.
From Table 1, we see that the convergence of leapfrog deteriorates as m increases but it remains

strictly smaller than 1. For small values of m, maxi{µ(i)0 } and maxi,k{µ
(i)
k } are significantly different,

whereas for large values ofm, they are quite similar. The same conclusion can be reached from Figure 6
where boxplots show the dispersion and skewness in the µ(i)k . Clearly, the convergence factors become
very concentrated for large m.

A Proof of Lemma 3.6

The expansion (7) is simple to obtain once the Riemannian distance is related to the Euclidean one.
5In the limit k →∞, this gives the asymptotic Q-rate of convergence of the sequence.
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Table 1: Values of maxi{µ(i)0 }, maxi,k{µ
(i)
k } and medi maxk{µ

(i)
k } versus number of points m, for the

experiment described in Sect. 5.

m 4 6 8 10 15 20 30

maxi{µ(i)0 } 0.5577 0.7058 0.7829 0.8296 0.8604 0.8824 0.8980
maxi,k{µ

(i)
k } 0.8776 0.9443 0.9671 0.9781 0.9843 0.9881 0.9906

medi maxk{µ
(i)
k } 0.8774 0.9443 0.9671 0.9781 0.9843 0.9881 0.9906

m 40 50 60 70 80 90 100

maxi{µ(i)0 } 0.5577 0.7058 0.7829 0.8296 0.8604 0.8824 0.8980
maxi,k{µ

(i)
k } 0.8776 0.9443 0.9671 0.9781 0.9843 0.9881 0.9906

medi maxk{µ
(i)
k } 0.8774 0.9443 0.9671 0.9781 0.9843 0.9881 0.9906

Proof of Lemma 3.6. Take X,Y ∈ St(n, p) sufficiently close so that we can define the Riemannian
logarithm ξ = LogX(Y ) (see Remark 3.1). By definition of the Riemannian distance d for the canonical
metric g, we have

d2(X,Y ) = ‖ξ‖2 = g(ξ, ξ).

Writing a tangent vector as ξ = XΩ +X⊥K ∈ TXSt(n, p) (see Sect. 1) and using (1), we can evaluate
g as

g(ξ, ξ) = trace(ξ>(In − 1
2 XX

>) ξ) = 1
2 ‖Ω‖

2
F + ‖K‖2F = ‖ξ‖2F − 1

2 ‖Ω‖
2
F.

Using Ω = X>ξ, we also have

d2(X,Y ) = ‖ξ‖2F − 1
2 ‖X

>ξ‖2F. (16)

Since ξ is the initial velocity vector of the geodesic connecting X to Y , it follows that

ξ = Y −X +O(‖ξ‖2F). (17)

This can be seen by expanding the matrix exponential in the expression (2) of the geodesic:

Y =
[
X X⊥

](
In +

[
X>ξ −ξ>X⊥
X>⊥ξ On−p

]
+O

(
‖ξ‖2F

))[ Ip
O(n−p)×p

]

= X +
[
X X⊥

] [
X X⊥

]>
ξ +O(‖ξ‖2F).

We obtain (17) using the fact that
[
X X⊥

]
is an orthogonal matrix. In addition, [3, Lemma 4.2.1, p. 59]

shows that
‖ξ‖2F = ‖X − Y ‖2F +O(‖X − Y ‖4F). (18)

Then inserting the equations (17) and (18) into (16) leads to

d2(X,Y ) = ‖X − Y ‖2F − 1
2‖X

>(X − Y )‖2F +O(‖X − Y ‖4F). (19)

Using this in (5), one obtains (7).
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B Proof of Lemma 3.7

The aim is to compute Lij = ∇Xi∇Xj d̃
2(Xi, Xj) and Dij = ∇2

Xi
d̃2(Xi, Xj), where Xj ∈ St(n, p).

Let us simplify notation and define

d̃2(X,Y ) = ‖PStX − PStY ‖2F − 1
2‖Ip −

(
PStX

)>
PStY ‖2F

+ ‖X − PStX‖2F + ‖Y − PStY ‖2F +O(‖PStX − PStY ‖4F).

Clearly, Lij = ∇X∇Y d̃2(X,Y ) and Dij = ∇2
X d̃

2(X,Y ) with X = Xi and Y = Xj . Recall from
Sect. 3.2 that we can specify the projector on the Stiefel manifold as PSt(Y ) = Y (Y >Y )−1/2, that is,
the orthogonal factor of the polar decomposition of Y .

Proof of Lemma 3.7. To compute the gradient and the Hessian of d̃2(X̃, Ỹ ), consider the perturbation
X̃ = X + E, with X ∈ St(n, p), ‖E‖F small, and expand the previous expression.

First, for a symmetric matrix A, one can easily show by diagonalizing that

(I +A)−1/2 = I − 1
2A+ 3

8A
2 +O(‖A‖3), ‖A‖ → 0,

from which we can obtain the expansion for the perturbed projector

PStX̃ = X̃(X̃>X̃)−1/2

= X + E − 1
2XX

>E − 1
2XE

>X − 1
2XE

>E − 1
2EX

>E − 1
2EE

>X

+ 3
8X(X>E)2 + 3

8X(E>X)2 + 3
8XX

>EE>X + 3
8XE

>XX>E +O(‖E‖3F).

(20)

After substituting the expansion (20) for PSt(X̃) in d̃2(X,Y ) and isolating first- and second-order
terms in E, we find the expressions for the gradient and the Hessian. Here, only the final results are
reported.

The gradient with respect to X is

∇X d̃2(X, Ỹ ) = −
(
In − 1

2XX
>)PStỸ + 1

2X
(
PStỸ

)>
X −

(
In −XX>

)
PStỸ

(
PStỸ

)>
X, (21)

and the gradient with respect to Y is

∇Y d̃2(X̃, Y ) = −
(
In − 1

2Y Y
>)PStX̃ + 1

2Y
(
PStX̃

)>
Y −

(
In − Y Y >

)
PStX̃

(
PStX̃

)>
Y.

The Hessian matrix with respect to X is

∇2
X d̃2(X,Y ) = Sym

[
Y >X ⊗ In +

(
Y > ⊗X

)
Πp,n + Ip ⊗ Y X>

]
− 3

4
Sym

[(
Y >XX> ⊗X

)
Πp,n +

(
X> ⊗XY >X

)
Πp,n + Ip ⊗XX>Y X> + Y >X ⊗XX>

]
+ 2 Sym

[(
X>Y Y > ⊗X

)
Πp,n + Ip ⊗XX>Y Y > −

(
X>Y Y >XX> ⊗X

)
Πp,n

]
+ (X> ⊗X) Πp,n + Ip ⊗XX> − Ip ⊗ Y Y > + X>Y Y >X ⊗ In

− Ip ⊗XX>Y Y >XX> −X>Y Y >X ⊗XX>,

where Sym(A) = (A + A>)/2. In order to simplify ∇2
X d̃

2(X,Y ), we will take Y = X + ∆ with
‖∆‖ → 0. After some algebraic manipulations, we obtain6

∇2
X d̃2(X,X + ∆) = 2Inp + 1

2
(X> ⊗X) Πp,n − 1

2
(Ip ⊗XX>) + 3 Sym

(
X>∆⊗ In + (∆> ⊗X) Πp,n

)
+ Sym(Ip ⊗∆X>)− 11

4
Sym

(
(∆>XX> ⊗X) Πp,n + ∆>X ⊗XX>

)
− 3

4
Sym

(
(X> ⊗X∆>X) Πp,n + Ip ⊗XX>∆X>

)
+ 2 Sym

(
(X>∆∆> ⊗X) Πp,n + Ip ⊗XX>∆∆> − (X>∆∆>XX> ⊗X) Πp,n

)
− Ip ⊗∆∆> + X>∆∆>X ⊗ In − Ip ⊗XX>∆∆>XX> −X>∆∆>X ⊗XX>.

6We stress that∇2
X d̃2 denotes the derivative with respect to the first argument of d̃2.
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Observe that every term on the right-hand side above can be bounded by at most a second power of
‖∆‖2 since ‖ Sym(A)‖2 6 ‖A‖2, ‖A ⊗ B‖2 = ‖A‖2‖B‖2 and X ∈ St(n, p). Hence, we obtain after
some manipulation that

‖∇2
X d̃

2(X,X + ∆)−∇2
X d̃

2(X,X)‖2 6 14‖∆‖2 + 10‖∆‖22.

Writing the result with X = Xi and X + ∆ = Xj , we recover the expression (8) for the Hessian
Dij = ∇2

Xi
d̃2(Xi, Xj).

Next, for the term Lij , to obtain the gradient of (21) with respect to X we can expand PStX̃ at first
order in E

PStX̃ = X̃(X̃>X̃)−1/2 = X + E − 1
2XX

>E − 1
2XE

>X +O(‖E‖2F).

After some manipulations, we arrive at the mixed term

∇X∇Y d̃
2(X,Y ) =− Inp + 1

2 (Ip ⊗ Y Y >)− 1
4 (Ip ⊗ Y Y >XX>)− 1

4 (X> ⊗ Y Y >X) Πp,n

+ 1
2 (Ip ⊗XX>) + 1

2 (X> ⊗X) Πp,n + 1
2 (Y > ⊗ Y ) Πp,n − 1

4 (Y >XX> ⊗ Y ) Πp,n

− 1
4 (Y >X ⊗ Y X>) + (Y > ⊗ Y Y >X) Πp,n − (Y >XX> ⊗ Y Y >X) Πp,n

− Y >X ⊗ Y Y >XX> + Y >X ⊗ Y Y > − (Y > ⊗X) Πp,n + (Y >XX> ⊗X) Πp,n

+ Y >X ⊗XX> − Y >X ⊗ In.

We observe that the other mixed term is∇Y∇X d̃2(X,Y ) =
(
∇X∇Y d̃2(Y,X)

)>.
As above, in order to bound the spectrum of ∇X∇Y d̃2(X,Y ), we expand it with Y = X + ∆ with

‖∆‖ → 0. After some algebraic manipulations, we obtain

∇X∇Y d̃2(X,X + ∆) =− 2Inp + 1
2
(X>⊗X)Πp,n + 3

2
(Ip ⊗XX>)− 1

4
(X>⊗X∆>X)Πp,n + 1

2
(∆>⊗X)Πp,n

− 1
4
(∆>XX> ⊗X)Πp,n + 3

4
(∆>X ⊗XX>)− 5

4
(Ip ⊗X∆>XX>) + 3

2
(Ip ⊗X∆>)

−∆>X ⊗ In − 5
4
(∆>XX> ⊗∆)Πp,n − 5

4
(Ip ⊗∆∆>XX>) + 3

2
(Ip ⊗∆∆>)

+ ∆>X ⊗X∆> + 3
2
(∆>⊗∆)Πp,n − (∆>XX> ⊗X∆>X)Πp,n − 1

4
(X>⊗∆∆>X)Πp,n

+ (∆> ⊗X∆>X)Πp,n − 1
4
(∆>X ⊗∆X>)−∆>X ⊗X∆>XX> + (∆>⊗∆∆>X)Πp,n

+ ∆>X ⊗∆∆> −∆>X ⊗∆∆>XX> − (∆>XX> ⊗∆∆>X)Πp,n.

Observe that every term on the right-hand side above can be bounded by at most a third power of
‖∆‖2. Hence, we obtain that

‖∇X∇Y d̃2(X,X + ∆)−∇X∇Y d̃2(X,X)‖2 6 11
2 ‖∆‖2 + 10‖∆‖22 + 4‖∆‖32.

Writing the result with X = Xi and Y = Xj , we recover the expression (9) for the gradient Lij .

C Proof of Lemma 3.8

We first start with i = j, which corresponds to ∆ij = Λij = 0 in Lemma 3.7.

Lemma C.1. Define the orthogonal matrix Q̄i =
[
Ip⊗Xi Ip⊗X⊥i

]
. Then there exists an orthogonal

matrix Q̂, only depending on n and p, such that Qi = Q̄iQ̂ satisfies

Q>i DiiQi = D = diag
{
Ip(p−1)/2, 2 Inp−p(p−1)/2

}
, (22)

and
Q>i LiiQi = L = diag

{
−Ip(p−1)/2, −2I(n−p)p, Op(p+1)/2

}
. (23)
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Proof. By properties of the so-called vec-permutation matrices (see [11, Eq. (5), (6), (23)]), there exists
a permutation matrix Πp,n ∈ Rnp×np that satisfies

Πp,n(X>i ⊗Xi) Πp,n = Xi ⊗X>i , Π−1p,n = Π>p,n.

This shows that (X>i ⊗Xi) Πp,n = Π>p,n(Xi ⊗X>i ) is symmetric. Furthermore,

((X>i ⊗Xi) Πp,n)2 = (X>i ⊗Xi) Πp,n Π>p,n(Xi ⊗X>i ) = Ip ⊗XiX
>
i .

Denoting the symmetric matrix Si = (X>i ⊗Xi) Πp,n, we can therefore write using Lemma 3.7 that

Dii = 2Inp + 1
2Si −

1
2S

2
i , Lii = −2Inp + 1

2Si + 3
2S

2
i . (24)

It thus suffices to diagonalize Si. To this end, define the orthogonal matrix

Q̄i =
[
Ip ⊗Xi Ip ⊗X⊥i

]
∈ O(np).

Direct calculation shows that

Q̄>i Si Q̄i = diag
{

(X>i ⊗ Ip) Πp,n(Ip ⊗Xi), O(n−p)p

}
= diag

{
Πp,p, O(n−p)p

}
=: Π̂,

where we used that Πp,n(Ip ⊗ Xi)Πp,p = Xi ⊗ Ip, with Πp,p ∈ Rp
2×p2 another vec-permutation

matrix that is also symmetric (see [11, Eq. (6), (15)]). The matrix Π̂ above therefore has the spectral
decomposition

Π̂ = Q̂Λ̂Q̂>, Λ̂ = diag
{
−Ip(p−1)/2, O(n−p)p, Ip(p+1)/2

}
(25)

for some orthogonal matrix Q̂ that indeed does not depend onXi, as claimed. By defining the orthogonal
matrix Qi = Q̄iQ̂, we have thus shown that Q>i SiQi = Λ̂ and by (24) also that

Q>i DiiQi = 2Inp + 1
2 Λ̂− 1

2 Λ̂2, Q>i LiiQi = −2Inp + 1
2 Λ̂ + 3

2 Λ̂2.

It is straightforward to verify that these matrices can be written as the claimed matrices D and L.

Lemma 3.8 is now proven as a perturbation of the case above.

Proof of Lemma 3.8. From Lemma 3.7, we know that Lij = Lii + Λij . Lemma C.1 therefore gives

Q>j LijQi = (Qj −Qi)>LijQi +Q>i LijQi = (Qj −Qi)>LijQi + L+Q>i ΛijQi.

Taking norms and recalling that δij = ‖Qj −Qi‖2, we obtain

‖Q>j LijQi − L‖2 6 δij(‖Lii‖2 + ‖Λij‖2) + ‖Λij‖2.

Since ‖Lii‖2 = ‖L‖2 6 2 by Lemma C.1, this shows (12). The bound (11) is similarly proven.
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