The geometry of algorithms using hierarchical tensors

André Uschmajewa,1, Bart Vandereyckenb,2

aInstitut für Mathematik, Technische Universität Berlin, 10623 Berlin, Germany
bANCHP, Mathematics Section, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland

Abstract

In this paper, the differential geometry of the novel hierarchical Tucker format for tensors is derived. The set $\mathcal{H}_{T,k}$ of tensors with fixed tree T and hierarchical rank k is shown to be a smooth quotient manifold, namely the set of orbits of a Lie group action corresponding to the non-unique basis representation of these hierarchical tensors. Explicit characterizations of the quotient manifold, its tangent space and the tangent space of $\mathcal{H}_{T,k}$ are derived, suitable for high-dimensional problems. The usefulness of a complete geometric description is demonstrated by two typical applications. First, new convergence results for the nonlinear Gauss–Seidel method on $\mathcal{H}_{T,k}$ are given. Notably and in contrast to earlier works on this subject, the task of minimizing the Rayleigh quotient is also addressed. Second, evolution equations for dynamic tensor approximation are formulated in terms of an explicit projection operator onto the tangent space of $\mathcal{H}_{T,k}$. In addition, a numerical comparison is made between this dynamical approach and the standard one based on truncated singular value decompositions.

Keywords: High-dimensional tensors, low-rank approximation, hierarchical Tucker, differential geometry, Lie groups, nonlinear Gauss–Seidel, eigenvalue problems, time-varying tensors

2000 MSC: 15A69, 18F15, 57N35, 41A46, 65K10, 15A18, 65L05

1. Introduction

The development and analysis of efficient numerical methods for high-dimensional problems is highly active area of research in numerical analysis. High dimensionality can occur in several scientific disciplines, the most prominent case being when the computational domain of a mathematical model is embedded in a high-dimensional space, say \mathbb{R}^d with $d \geq 3$. A prototypical example is the Schrödinger equation in quantum dynamics [1], but there is an abundance of other high-dimensional problems like the ones in [2–5].

In an abstract setting, all these examples involve a function u governed by an underlying continuous mathematical model on a domain $\Omega \subset \mathbb{R}^d$ with $d \geq 3$. Any straightforward discretization of u inevitably leads to what is known as the curse of dimensionality [6]. For example, the approximation in a finite-dimensional basis with N degrees of freedom in each dimension leads to a total of N^d coefficients representing u. Already for moderate values of N and d, the storage of these coefficients becomes unmanageable, let alone their computation.

Existing approaches to solving high-dimensional problems exploit that these models typically feature highly regular solutions (see, e.g., [7, 8]) and circumvent the curse of dimensionality by approximating the solution in a much lower dimensional space. Sparse grid techniques are well-suited and well-established for this purpose [9]. The setting in this paper stems from an alternative technique: the approximation of u by low-rank tensors. In contrast to sparse grids, low-rank tensor techniques consider the full discretization from the start and face the challenges of high dimensionality at a later stage with linear algebra tools. A recent monograph on this evolving approach to numerical analysis of high-dimensional problems is [10].

1Current address: MATHICSE-ANCHP, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
2Current address: Department of Mathematics, Princeton University, Princeton NJ 08544-1000
1.1. Rank-structured tensors

In this paper, we focus on tensors that can be expressed in the hierarchical Tucker (HT) format. This format was introduced in [11], and its numerical implementation in [12], as a means to approximate high-dimensional tensors using so-called rank-structured tensors. Briefly stated, a rank-structured tensor will approximate certain parts of the tensor as a low-rank matrix and thereby drastically reducing the amount of parameters to store. Compared to earlier low-rank tensor formats, like the Candecomp/Parafac (CP) or the Tucker decomposition, the HT format uses in addition a certain nestedness of these matrices in order to become a numerically stable and scalable format, that is, having a linear scaling in d and N.

Similar decompositions termed the (Q)TT format, loosely abbreviating (quantized) tensor train or tree tensor, were proposed in [13–17]. We remark that these formats, while developed independently at first, are closely related to the notions of tensor networks (TNs) and matrix-product states (MPS) used in the computational physics community; see, e.g., [18–21]. In particular, the HT format has its analogue in the multilayer version of MCDTH of [22].

1.2. The rationale for treating rank-structured tensors as a manifold

Besides their longstanding tradition in the computational physics community (see [20, 23] for recent overviews), the (Q)TT and HT formats have more recently been used, amongst others, in [24–31] for solving a variety of high-dimensional problems. Notwithstanding the efficacy of all these methods, their theoretical understanding from a numerical analysis point of view is, however, rather limited.

For example, many of the existing algorithms rely on a so-called low-rank arithmetic that reformulates standard iterative algorithms to work with rank-structured tensors. Since the rank of the tensors will grow during the iterations, one needs to truncate the iterates back to low rank in order to keep the methods scalable and efficient. However, the impact of this low-rank truncation on the convergence and final accuracy has not been sufficiently analyzed for the majority of these algorithms. In theory, the success of such a strategy can only be guaranteed if the truncation error is kept negligible—in other words, on the level of roundoff error—but this is rarely feasible for practical problems due to memory and time constraints.

In the present paper, we want to make the case that treating the set of rank-structured tensors as a smooth manifold allows for theoretical and algorithmic improvements of these tensor-based algorithms.

First, there already exist geometry-inspired results in the literature for tensor-based methods. For example, [32] analyzes the multi-configuration time-dependent Hartree (MCTDH) method [1] for many-particle quantum dynamics by relating this method to a flow problem on the manifold of fixed-rank Tucker tensors (in an infinite-dimensional setting). This allows to bound the error of this MCTDH method in terms of the best approximation error on the manifold. In [33] this analysis is refined to an investigation of the influence of certain singular values involved in the low-rank truncation and conditions for the convergence for MCTDH are formulated. A smooth manifold structure underlies this analysis; see also [34] for related methods. In a completely different context, [35] proves convergence of the popular alternating least-squares (ALS) algorithm applied to CP tensors by considering orbits of equivalent tensor representations in a geometric way. In the extension to the TT format [36] this approach is followed even more consequently.

Even if many of the existing tensor-based methods do not use the smooth structure explicitly, in some cases, they do so by the very nature of the algorithm. For example, [37] and [38] present a geometric approach to the problem of tracking a low-rank approximation to a time-varying matrix and tensor, respectively. After imposing a Galerkin condition for the update on the tangent space, a set of differential equations for the approximation on the manifold of fixed-rank matrices or Tucker tensors can be established. In addition to theoretical bounds on the approximation quality, the authors show in the numerical experiments that this continuous-time updating compares favorably to point-wise approximations like ALS; see also [39, 40] for applications.

Finally, low-rank matrix nearness problems are a prototypical example for our geometric purpose since they can be solved by a direct optimization of a certain cost function on a suitable manifold of low-rank matrices. This allows the application of the framework of optimization on manifolds (see, e.g., [41] for an overview), which generalizes standard optimization techniques to manifolds. A number of large-scale applications [42,46] show that exploiting the smooth structure of the manifold indeed accelerates the algorithms compared to other, more ad-hoc ways of dealing with low-rank constraints. In all these cases it is important to establish a global smoothness on the manifold since one employs methods from smooth integration and optimization.
1.3. Contributions and outline

The main contribution of this work is establishing a globally smooth differential structure on the set of tensors with fixed HT rank and showing how this geometry can be used for theoretical and numerical applications.

After some preliminaries to set notation in Section 2, we begin in Section 3 with recalling the definition of the HT format and proving additionally some new properties regarding its parametrization. Then, in Section 4, we actually show the geometric structure. Our tools from differential geometry are quite standard and not specifically related to tensors—in fact, the whole theory could be explained with only rank-one matrices in \(\mathbb{R}^{2 \times 2} \)—but its application to HT tensors requires reasonably sophisticated matrix calculations. In turn, our derivations lead to useful explicit formulas for the involved geometric objects, like tangent vectors and projectors. Since the applications using HT tensors exploit low-rank structures to reduce the dimensionality, it is clear that the implementation of all the necessary geometric objects needs to be scalable. We have therefore made some effort to ensure that the implementation of our geometry can indeed be done efficiently.

The theoretical and practical value of our geometric description is then substantiated by two applications in Section 6, each of which can be regarded as contributions on their own. First, local convergence results for the non-linear Gauss–Seidel method, which is popular in the context of optimization with tensors, are given. In particular we go further than the analogous results for TT tensors [36] by analyzing the computation of the minimal eigenvalue by a non-convex, self-adjoint Rayleigh quotient minimization, as proposed in [47]. Second, the dynamical low-rank algorithm from [37, 38] is extended to HT tensors to approximate a time-varying tensor by integrating a gradient flow on the manifold.

1.4. Related work

We now briefly summarize related work about the geometry of HT tensors. In [31], it was conjectured that many of the there given derivations for the geometry of TT can be extended to HT. While this is in principle true, our derivation differs at crucial parts since the present analysis applies to the more challenging case of a generic HT decomposition, where the tree is no longer restricted to be linear or degenerate. In contrast to [31], we also establish a globally smooth structure by employing the standard construction of a smooth Lie group action. Furthermore, we consider the resulting quotient manifold as a full-fledged manifold on its own and show how a horizontal space can be used to represent tangent vectors of this abstract manifold.

After this manuscript was submitted, the works [10, Chapter 17.3] and [48] have appeared that also extend the dynamical low-rank algorithm from [37, 38] to HT tensors using the same tangent space and choice of gauge as ours. Contrary to this work, [10] and [48] assume an embedded submanifold structure and there is no geometric description using the quotient manifold, nor are there numerical experiments involving the dynamical low-rank algorithm.

We should finally note that the techniques and results of this paper can be easily generalized to arbitrary (non-binary) tree-based tensor formats, and, with only slight modifications, to a Hilbert space setting along the lines given in [49]. At all related points the term smooth can be safely replaced by (real) analytic, and all results remain true when \(\mathbb{C} \) is considered instead of \(\mathbb{R} \) (also using analytic instead of smooth).

2. Preliminaries

We briefly recall some necessary definitions and properties of tensors. A more comprehensive introduction can be found in the survey paper [50].

By a tensor \(\mathbf{X} \in \mathbb{R}^{n_1 \times n_2 \times \ldots \times n_d} \), we mean a \(d \)-dimensional array with entries \(X_{i_1, i_2, \ldots, i_d} \in \mathbb{R} \). We call \(d \) the order of the tensor. Tensors of higher-order coincide with \(d > 2 \) and will always be denoted by boldface letter, e.g., \(\mathbf{X} \). A mode-k fiber is defined as the vector by varying the \(k \)-th index of a tensor and fixing all the other ones. Slices are two-dimensional sections of a tensor, defined by fixing all but two indices.

A mode-k unfolding or matricization, denoted by \(\mathbf{X}^{(k)} \), is the result of arranging the mode-k fibers of \(\mathbf{X} \) to be the columns of a matrix \(\mathbf{X}^{(k)} \) while the other modes are assigned to be rows. The ordering of these rows is taken to be lexicographically, that is, the index for \(n_i \) with the largest physical dimension \(i \) varies first. Using multi-indices (that

3In [50] a reverse lexicographical ordering is used.
are also assumed to be enumerated lexicographically), the unfolding can be defined as

\[X^{(k)} \in \mathbb{R}^{n_1 \times \cdots \times n_k \times \cdots \times n_d} \quad \text{with} \quad X^{(k)}_{i_1, k_1, \ldots, i_{d-1}, k_{d-1}, \ldots, i_d} = X_{i_1, \ldots, i_d}.
\]

The vectorization of a tensor \(X \), denoted by vec(\(X \)), is the rearrangement of all the fibers into the column vector

\[\text{vec}(X) \in \mathbb{R}^{n_1 \times \cdots \times n_d} \quad \text{with} \quad (\text{vec}(X))_{(i_1, j_1, \ldots, i_d)} = X_{i_1, \ldots, i_d}.
\]

Observe that when \(X \) is a matrix, vec(\(X \)) corresponds to collecting all the rows of \(X \) into one vector.

Let \(X = A \otimes B \), defined with multi-indices as

\[X_{(i_1, j_1), (j_2, j_2)} = A_{i_1, j_1} B_{j_2,j_2}, \]

Then, given a tensor \(X \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d} \) and matrices \(A_k \in \mathbb{R}^{n_k \times n_k} \) for \(k = 1, 2, \ldots, d \), the multilinear multiplication

\[(A_1, A_2, \ldots, A_d) \circ X = Y \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}
\]

is defined by

\[Y_{i_1, j_1, \ldots, i_d} = \sum_{j_2, j_2, \ldots, j_d=1}^{n_1, n_2, \ldots, n_d} (A_1)_{i_1, j_1} (A_2)_{j_2, j_2} \cdots (A_d)_{i_d, j_d} X_{j_1, j_2, \ldots, j_d},
\]

which is equivalent to,

\[Y^{(k)} = A_k X^{(k)} (A_1 \otimes \cdots \otimes A_{k-1} \otimes I_{k+1} \otimes \cdots \otimes A_d)^T \quad \text{for} \quad k = 1, 2, \ldots, d. \tag{1}
\]

Our notation for the multilinear product adheres to the convention used in [51] and expresses that \(\circ \) is a left action of \(\mathbb{R}^{n_1 \times n_1} \times \mathbb{R}^{n_2 \times n_2} \times \cdots \times \mathbb{R}^{n_d \times n_d} \) onto \(\mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d} \). Denoting by \(I_n \) the \(n \times n \) identity matrix, the following shorthand notation for the mode-\(k \) product will be convenient:

\[A_k \circ_k X = (I_{n_1}, \ldots, I_{n_{k-1}}, A_k, I_{n_{k+1}}, \ldots, I_{n_d}) \circ X.
\]

We remark that the notation \(X \times_k A_k \) used in [50] coincides with \(A_k \circ_k X \) in our convention.

The multilinear rank of a tensor \(X \) is defined as the tuple

\[k(X) = k = (k_1, k_2, \ldots, k_d) \quad \text{with} \quad k_i = \text{rank}(X^{(i)}).\]

Let \(X \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d} \) have multilinear rank \(k \). Then \(X \) admits a Tucker decomposition of the form

\[X = (U_1, U_2, \ldots, U_d) \circ C, \tag{2}
\]

with \(C \in \mathbb{R}^{k_1 \times k_2 \times \cdots \times k_d} \) and \(U_i \in \mathbb{R}^{n_i \times k_i} \). It is well known (see, e.g. [51] (2.18)) that the multilinear rank is invariant under a change of bases:

\[k(X) = k((A_1, A_2, \ldots, A_d) \circ X) \quad \text{when} \quad A_k \in \text{GL}_{n_k} \quad \text{for all} \quad k = 1, 2, \ldots, d, \tag{3}
\]

where GL_{n_k} denotes the set of full-rank matrices in \(\mathbb{R}^{n_k \times n_k} \), called the general linear group.

Whenever we use the word smooth for maps or manifolds, we mean of class \(C^\infty \).

3. The hierarchical Tucker decomposition

In this section, we define the set of HT tensors of fixed rank using the HT decomposition and the hierarchical rank. Much of this and related concepts were already introduced in [11, 12, 52] but we establish in addition some new relations on the parametrization of this set. In order to better facilitate the derivation of the smooth manifold structure in the next section, we have adopted a slightly different presentation compared to [11, 12].
3.1. The hierarchical Tucker format

Definition 1. Given the order d, a dimension tree T is a non-trivial, rooted binary tree whose nodes t can be labeled (and hence identified) by elements of the power set $\mathcal{P}([1, 2, \ldots, d])$ such that

(i) the root has the label $t_r = [1, 2, \ldots, d]$; and,
(ii) every node $t \in T$, which is not a leaf, has two sons t_1 and t_2 that form an ordered partition of t, that is,

$$t_1 \cup t_2 = t \quad \text{and} \quad \mu < \nu \quad \text{for all} \quad \mu \in t_1, \nu \in t_2. \quad (4)$$

The set of leafs is denoted by L. An example of a dimension tree for $t_r = [1, 2, 3, 4, 5]$ is depicted in Figure 1.

The idea of the HT format is to recursively factorize subspaces of $\mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}$ into tensor products of lower-dimensional spaces according to the index splittings in the tree T. If X is contained in such subspaces that allow for preferably low-dimensional factorizations, then X can be efficiently stored based on the next definition. Given dimensions n_1, n_2, \ldots, n_d, called spatial dimensions, and a node $t \subseteq [1, 2, \ldots, d]$, we define the dimension of t as

$$n_t = \prod_{\mu \in t} n_\mu.$$

Definition 2. Let T be a dimension tree and $k = (k_t)_{t \in T}$ a set of positive integers with $k_{t_r} = 1$. The hierarchical Tucker (HT) format for tensors $X \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}$ is defined as follows.

(i) To each node $t \in T$, we associate a matrix $U_t \in \mathbb{R}^{n_t \times k_t}$.
(ii) For the root t_r, we define $U_{t_r} = \text{vec}(X)$.
(iii) For each node t not a leaf with sons t_1 and t_2, there is a transfer tensor $B_t \in \mathbb{R}^{k_t \times k_{t_1} \times k_{t_2}}$ such that

$$U_t = (U_{t_1} \otimes U_{t_2})(B^{(1)}_t)^T, \quad (5)$$

where we recall that $B^{(1)}_t$ is the unfolding of B_t in the first mode.

When X admits such an HT decomposition in, we call X a (T, k)-decomposable tensor.

Remark 1. The restriction (4) to ordered splittings in the dimension tree guarantees that the recursive formula (5) produces matrices U_t whose rows are ordered lexicographically with respect to the indices of the spatial dimensions involved. The restriction to such splittings has been made for notational simplicity and is conceptually no loss in generality since relabeling nodes corresponds to permuting the modes (spatial dimensions) of X.

It is instructive to regard (5) as a multilinear product operating on third-order tensors. Given $U_t \in \mathbb{R}^{n_t \times k_t}$ in a node that is not a leaf, define the third-order tensor

$$\tilde{U}_t \in \mathbb{R}^{k_t \times n_{t_1} \times n_{t_2}} \quad \text{such that} \quad \tilde{U}^{(1)}_t = U_t^T.$$
Then, from (5) and property (1) for the multilinear product, we get

\[\tilde{U}_t^{(1)} = U_t^T = B_t^{(1)}(U_t \otimes U_t)^T, \]

that is,

\[\tilde{U}_t = (I_k, U_t, U_t) \circ B_t. \]

We now explain the meaning of the matrices \(U_t \). For \(t \in T \), we denote by

\[t' = \{1, 2, \ldots, d \} \setminus t \]

the set complimentary to \(t \). A mode-\(t \) unfolding of a tensor \(X \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d} \) is the result of reshaping \(X \) into a matrix by merging the indices belonging to \(t = \{\mu_1, \mu_2, \ldots, \mu_p\} \) into row indices, and those belonging to \(t' = \{\nu_1, \nu_2, \ldots, \nu_{d-p}\} \) into column indices:

\[X^{(i)} \in \mathbb{R}^{n_1 \times n_2} \quad \text{such that} \quad (X^{(i)})_{i_1,\ldots,i_p,j_{\nu_1},\ldots,j_{\nu_{d-p}}} = X_{i_1 \ldots i_p, j_{\nu_1} \ldots j_{\nu_{d-p}}}. \]

For the root \(t_r \), the unfolding \(X^{(i)} \) is set to be \(\text{vec}(X) \). The ordering of the multi-indices, both for the rows and columns of \(X^{(i)} \), is again taken to be lexicographically.

By virtue of property (5) in Definition 2, the subspaces spanned by the columns of the \(U_t \) are nested along the tree. Since in the root \(U_{t_r} \) is fixed to be \(X^{(i)} = \text{vec}(X) \), this implies a relation between \(U_t \) and \(X^{(i)} \) for the other nodes too.

Proposition 1. For all \(t \in T \) it holds \(\text{span}(X^{(i)}) \subseteq \text{span}(U_t) \).

Proof. Assume that this holds at least for some node \(t \in T \setminus L \) with sons \(t_1 \) and \(t_2 \). Then there exists a matrix \(P_t \in \mathbb{R}^{k \times k} \) such that

\[X^{(i)} = U_t P_t = (U_{t_1} \otimes U_{t_2})(B_t^{(1)})^T P_t, \tag{6} \]

First, define the third-order tensor \(Y_t \) as the result of reshaping \(X \):

\[Y_t \in \mathbb{R}^{n_1 \times n_2 \times n_3} \quad \text{such that} \quad Y_t^{(1)} = (X^{(i)})^T = (X^{(i)})^T. \]

Observe that by definition of a mode-\(k \) unfolding, the indices for the columns of \(Y_t^{(1)} \) are ordered lexicographically, which means that the multi-indices of \(t \) belong to the second mode of \(Y_t \). Hence, \(Y_t^{(1)} = X^{(i)} \) and similarly, \(Y_t^{(2)} = X^{(i)} \) and \(Y_t^{(3)} = X^{(i)} \). Now we obtain from (6) that

\[Y_t^{(1)} = P_t^T B_t^{(1)}(U_{t_1} \otimes U_{t_2})^T, \]

or, equivalently,

\[Y_t = (P_t^T, U_{t_1}, U_{t_2}) \circ B_t. \]

Unfolding \(Y_t \) in the second or third mode, we get, respectively,

\[Y_t^{(2)} = X^{(i)} = U_{t_1} B_t^{(2)}(P_t^T \otimes U_{t_2})^T, \quad Y_t^{(3)} = X^{(i)} = U_{t_2} B_t^{(3)}(P_t^T \otimes U_{t_1})^T. \tag{7} \]

Hence, we have shown \(\text{span}(X^{(i)}) \subseteq \text{span}(U_t) \) and \(\text{span}(X^{(i)}) \subseteq \text{span}(U_t) \). Since the root vector \(U_{t_r} \) equals \(X^{(i)} = \text{vec}(X) \), the assertion follows by induction. \(\square \)

Remark 2. In contrast to our definition (and the one in [11]), the hierarchical decomposition of [12] is defined to satisfy \(\text{span}(X^{(i)}) = \text{span}(U_t) \). From a practical point of view, this condition is not restrictive since one can always choose a \((T,k) \)-decomposition such that \(\text{span}(X^{(i)}) = \text{span}(U_t) \) is also satisfied; see Proposition 2 below. Hence, the set of tensors allowing such decompositions is the same in both cases, but Definition 2 is more suitable for our purposes.

By virtue of relation (5), it is not necessary to know the \(U_t \) in all the nodes to reconstruct the full tensor \(X \). Instead, it is sufficient to store only the transfer tensors \(B_t \) in the nodes \(t \in T \setminus L \) and the matrices \(U_t \) in the leaves \(t \in L \). This is immediately obvious from the recursive definition but it is still instructive to inspect how the actual reconstruction is carried out. Let us examine this for the dimension tree of Figure [1].
Figure 2: The parameters of the HT format for the dimension tree of Figure 1.

The transfer tensors and matrices that need to be stored are visible in Figure 2. Let B_{123} be a shorthand notation for $B_{\{1,2,3\}}$ and I_{45} for $I_{\{4,5\}}$, and likewise for other indices. Then X can be reconstructed as follows:

$$
\text{vec}(X) = (U_1 \otimes U_5)(B_{12345})^T
= [(U_1 \otimes U_2)(B_{12}^{(1)})^T \otimes (U_4 \otimes U_5)(B_{45}^{(1)})^T](B_{12345})^T
= [U_1 \otimes (U_2 \otimes U_3)(B_{23}^{(1)})^T \otimes U_4 \otimes U_5](B_{12}^{(1)} \otimes B_{45}^{(1)})^T(B_{12345})^T
= (U_1 \otimes U_2 \otimes \cdots \otimes U_5)(U_1 \otimes B_{23}^{(1)} \otimes I_{45})^T(B_{12}^{(1)} \otimes B_{45}^{(1)})^T(B_{12345})^T.
$$

Generalizing the example, we can parametrize all (T, k)-decomposable tensors by elements

$$
x = (U_i, B_i) = ((U_i)_{i \in L}, (B_i)_{i \in T \setminus L}) \in M_{T,k}
$$

where

$$M_{T,k} = \bigotimes_{i \in L} \mathbb{R}^{n_i \times k_i} \times \bigotimes_{i \in T \setminus L} \mathbb{R}^{k_i \times k_i \times k_i}.$$

The hierarchical reconstruction of X, given such an $x \in M_{T,k}$, constitutes a mapping

$$f: M_{T,k} \to \mathbb{R}^{n_1 \times \cdots \times n_d}.$$

For the tree of Figure 1, f is given by (8). Due to notational inconvenience, we refrain from giving an explicit definition of this reconstruction but the general pattern should be clear. Since the reconstruction involves only matrix multiplications and reshapings, it is smooth. By definition, the image $f(M_{T,k})$ consists of all (T, k)-decomposable tensors.

3.2. The hierarchical Tucker rank

A natural question arises in which cases the parametrization of X by $M_{T,k}$ is minimal: given a dimension tree T, what are the nested subspaces with minimal dimension—in other words, what is the $x \in M_{T,k}$ of smallest dimension such that $X = f(x)$? The key concept turns out to be the hierarchical Tucker rank or T-rank of X, denoted by $\text{rank}_T(X)$, which is the tuple $k = (k_i)_{i \in T}$ with

$$k_i = \text{rank}(X^{(i)}).$$
Theorem 1. In addition, for arbitrary matrices B then for all t.

In fact, in that case the matrices U_t have full column rank k_t for all t. These can, for instance, be obtained as the left singular vectors of $X^{(i)}$ appended by $k_t - \text{rank}(X^{(i)})$ zero columns.

Proof. If one chooses the U_t accordingly, the existence of transfer tensors B_t for a (T, k)-decomposition follows from the property

$$\text{span}(U_t) = \text{span}(X^{(i)})$$

for all $t \in T$. These can, for instance, be obtained as the left singular vectors of $X^{(i)}$ appended by $k_t - \text{rank}(X^{(i)})$ zero columns.

Proposition 2. Every tensor $X \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_L}$ of T-rank bounded by $k = (k_t)_{t \in T}$ can be written in the (T, k)-format. In particular, one can choose any set of matrices $U_t \in \mathbb{R}^{n \times k}$ satisfying

$$\text{span}(U_t) = \text{span}(X^{(i)})$$

for all $t \in T$. These can, for instance, be obtained as Algorithm 1 in [12].

Observe that by the dimensions of $X^{(i)}$ this choice of k_t implies

$$k_t \leq \min[n_t, n_r].$$

(9)

In order to be able to write a tensor X in the (T, k)-format, it is by Proposition 1 necessary that $\text{rank}_T(X) \leq k$, where this inequality is understood component-wise. As the next proposition shows, this condition is also sufficient. This is well known and can, for example, be found as Algorithm 1 in [12].

Proposition 2. Every tensor $X \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_L}$ of T-rank bounded by $k = (k_t)_{t \in T}$ can be written in the (T, k)-format. In particular, one can choose any set of matrices $U_t \in \mathbb{R}^{n \times k}$ satisfying

$$\text{span}(U_t) = \text{span}(X^{(i)})$$

for all $t \in T$. These can, for instance, be obtained as the left singular vectors of $X^{(i)}$ appended by $k_t - \text{rank}(X^{(i)})$ zero columns.

Proof. If one chooses the U_t accordingly, the existence of transfer tensors B_t for a (T, k)-decomposition follows from the property

$$\text{span}(X^{(i)}) \subseteq \text{span}(X^{(i)} \otimes X^{(i)})$$

which is shown in [53] Lemma 17] or [54] Lemma 2.1].

From now on we will mostly focus on the set of hierarchical Tucker tensors of fixed T-rank k, denoted by

$$\mathcal{H}_{(T, k)} = \{X \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_L}: \text{rank}_T(X) = k\}.$$

This set is not empty only when (2) is satisfied. We emphasize that our definition again slightly differs from the definition of HT tensors of bounded T-rank k as used in [12], which is the union of all sets $\mathcal{H}_{(T, r)}$ with $r \leq k$.

Before proving the next theorem, we state two basic properties involving rank. Let $A \in \mathbb{R}^{m \times n}$ with rank$(A) = n$, then for all $B \in \mathbb{R}^{n \times p}$,

$$\text{rank}(AB) = \text{rank}(B).$$

(10)

In addition, for arbitrary matrices A, B it holds ([55] Theorem 4.2.15)

$$\text{rank}(A \otimes B) = \text{rank}(A) \text{rank}(B).$$

(11)

Recall that $f : M_{T, k} \to \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_L}$ denotes the hierarchical construction of a tensor.

Theorem 1. A tensor X is in $\mathcal{H}_{(T, k)}$ if and only if for every $x = (U_t, B_t) \in M_{T, k}$ with $f(x) = X$ the following holds:

(i) the matrices U_t have full column rank k_t (implying $k_t \leq n_t$) for $t \in L$, and

(ii) the tensors B_t have full multilinear rank (k_t, k_{1_t}, k_{2_t}) for all $t \in T \setminus L$.

In fact, in that case the matrices U_t have full column rank k_t for all $t \in T$.

Interestingly, (i) and (ii) hence already guarantee $k_t \leq n_t$ for all $t \in T$.

Proof. Assume that X has full T-rank k. Then Proposition 1 gives that the matrices $U_t \in \mathbb{R}^{n \times k}$ have rank $k_t \leq n_t$ for all $t \in T$. So, by (11), all $U_t \otimes U_t$ have full column rank and, using (10), we obtain from (5) that rank$(B^{(1)}_t) = k_t$ for all $t \in T \setminus L$. Additionally, the matrix P_t in (6) has to be of rank k_t (implying $k_t \leq n_t$) for all $t \in T$. From (7), we get the identities

$$P_t^{(2)}(P_t \otimes U_t^T) \quad \text{and} \quad P_t^{(3)}(P_t \otimes U_t^T).$$

(12)

Hence, using (11) again, rank$(B_t^{(2)}) = k_t$ and rank$(B_t^{(3)}) = k_t$ for all $t \in T \setminus L$.

Conversely, if the full rank conditions are satisfied for the leafs and the transfer tensors, it again follows, but this time from (5), that the U_t have full column rank (implying $k_t \leq n_t$) for all $t \in T$. Trivially, for the root node, relation (6) is satisfied for the full rank matrix $P_r = 1$ as scalar. Hence, by induction on (12), all P_t are of full column rank. Now, (6) implies rank$(X^{(i)}) = k_t$ for all $t \in T$.

\[\square \]
Combining Theorem1 with Proposition1, one gets immediately the following result.

Corollary 1. For every \((T, k)\)-decomposition of \(X \in \mathcal{H}_{T,k}\), it holds
\[
\text{span}(X^{(t)}) = \text{span}(U_t) \quad \text{for all } t \in T.
\]

Let \(k_t \leq n_t\) for all \(t \in T\). We denote by \(\mathbb{R}^{n_t \times k_t}\) the matrices in \(\mathbb{R}^{n_t \times k_t}\) of full column rank \(k_t\) and by \(\mathbb{R}^{k_t \times k_t \times k_t}\) the tensors of full multilinear rank \((k_t, k_t, k_t)\). We define
\[
\mathcal{M}_{T,k} = \bigotimes_{t \in L} \mathbb{R}^{n_t \times k_t} \times \bigotimes_{t \in T \setminus L} \mathbb{R}^{k_t \times k_t \times k_t}.
\]

By the preceding theorem, \(f(M_{T,k}) = \mathcal{H}_{T,k}\) and \(f^{-1}(\mathcal{H}_{T,k}) = \mathcal{M}_{T,k}\). Therefore, we call \(\mathcal{M}_{T,k}\) the parameter space of \(\mathcal{H}_{T,k}\). One can regard \(\mathcal{M}_{T,k}\) as an open and dense subset of \(\mathbb{R}^D\) with
\[
D = \dim(\mathcal{M}_{T,k}) = \sum_{t \in L} n_t k_t + \sum_{t \in T \setminus L} k_t k_t k_t.
\]

The restriction \(f|_{\mathcal{M}_{T,k}}\) will be denoted by
\[
\phi : \mathcal{M}_{T,k} \rightarrow \mathbb{R}^{n_t \times n_t \times n_t}, \quad x \mapsto f(x).
\]

Since \(\mathcal{M}_{T,k}\) is open (and dense) in \(M\) and \(f\) is smooth on \(M\), \(\phi\) is smooth on \(\mathcal{M}_{T,k}\).

Let \(X\) be a \((T, k)\)-decomposable tensor with \(K = \max\{k_t : t \in T\}\) and \(N = \max\{n_1, n_2, \ldots, n_d\}\). Then, because of the binary tree structure, the dimension of the parameter space is bounded by
\[
\dim(M_{T,k}) = \dim(M_{T,k}) \leq dNK + (d-2)K^2 + K^2.
\]

Compared to the full tensor \(X\) with \(N^d\) entries, this is indeed a significant reduction in the number of parameters to store when \(d\) is large and \(K \ll N\).

In order not to overload notation in the rest of the paper, we will drop the explicit dependence on \((T, k)\) in the notation of \(M_{T,k}, \mathcal{M}_{T,k}\), and \(\mathcal{H}_{T,k}\) where appropriate, and simply use \(M, \mathcal{M}\), and \(\mathcal{H}\), respectively. It will be clear from notation that the corresponding \((T, k)\) is silently assumed to be compatible.

3.3. The non-uniqueness of the decomposition

We now show that the HT decomposition is unique up to a change of bases. Although this seems to be well known (see, e.g., \cite[Lemma 34]{53}), we could not find a rigorous proof that this is the only kind of non-uniqueness in a full-rank HT decomposition.

Proposition 3. Let \(x = (U_t, B_t) \in \mathcal{M}\) and \(y = (V_t, C_t) \in \mathcal{M}\). Then \(\phi(x) = \phi(y)\) if and only if there exist (unique) invertible matrices \(A_t \in \mathbb{R}^{n_t \times k_t}\) for every \(t \in T \setminus t_t\) and \(A_{t_t} = 1\) such that
\[
V_t = U_t A_t \quad \text{for all } t \in L,
\]
\[
C_t = (A_t^T, A_{t_1}^{-1}, A_{t_2}^{-1}) \circ B_t \quad \text{for all } t \in T \setminus L.
\]

Proof. Obviously, by \((5)\), we have \(\phi(x) = \phi(y)\) if \(y\) satisfies \((16)\). Conversely, assume \(\phi(x) = \phi(y) = \mathbf{X}\), then by Theorem1 \(X \in \mathcal{H}\) and \(\text{rank}(U_t) = \text{rank}(V_t) = k_t\) for all \(t \in T\). Additionally, Corollary1 gives \(\text{span}(U_t) = \text{span}(X^{(t)}) = \text{span}(V_t)\) for all \(t \in T\). This implies
\[
V_t = U_t A_t \quad \text{for all } t \in T
\]

\footnote{Writing \(\mathbb{R}^{k_1 \times k_1 \times k_1}\) as the intersection of those sets of tensors whose matrix unfolding with respect to one mode has full rank, the openness and density in \(\mathbb{R}^{k_1 \times k_1 \times k_1}\) follows.}
with unique invertible matrices A_t of appropriate sizes. Clearly, $A_{l_t} = 1$ since $V_{l_t} = U_{l_t} = \text{vec}(X)$. By definition of the (T, k)-format, it holds
\[V_t = (V_{l_t} \otimes V_{t})(C_t^{(1)})^T \quad \text{for all } t \in T \setminus L. \]
Inserting (17) into the above relation shows
\[U_t = (U_{l_t} \otimes U_{t})(A_{l_t} \otimes A_t)(C_t^{(1)})^T A_t^{-1}. \]
Applying (11) with the full column rank matrices U_t, we have that $U_{l_t} \otimes U_{l_t}$ is also of full column rank. Hence, due to (5),
\[B_t^{(1)} = A_t^{-T}C_t^{(1)}(A_{l_t} \otimes A_{l_t})^T \]
which together with (17) is (16).

4. The smooth manifold of fixed rank

Our main goal is to show that the set $\mathcal{H} = \phi(M)$ of tensors of fixed T-rank k is an embedded submanifold of $\mathbb{R}^{r_1 \times r_2 \times \cdots \times r_L}$ and describe its geometric structure.

Since the parametrization by M is not unique, the map ϕ is not injective. Fortunately, Proposition 3 allows us to identify the equivalence class of all possible (T, k)-decompositions of a tensor in \mathcal{H} as the orbit of a Lie group action on M. Using standard tools from differential geometry, we will see that the corresponding quotient space (the set of orbits) possesses itself a smooth manifold structure. It then remains to show that it is diffeomorphic to \mathcal{H}.

4.1. Orbits of equivalent representations

Let \mathcal{G} be the Lie group
\[\mathcal{G} = \{ A = (A_t)_{t \in T} : A_t \in \text{GL}_{r_t}, A_{l_t} = 1 \} \]
with the component-wise action of GL_k as group action. Let
\[\theta : M \times \mathcal{G} \to M, \ (x, A) := ((U_r, B_r), (A_t)) \mapsto \theta_t(A) := (U_r A_t, (A_t^T, A_{l_t}^{-1}, A_{l_t}^{-1}) \circ B_r) \]
be a smooth, right action on M. Observe that by property (5), $(A_t^T, A_{l_t}^{-1}, A_{l_t}^{-1}) \circ B_r$ is of full multilinear rank. Hence, θ indeed maps to M. In addition, the group \mathcal{G} acts freely on M, which means that the identity on \mathcal{G} is the only element that leaves the action unchanged.

By virtue of Proposition 3 it is clear that the orbit of x,
\[\mathcal{G}x = \{ \theta_t(A) : A \in \mathcal{G} \} \subseteq M, \]
contains all elements in M that map to the same tensor $\phi(x)$. This defines an equivalence relation on the parameterization as
\[x \sim y \text{ if and only if } y \in \mathcal{G}x. \]
The equivalence class of x is denoted by \hat{x}. Taking the quotient of \sim, we obtain the quotient space
\[M/\mathcal{G} = \{ \hat{x} : x \in M \} \]
and the quotient map
\[\pi : M \to M/\mathcal{G}, \ x \mapsto \hat{x}. \]
Finally, pushing ϕ down via π we obtain the injection
\[\tilde{\phi} : M/\mathcal{G} \to \mathbb{R}^{r_1 \times r_2 \times \cdots \times r_L}, \ \hat{x} \mapsto \phi(x), \]
whose image is \mathcal{H}.

Remark 3. As far as theory is concerned, the specific choice of parameterization $y \in \mathcal{G}x$ will be irrelevant as long as it is in the orbit. However, for numerical reasons, one usually chooses parametrizations such that
\[U_t^*U_{l_t} = I_{r_t} \quad \text{for all } t \in T \setminus l_t. \]
This is called the orthogonalized HT decomposition and is advantageous for numerical stability [12, 54] when truncating tensors or forming inner products (and more general contractions) between tensors, for example. On the other hand, the HT decomposition is inherently defined with subspaces which is clearly emphasized by our Lie group action.
4.2. Smooth quotient manifold

We now establish that the quotient space $\mathcal{M} / \mathcal{G}$ has a smooth manifold structure. By well-known results from differential geometry, we only need to establish that θ is a proper action; see, e.g., [56 Theorem 16.10.3] or [57 Theorem 9.16].

To show the properness of θ, we first observe that for fixed $x = (U^r, B^r)$, the inverse

$$\theta_x^{-1} : \mathcal{G}x \rightarrow \mathcal{G}, \ y = (V^r, B^r) \mapsto \theta_x^{-1}(y) = (A_t)_{t \in T}$$

is given by

$$A_t = U^r_t V_t \quad \text{for all } t \in L, \quad A_t = [(B^r_t)^\dagger] (A_i \otimes A_j) (C^r_t)^\dagger \quad \text{for all } t \in T \setminus L,$$

where X^\dagger denotes the Moore–Penrose pseudo-inverse [58, Section 5.5.4] of X. In deriving (24), we have used the identities (17) and (15) and the fact that the unfolding B^r_t has full row rank, since B^r has full multilinear rank.

Lemma 1. Let (x_n) be a convergent sequence in \mathcal{M} and (A_n) a sequence in \mathcal{G} such that $(\theta_{x_n}(A_n))$ converges in \mathcal{M}. Then (A_n) converges in \mathcal{G}.

Proof. Since U^r_t and B^r_t have full rank, the pseudo-inverses in (24) are continuous. Hence, it is easy to see from (24) that $\theta_x^{-1}(y)$ is continuous with respect to $x = (U^r, B^r)$ and $y = (V^r, C)$. Hence $(A_n) = (\theta_{x_n}^{-1}(\theta_{x_n}(A_n)))$ converges in \mathcal{G}. □

Theorem 2. The space $\mathcal{M} / \mathcal{G}$ possesses a unique smooth manifold structure such that the quotient map $\pi : \mathcal{M} \rightarrow \mathcal{M} / \mathcal{G}$ is a smooth submersion. Its dimension is

$$\dim \mathcal{M} / \mathcal{G} = \dim \mathcal{M} - \dim \mathcal{G} = \sum_{r \in L} n_r k_r + \sum_{r \in T \setminus L} k_r k_1 - \sum_{r \in (T \setminus L)} k_r^2.$$

In addition, every orbit $\mathcal{G}x$ is an embedded smooth submanifold in \mathcal{M}.

Proof. From Lemma 1 we get that θ is a proper action [57 Proposition 9.13]. Since \mathcal{G} acts properly, freely and smoothly on \mathcal{M}, it is well known that $\mathcal{M} / \mathcal{G}$ has a unique smooth structure with π a submersion; see, e.g., [57 Theorem 9.16]. The dimension of $\mathcal{M} / \mathcal{G}$ follows directly from counting the dimensions of \mathcal{M} and \mathcal{G}. The assertion that $\pi^{-1}(x) = \mathcal{G}x$ is an embedded submanifold is direct from the property that π is a submersion. □

By our construction of $\mathcal{M} / \mathcal{G}$ as the quotient of a free right action, we have obtained a so-called principal fiber bundle over $\mathcal{M} / \mathcal{G}$ with group \mathcal{G} and total space \mathcal{M}, see [59, Lemma 18.3].

4.3. The horizontal space

Later on, we need the tangent space of $\mathcal{M} / \mathcal{G}$. Since $\mathcal{M} / \mathcal{G}$ is an abstract quotient of the concrete matrix manifold \mathcal{M}, we want to use the tangent space of \mathcal{M} to represent tangent vectors in $\mathcal{M} / \mathcal{G}$. Obviously, such a representation is not one-to-one since $\dim(\mathcal{M}) > \dim(\mathcal{M} / \mathcal{G})$. Fortunately, using the concept of horizontal lifts, this can be done rigorously as follows.

Since \mathcal{M} is a dense and open subset of \mathcal{M}, its tangent space is isomorphic to \mathcal{M},

$$T_x \mathcal{M} \cong \bigotimes_{r \in L} \mathbb{R}^{n_r \times k_r} \times \bigotimes_{r \not\in T \setminus L} \mathbb{R}^{k_r \times k_1 \times k_2},$$

and $\dim(T_x \mathcal{M}) = D$ with D defined in (13). Tangent vectors in $T_x \mathcal{M}$ will be denoted by ξ_x. The vertical space, denoted by $V_x \mathcal{M}$, is the subspace of $T_x \mathcal{M}$ consisting of the vectors tangent to the orbit $\mathcal{G}x$ through x. Since $\mathcal{G}x$ is an embedded submanifold of \mathcal{M}, this becomes

$$V_x \mathcal{M} = \left\{ \frac{d}{ds} \gamma(s)_{|s=0} : \gamma(s) \text{ smooth curve in } \mathcal{G}x \text{ with } \gamma(0) = x \right\}.$$

See also Figure 3, which we adapted from Figure 3.8 in [41].
Let $x = (U, B) \in \mathcal{M}$. Then, taking the derivative in (20) for parameter-dependent matrices $A_t(s) = I_t + sD_t$ with arbitrary $D_t \in \mathbb{R}^{k \times k}$ and using the identity

$$\frac{d}{ds}(X(s)^{-1}) = -X^{-1}(X(s)X)^{-1},$$

we get that the vertical vectors,

$$\xi^v_x = ((U^e_t) \in \mathbb{R}^{k_1 \times k_2})_{t \in L}, (B^e_t) \in \mathbb{R}^{k_1 \times k_2},)_{t \in \mathcal{T}_{|L}} = (U^e_t, B^e_t) \in \mathcal{V}_x \mathcal{M},$$

have to be of the following form:

- for $t \in L$:
 $$U^e_t = U_t D_t, \quad D_t \in \mathbb{R}^{k \times k},$$
- for $t \notin L \cup \{t_t\}$:
 $$B^e_t = D_t^1 \circ_1 B_t - D_t^2 \circ_2 B_t - D_t^3 \circ_3 B_t,$$
- for $t = t_t$:
 $$B^e_t = -D_t^1 \circ_2 B_t - D_t^2 \circ_3 B_t,$$

where D_t^1, D_t^2, D_t^3 are matrices.

Counting the degrees of freedom in the above expression, we obtain

$$\dim(\mathcal{V}_x \mathcal{M}) = \sum_{t \in \mathcal{T}_{|L}} k_t^2 = \dim(\mathcal{V}),$$

which shows that (25) indeed parametrizes the whole vertical space.

Next, the horizontal space, denoted by $H_x \mathcal{M}$, is any subspace of $T_x \mathcal{M}$ complementary to $\mathcal{V}_x \mathcal{M}$. Horizontal vectors will be denoted by

$$\xi^h_x = ((U^h_t)_{t \in L}, (B^h_t)_{t \in \mathcal{T}_{|L}}) = (U^h_t, B^h_t) \in H_x \mathcal{M}.$$

Since $H_x \mathcal{M} \subset T_x \mathcal{M}$ is \mathcal{T}, the operation $x + \xi^h_x$ with $\xi^h_x \in H_x \mathcal{M}$ is well-defined as a partitioned addition of matrices. Then, the geometrical meaning of the affine space $x + H_x \mathcal{M}$ is that, for fixed x, it intersects every orbit in a neighborhood of x exactly once, see again Figure [3]. Thus it can be interpreted as a local realization of the orbit manifold \mathcal{M}/\mathcal{G}.

Proposition 4. Let $x \in \mathcal{M}$. Then $\pi|_{x + H_x \mathcal{M}}$ is a local diffeomorphism in a neighborhood of $\hat{x} = \pi(x)$ in \mathcal{M}/\mathcal{G}.

Proof. Observe that $x + H_x \mathcal{M}$ and \mathcal{M}/\mathcal{G} have the same dimension. Since π is a submersion (Theorem [2]), its rank is $\dim(\mathcal{M}/\mathcal{G})$. Being constant on $\mathcal{G}x$ implies $\text{Dr}(\pi)|_{\mathcal{V}_x \mathcal{M}} = 0$. Hence, the map $\pi|_{x + H_x \mathcal{M}}$ has rank $\dim(\mathcal{M}/\mathcal{G}) = \dim(H_x \mathcal{M})$ and is therefore a submersion (also an immersion). The claim is then clear from the inverse function theorem, see [57, Corollary 7.11].
In light of the forthcoming derivations, we choose the following particular horizontal space:

\[
H_xM = \left\{ (U_t^b, B_t^b) : \begin{cases}
(U_t^b)^\top U_t = 0 & \text{for } t \in L, \\
(B_t^b)^{(1)}(U_t^b)^{\top} U_t \otimes (U_t^b)^{\top} U_t \otimes (B_t^b)^{(1)})^\top = 0 & \text{for } t \notin L \cup \{t\} \end{cases} \right\}
\]

(26)

Observe that there is no condition on \(B_t^b \) (which is actually a matrix). Since all \((U_t^b)^{\top} U_t \otimes (U_t^b)^{\top} U_t \otimes (B_t^b)^{(1)})^\top\) are symmetric and positive definite, it is obvious that the parametrization above defines a linear subspace of \(T_x M \). To determine its dimension, observe that the orthogonality constraints for \(U_t^b \) and \(B_t^b \) take away \(k_t^2 \) degrees of freedom for all the nodes \(t \) except the root (due to the full ranks of the \(U_t \) and \(B_t^{(1)} \)). Hence, we have

\[
\dim(H_xM) = \sum_{r \in L} (n_r k_r - k_r^2) + \sum_{r \in T(L \cup \{l\})} (k_r k_r k_r - k_r^2) + k_{r(1)} k_{r(2)} \\
= \sum_{r \in L} n_r k_r + \sum_{r \in T(L \cup \{l\})} k_r k_r k_r - \sum_{r \in T(L \cup \{l\})} k_r^2 \\
= \dim(T_xM) - \dim(V_xM),
\]

from which we can conclude that \(V_xM \oplus H_xM = T_xM \). (We omit the proof that the sum is direct as it follows from Lemma 3 and \(D\phi(x)|_{V_xM} = 0 \).)

Our choice of horizontal space has the following interesting property, which we will need for the main result of this section.

Proposition 5. The horizontal space \(H_xM \) defined in (26) is invariant under the right action \(\theta \) in (20), that is,

\[
D\theta(x,A)[H_xM,0] = H_{\theta(x)}A_1M \quad \text{for any } x \in M \text{ and } A \in \mathfrak{g}.
\]

Proof. Let \(x = (U_t,B_t) \in M, \xi^b_t \in H_xM, A \in \mathfrak{g} \) and \(y = (V_t,C_t) = \theta_x(A) \). Since \(\theta \) depends linearly on \(x \) it holds

\[
\eta = (V_t^b, C_t^b) = D\theta(x,A)[\xi_t^b,0] = \theta_{\xi^b}(A) = (U_t^b A_t, (A_t^{-1}, A_{t(1)}^{-1}) \circ B_t^b).
\]

Verifying

\[
V_t^b V_t^b = A_t^b(U_t^b)^{\top} U_t^b A_t = 0 \\
(C_t^b)^{(1)}(V_t^b V_t^b \otimes (V_t^b V_t^b))(C_t^b)^{(1)} = A_t^b(B_t^b)^{(1)}(U_t^b)^{\top} U_t^b \otimes (U_t^b)^{\top} U_t^b \otimes (B_t^b)^{(1)})^\top A_t = 0,
\]

we see from (26) applied to \(y \) that \(\eta \in H_{\theta(x)}A_1M \). Thus \(D\theta(x,A)[H_xM,0] \subseteq H_{\theta(x)}A_1M \). Since \(H_xM \) and \(H_{\theta(x)}A_1M \) have the same dimension, the assertion follows from the injectivity of the map \(\xi \mapsto D\theta(x,A)[\xi,0] = \theta_{\xi^b}(A) \), which is readily established from the full rank properties of \(A \).

\[\square\]

Remark 4. For \(t \) not the root, the tensors \(B_t^b \) in the horizontal vectors in (26) satisfy a certain orthogonality condition with respect to a Euclidean inner product weighted by \(U_t^b \otimes U_t^b \). In case the representatives are normalized in the sense of (22), this inner product becomes the standard Euclidean one.

The horizontal space we just introduced is in fact a principal connection on the principal \(\mathfrak{g} \)-bundle. The set of all horizontal subspaces constitutes a distribution in \(M \). Its usefulness in the current setting lies in the following theorem, which is again visualized in Figure 3.

Theorem 3. Let \(\xi^b \) be a smooth vector field on \(M/\mathfrak{g} \). Then there exists a unique smooth vector field \(\tilde{\xi}^b \) on \(M \), called the horizontal lift of \(\xi^b \), such that

\[
D\pi(x)[\tilde{\xi}^b] = \xi^b, \quad \tilde{\xi}^b \in H_xM,
\]

for every \(x \in M \). In particular, for any smooth function \(h : M/\mathfrak{g} \to \mathbb{R} \), it holds

\[
Dh(x)[\tilde{\xi}^b] = Dh(x)[\xi^b],
\]

(28)

with \(h = h \circ \pi : M \to \mathbb{R} \) a smooth function that is constant on the orbits \(\mathfrak{g} x \).

Proof. Observe that \(H_xM \) varies smoothly in \(x \) since the orthogonality conditions in (26) involve full-rank matrices. In that case the existence of unique smooth horizontal lifts is a standard result for fiber bundles where the connection (that is, our choice of horizontal space \(H_xM \)) is right-invariant (as shown in Proposition 5; see, e.g., [60, Proposition II.1.2]). Relation (28) is trivial after applying the chain rule to \(h = h \circ \pi \) and using (27). \[\square\]
4.4. The embedding

In this section, we finally prove that \(\mathcal{H} = \hat{\phi}(\Sigma/M) \) is an embedded submanifold in \(\mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d} \) by showing that \(\hat{\phi} \) defined in (21) is an embedding, that is, an injective homeomorphism onto its image with injective differential. Since \(\hat{\phi} = \phi \circ \pi \), we will perform our derivation via \(\phi \).

Recall from Section 3.2 that the smooth mapping \(\phi: \mathcal{M} \to \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d} \) represents the hierarchical construction of a tensor in \(\mathcal{H} \). Let \(x = (U_t, B_t) \in \mathcal{M} \), then \(U_t = \text{vec}(\phi(x)) \) can be computed recursively from

\[
U_t = (U_{t_1} \otimes U_{t_2})(B_t^{(1)})^T \quad \text{for all } t \in T \setminus L.
\]

First, we show that the derivative of \(\phi(x) \),

\[
D\phi(x): T_x \mathcal{M} \to \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}, \quad \xi_x \mapsto D\phi(x)[\xi_x],
\]

can be computed using a similar recursion. Namely, differentiating (29) with respect to \((U_{t_1}, U_{t_2}, B_t)\) gives

\[
\delta U_t = (\delta U_{t_1} \otimes U_{t_2})(B_t^{(1)})^T + (U_{t_1} \otimes \delta U_{t_2})(B_t^{(1)})^T + (U_{t_1} \otimes U_{t_2})(\delta B_t^{(1)})^T \quad \text{for } t \in T \setminus L,
\]

where the \(\delta U_t \) denotes a standard differential (an infinitesimal variation) of \(U_t \). Since this relation holds at all inner nodes, the derivative \(\text{vec}(D\phi(x)[\xi_x]) = \delta U_t \) can be recursively calculated from the variations of the leaves and of the transfer tensors, which will be collected in the tangent vector

\[
\xi_x = (\delta U_{t_1}, \delta B_t) \in T_x \mathcal{M}.
\]

Next, we state three lemmas in preparation for the main theorem. The first two deal with \(D\phi \) when its argument is restricted to the horizontal space \(H_x \mathcal{M} \) in (26), while the third states that \(\hat{\phi} \) is an immersion.

Lemma 2. Let \(x = (U_t, B_t) \in \mathcal{M} \) and \(\xi_x^h = (U_t^h, B_t^h) \in H_x \mathcal{M} \). Apply recursion (30) for evaluating \(D\phi(x)[\xi_x^h] \) and denote for \(t \in T \setminus L \) the intermediate matrices \(\delta U_t \) by \(U_t^h \). Then it holds

\[
U_t^h U_t^h = 0_{k \times k} \quad \text{for all } t \in T \setminus \{t_i\}.
\]

Proof. By definition of \(H_x \mathcal{M} \), this holds for the leaves \(t \in L \). Now take any \(t \notin L \cup \{t_i\} \) for which (31) is satisfied for the sons \(t_1 \) and \(t_2 \). Then by (29) and (30), we have

\[
U_t = (U_{t_1} \otimes U_{t_2})(B_t^{(1)})^T,
\]

\[
U_t^h = (U_{t_1}^h \otimes U_{t_2})(B_t^{(1)})^T + (U_{t_1} \otimes U_{t_2}^h)(B_t^{(1)})^T + (U_{t_1} \otimes U_{t_2})(\delta B_t^{(1)})^T.
\]

Together with the definition of \(B_t^h \) in (26), it is immediately clear that \(U_t^h U_t^h = 0 \). The assertion follows by induction. \(\square \)

Lemma 3. Let \(x = (U_t, B_t) \in \mathcal{M} \). Then \(D\phi(x)|_{H_x \mathcal{M}} \) is injective.

Proof. Let \(\xi_x^h = (U_t^h, B_t^h) \in H_x \mathcal{M} \) with \(D\phi(x)[\xi_x^h] = 0 \). Applying (30) to the root node, we have

\[
\text{vec}(D\phi(x)[\xi_x^h]) = (U_{t_1}^h \otimes U_{t_2}^h)(B_t^{(1)})^T + (U_{t_1} \otimes U_{t_2}^h)(B_t^{(1)})^T + (U_{t_1} \otimes U_{t_2})(\delta B_t^{(1)})^T,
\]

where we again used the notation \(U_t^h \) instead of \(\delta U_t \) for the inner nodes. According to Lemma 2, matrix \(U_{t_1}^h \) is perpendicular to \(U_{t_2}^h \), and similar for \((t_1, t_2) \). Hence, the Kronecker product matrices in the above relation span mutually linearly independent subspaces, so that the condition \(D\phi(x)[\xi_x^h] = 0 \) is equivalent to

\[
(U_{t_1}^h \otimes U_{t_2}^h)(B_t^{(1)})^T = 0,
\]

\[
(U_{t_1} \otimes U_{t_2}^h)(B_t^{(1)})^T = 0,
\]

\[
(U_{t_1} \otimes U_{t_2})(\delta B_t^{(1)})^T = 0.
\]
Since $U_{(i)}$ and $U_{(i)}$ both have full column rank (see Theorem 1), we get immediately from (35) that $(B_i^h)^{(1)}$ and hence $B_i^h = 0$ need to vanish. Next, we can rewrite (33) as

$$(I_{k_i}^h, U_{(i)}^h, U_{(i)}^h) \circ B_i = 0,$$

or,

$$(U_{(i)}^h)^T B_i^h (I_{k_i}^h \circ U_{(i)}^h)^T = 0.$$

Since $B_i^{(2)}$ has full rank, one gets $U_{(i)}^h = 0$. In the same way one shows that (34) reduces to $U_{(i)}^h = 0$. Applying induction, one obtains $U_{(i)}^h = 0$ for all $t \in T$ and $B_i = 0$ for all $t \in T \setminus L$. In particular, $\hat{\xi}_i^h = 0$. \hfill \square

Lemma 4. The map $\hat{\phi} : M/\mathcal{J} \to \mathbb{R}^{n_{1} \times \cdots \times n_{d} \times \cdots}$ as defined in (21) is an injective immersion.

Proof. Smoothness of $\hat{\phi}$ follows by pushing down the smooth map ϕ through the quotient, see [57, Prop. 7.17]. Injectivity is trivial by construction. Fix $x \in M$. To show the injectivity of $D\hat{\phi}(\hat{x})$ let $\hat{\xi}_i \in T_{\hat{x}}^M/\mathcal{J}$ such that $D\hat{\phi}(\hat{x})[\hat{\xi}_i] = 0$. We can assume [57, Lemma 4.5] that $\hat{\xi}_i$ is part of a smooth vector field on M/\mathcal{J}. By Theorem 3 there exists a unique horizontal lift $\xi_i^h \in H_\mathcal{J}M$ which satisfies

$$D\phi(x)[\xi_i^h] = D\hat{\phi}(\hat{x})[\hat{\xi}_i] = 0.$$

According to Lemma 3 this implies $\xi_i^h = 0$, which by (27) means $\hat{\xi}_i = 0$. \hfill \square

We are now ready to prove the embedding of \mathcal{H} as a submanifold.

Theorem 4. The set \mathcal{H} is a smooth, embedded submanifold of $\mathbb{R}^{n_{1} \times \cdots \times n_{d}} \times \cdots$. Its dimension is

$$\dim(\mathcal{H}_{T_k}) = \dim(M/\mathcal{J}) = \sum_{i \in I_k} n_i k_i + \sum_{i \in I_k \setminus k_i} k_i k_j - \sum_{(i,j) \in I_k} k_i^2.$$

In particular, the map $\hat{\phi} : M/\mathcal{J} \to \mathcal{H}$ is a diffeomorphism.

Proof. Due to Lemma 4 we only need to establish that $\hat{\phi}$ is a homeomorphism onto its image \mathcal{H}_{T_k} in the subspace topology. The theorem then follows from standard results; see, e.g., [57, Theorem 8.3]. The dimension has been determined in Theorem 2.

The continuity of $\hat{\phi}$ is immediate since it is smooth. We have to show that $\hat{\phi}^{-1} : \mathcal{H} \to M/\mathcal{J}$ is continuous. Let $(X_n) \subseteq \mathcal{H}$ be a sequence that converges to $X^* \in \mathcal{H}$. This means that every unfolding also converges,

$$X_n^{(t)} \to X^*^{(t)} \quad \text{for all } t \in T.$$

By definition of the T-rank, every sequence $(X_n^{(t)})$ and its limit are of rank k_i. Hence it holds

$$\text{span}(X_n^{(t)}) \to \text{span}(X^*^{(t)}) \quad \text{for all } t \in T$$

in the sense of subspaces [58, Section 2.6.3]. In particular, we can interpret the previous sequence as a converging sequence in $\text{Gr}(n_i, k_i)$, the Grassmann manifold of k_i-dimensional linear subspaces in \mathbb{R}^{n_i}. It is well known [56] that $\text{Gr}(n_i, k_i)$ can be seen as the quotient of $\mathbb{R}^{n_i \times k_i}$ by GL_{k_i}. Therefore, we can alternatively take matrices

$$U_t^* \in \mathbb{R}^{n_{1} \times k_i} \quad \text{with } \text{span}(U_t^*) = \text{span}(X_t^{(t)}) \quad \text{for } t \in T \setminus \{t_i\}$$

as representatives of the limits, while for t_i we choose

$$U_t^* = X_t^{(t_i)} = \text{vec}(X^*).$$

Now, it can be shown [61, Eq. (7)] that the map

$$S_l : \text{Gr}(n_i, k_i) \to \mathbb{R}^{n_{1} \times k_i} \quad \text{span}(V) \mapsto V[(U_t^*)^TV]^{-1}(U_t^*)^TV,$$

15
where \(V \in \mathbb{R}^{n \times k} \) is any matrix representation of \(\text{span}(V) \), is a local diffeomorphism onto its range. Thus, by (36), it holds for all \(t \in T \setminus \{t_i\} \) that
\[
U^n_t = S_\tau(\text{span}(X^n_t)) \rightarrow S_\tau(\text{span}(X^n_t)) = S_\tau(\text{span}(U^n_t)) = U^n_t.
\] (38)

Also observe from the definition of \(S_\tau \) that we have
\[
\text{span}(U^n_t) = \text{span}(X^n_t) \quad \text{for all } n \in \mathbb{N} \text{ and } t \in T \setminus \{t_i\}.
\]

We again treat the root separately by setting
\[
U^n_r = X^n_r = \text{vec}(X_r).
\] (39)

If we now choose transfer tensors \(B^n_r \) and \(B^n_t \) as
\[
((B^n_t)^{(1)})^T = (U^n_t \otimes U^n_t)^{\dagger} U^n_t \quad \text{and} \quad ((B^n_t)^{(1)})^T = (U^n_t \otimes U^n_t)^{\dagger} U^n_t
\]
for all \(t \in T \setminus L \), then the nestedness property (5) will be satisfied. Moreover, (38) and (39) imply
\[
B^n_r \rightarrow B^n_t \quad \text{for all } t \in T \setminus L.
\] (40)

Taking (37) and (39) into account, we see that \(x_n = (U^n_r, B^n_r) \) and \(x^* = (U^n_t, B^n_t) \) are \((T, k)\)-decompositions of \(X_n \) and \(X^* \), respectively. According to Theorem 1 all \(x_n \) and \(x^* \) belong to \(M \). Hence, using (37–40) and the continuity of \(\pi \) (Theorem 2), we have proven
\[
\phi^{-1}(X_n) = \pi(x_n) \rightarrow \pi(x^*) = \phi^{-1}(X^*),
\]
that is, \(\phi^{-1} \) is continuous. \(\square \)

The embedding of \(\mathcal{H} \) via \(\tilde{\phi} \), although global, is somewhat too abstract. From Theorem 2 we immediately see that \(\phi = \tilde{\phi} \circ \pi \), when regarded as a map onto \(\mathcal{H} \), is a submersion. From Proposition 4 we obtain the following result.

Proposition 6. Let \(x \in M \). Then \(\xi^h \mapsto \phi(x + \xi^h) \) is a local diffeomorphism between neighborhoods of zero in \(H \setminus \Omega \) and of \(X = \phi(x) \in \mathcal{H} \).

4.5. The tangent space and its unique representation by gauging.

The following is immediate from Proposition 6 Lemma 2 and the definition of the HT format. We state it here explicitly to emphasize how tangent vectors can be constructed.

Corollary 2. Let \(x = (U_r, B_r) \in M \) and \(X = \phi(x) \in \mathcal{H} \), then the map \(D\phi(x)|_{H \setminus M} \) is an isomorphism onto \(T_X \mathcal{H} \) for any horizontal space \(H \setminus M \). In particular, for \(H \setminus M \) from (25), every \(\delta X \in TX \mathcal{H} \subseteq \mathbb{R}^{n \times \infty \times \infty} \) admits a unique minimal representation
\[
\text{vec}(\delta X) = \delta(U_{(1)} \otimes U_{(2)}) + U_{(1)} \otimes \delta(U_{(2)}) \otimes B^{(1)} \otimes \delta(B^{(1)})^T + (U_{(1)} \otimes U_{(2)}) \otimes \delta B^{(1)} \otimes B^{(1)}
\]
where the matrices \(U_r \in \mathbb{R}^{n \times k} \) and \(\delta U_r \in \mathbb{R}^{n \times k} \) satisfy for \(t \notin L \cup \{t_i\} \) the recursions
\[
U_t = (U_{(1)} \otimes U_{(2)}) \otimes B^{(1)} \otimes \delta B^{(1)}
\]
\[
\delta U_t = (U_{(1)} \otimes U_{(2)}) \otimes B^{(1)} \otimes \delta B^{(1)}
\]
such that \(\xi^h = (U^h_r, B^h_r) = (U^h_r, \delta B^h_r) \) is a horizontal vector.

This corollary shows that while \(\delta X \in TX \mathcal{H} \) is a tensor in \(\mathbb{R}^{n \times \infty \times \infty} \) of possibly very large dimension, it is structured in a specific way. In particular, when a tensor \(X \) has low \(T \)-rank, \(\delta X \) can be represented parsimoniously with very few degrees of freedom, namely by a horizontal vector in \(H \setminus M \). In other words, if \(X \) can be stored efficiently in \((T, k)\)-format, so can its tangent vectors.

Additionally, despite the non-uniqueness when parameterizing \(X \) by \(x \), the representation by horizontal lifts obtained via \(D\phi(x)|_{H \setminus M} \) is unique once \(x \) is fixed. In contrary to the abstract tangent space of \(\mathcal{M}/\mathcal{G} \), a great benefit is that these horizontal lifts are standard matrix-valued quantities, so we can perform standard (Euclidean) arithmetic with them. We will show some applications of this in Section 6.

Our choice of the horizontal space as (25) is arguably arbitrary—yet it turned out very useful when proving Theorem 4. This freedom is known as gauging of a principal fibre bundle. See also (32) (62) for gauging in the context of the Tucker and TT formats, respectively.
4.6. The closure of $\mathcal{H}_{T,k}$

Since $\mathcal{M}_{T,k} = f^{-1}(\mathcal{H}_{T,k})$ is not closed and f is continuous, the manifold $\mathcal{H}_{T,k}$ cannot be closed in $\mathbb{R}^{n_1\times\ldots\times n_d}$. This can be a problem when approximating tensors in $\mathbb{R}^{n_1\times\ldots\times n_d}$ by elements of $\mathcal{H}_{T,k}$. As one might expect, the closure of $\mathcal{H}_{T,k}$ consists of all tensors with T-rank bounded by k, that is, of all (T,k)-decomposable tensors. This is covered by a very general result in [63] on the closedness of minimal subspace representations in Banach tensor spaces. We shall give a simple proof for the finite dimensional case.

Theorem 5. The closure of $\mathcal{H}_{T,k}$ in $\mathbb{R}^{n_1\times\ldots\times n_d}$ is given by

$$
\overline{\mathcal{H}_{T,k}} = f(M_{T,k}) = \bigcup_{r\leq k} \mathcal{H}_{T,r} = \{X \in \mathbb{R}^{n_1\times\ldots\times n_d} : \text{rank}_T(X) \leq k\}.
$$

Proof. Since $\mathcal{M}_{T,k}$ is dense in $M_{T,k}$, the continuity of f implies that $f(M_{T,k})$ is contained in the closure of $f(\mathcal{M}_{T,k}) = \phi(\mathcal{M}_{T,k}) = \mathcal{H}_{T,k}$. It thus suffices to show that $f(M_{T,k})$ is closed in $\mathbb{R}^{n_1\times\ldots\times n_d}$. Now, since this set consists of tensors for which each mode-t unfolding is at most of rank k_t and since each such unfolding is an isomorphism, the first part of the claim follows immediately from the lower semicontinuity of the matrix rank function (level sets are closed). The second part is immediate by definition of $\mathcal{M}_{T,k}$ and enumerating all possible ranks.

A consequence of the preceding theorem is that every tensor of $\mathbb{R}^{n_1\times\ldots\times n_d}$ possesses a best approximation in $\overline{\mathcal{H}_{T,k}}$, that is, it has a best (T,k)-decomposable approximant.

5. Tensors of fixed TT-rank

In this short section we show how the TT format of [14][17] is obtained as a special case of the HT format. Slightly extending the results in [62], an analysis similar to that of the previous sections gives that the manifold of tensors of fixed TT-rank (see below) is a globally embedded submanifold.

Let $r = (r_1, r_2, \ldots, r_d-1) \in \mathbb{N}^{d-1}$ be given and $r_0 = r_d = 1$. The TT-r-decomposition of a tensor $X \in \mathbb{R}^{n_1\times\ldots\times n_d}$ is an HT decomposition with (T,k) having the following properties:

(i) The tree T is degenerate (linear) in the sense that, at each level, the first of the remaining spatial indices is split from the others to the left son and the rest to the right son:

$$
T = \{(1, \ldots, d), (1), (2, \ldots, d), (2), \ldots, (d-1, d), (d-1), \{d\}\}.
$$

(ii) The rank vector k is given by

$$
k_{(\mu)} = n_{\mu} \quad \text{for } \mu = 1, 2, \ldots, d - 1, \quad k_{(\mu, \ldots, d)} = r_{\mu-1} \quad \text{for } \mu = 1, 2, \ldots, d.
$$

(iii) The matrices in the first $d-1$ leaves are the identity:

$$
U_{(\mu)} = I_{n_{\mu}} \quad \text{for } \mu = 1, 2, \ldots, d - 1.
$$

To simplify the notation, we abbreviate the inner transfer tensors $B_{(\mu, \ldots, d)} \in \mathbb{R}^{r_{\mu-1} \times n_{\mu+1}}$ by B_{μ}. For notational convenience, we regard the last leaf matrix $U_{(d)}$ as the result of reshaping an additional transfer tensor $B_d \in \mathbb{R}^{r_d \times n_d \times 1}$ such that

$$
U_{(d)} = B_d^{(1)}.
$$

An illustration is given in Figure 4.

By the nestedness relation (5) of a hierarchical (T,k)-decomposition, the subspace belonging to an inner node $t = (\mu, \ldots, d)$ is spanned by the columns of

$$
U_{(\mu, \ldots, d)} = (I_{n_{\mu}} \otimes U_{(\mu+1, \ldots, d)})(B_{\mu}^{(1)})^T.
$$

17
In particular, for \(U \) so that (42) an be written as for partitioning \(B \). Denote by \(f \) mapping that the first \(d \) parameter compared to those of an HT format with the same linear tree, but minimal ranks in all leafs. In the TT format the rank \(R \) compared to those of an HT format with the same linear tree, but minimal ranks in all leafs. In the TT format the rank \(R \) as that which satisfies (43)

\[
\begin{align*}
U_{[\mu]} &= \begin{cases}
B_{[1]} & \mu = 1, \\
B_{[2]} & \mu = 2, \\
\vdots & \\
B_{[n]} & \mu = n,
\end{cases}
\end{align*}
\]

for \(\mu = 1, 2, \ldots, d - 1 \). Recursively applying (43) reveals that the \((i_1, \ldots, i_d)\)-th row of \(U_{[\mu, \ldots, d]} \) is given by

\[
(B_{[i_d]}^T(B_{[i_{d-1}]}^T)(B_{[i_{d-2}]}^T) \cdots (B_{[i_1]}^T).\]

In particular, for \(U_{[1, 2, \ldots, d]} = \text{vec}(X) \) we obtain, after taking a transpose, that

\[
X_{i_1, \ldots, i_d} = B_1[i_1] B_2[i_2] \cdots B_d[i_d].
\]

This is the classical matrix product representation of the TT format.

We emphasize again that the TT format is not only specified by the linear tree (41), but also by the requirement that the first \(d - 1 \) leaves contain identity matrices. From a practical point of view, one does not need to store these leaf matrices since they are known and always the same. Thus, all \(\text{TT}_r \)-decomposable tensors can be parametrized by a mapping \(f \) acting on tuples (recall \(r_0 = r_d = 1 \))

\[
x = (B_\mu) = (B_1, B_2, \ldots, B_d) \in M_r = \times_{\mu=1}^{d} \mathbb{R}^{r_\mu \times r_{\mu+1} \times r_{\mu+2} \times \cdots \times r_{\mu+d-1} \times 1}.
\]

On the other hand, while only tensor \(B_d \) has to be stored for the leafs, the inner transfer tensors might be larger compared to those of an HT format with the same linear tree, but minimal ranks in all leafs. In the TT format the rank parameter \(r \) can be chosen only for the inner nodes and the last leaf. Therefore, the TT-rank of a tensor \(X \) is defined as that \(r \) which satisfies

\[
r_\mu = \text{rank}(X_{[1, \ldots, \mu]}^T) = \text{rank}(X_{[\mu, \ldots, d]}^{T_{[\mu, \ldots, d]}}).
\]

Letting \(R = \max(r_1, r_2, \ldots, r_{d-1}) \) and \(N = \max(n_1, n_2, \ldots, n_d) \), we see that

\[
\text{dim}(M_r) \leq (d - 2)NR^2 + 2NR,
\]

Figure 4: A \(\text{TT}_{r} \)-decomposition as a constrained HT-tree.
which should be compared to \((15)\). Depending on the application (and primarily the sizes of \(K\) and \(R\)), one might prefer storing a tensor in HT or in TT format. Bounds on the TT-rank in terms of the hierarchical rank for a canonical binary dimension tree, and vice versa, can be found in \([52]\).

Similar to Proposition 2, it holds that a tensor can be represented as a \(\mathcal{T}_r\)-decomposition if and only if its TT-rank is bounded by \(r\). Denoting
\[
\mathcal{T}_r = \{ \mathbf{X} \in \mathbb{R}^{n_1 \times n_2 \times \ldots \times n_d} : \text{TT-rank}(\mathbf{X}) = r \},
\]
the analog of Theorem 1 reads as follows.

Theorem 6 (62, Theorem 1(a)). A tensor \(\mathbf{X}\) is in \(\mathcal{T}_r\) if and only if for every \(x = (\mathbf{B}_\mu) \in \mathcal{M}_r\) with \(f(x) = \mathbf{X}\) the tensors \(\mathbf{B}_\mu\) satisfy
\[
\text{rank}(\mathbf{B}_\mu^{(1)}) = \text{rank}(\mathbf{B}_\mu^{(3)}) = r_{\mu-1}
\]
for \(\mu = 2, \ldots, d\).

Based on this theorem, one can describe the set \(\mathcal{T}_r\) as a quotient manifold along similar lines as for the HT format. The parameter space is now given by
\[
\mathcal{M}_r = \{ (\mathbf{B}_\mu) \in \mathcal{M}_r : \text{rank}(\mathbf{B}_\mu^{(1)}) = \text{rank}(\mathbf{B}_\mu^{(3)}) = r_{\mu-1} \text{ for } \mu = 2, \ldots, d \}.
\]
Let again \(\phi\) denote the restriction of \(f\) to \(\mathcal{M}_r\). The non-uniqueness of the \(\mathcal{T}_r\)-decomposition is described in the following proposition which we state without proof. See also [62, Theorem 1(b)] for the orthogonalized case.

Proposition 7. Let \(x = (\mathbf{B}_\mu) \in \mathcal{M}_r\) and \(y = (\mathbf{C}_\mu) \in \mathcal{M}_r\). Then \(\phi(x) = \phi(y)\) if and only if there exist invertible matrices \(A_1, A_2, \ldots, A_{d-1}\) of appropriate size such that
\[
C_1[i_1] = B_1[i_1]A_2^{-T}, \quad C_d[i_d] = A_d^T B_d[i_d], \quad C_{\mu}[i_\mu] = A_{\mu}^T B_{\mu}[i_{\mu}] A_{\mu+1}^{-T}
\]
holds for all multi-indices \((i_1, i_2, \ldots, i_d)\) and \(\mu = 2, \ldots, d - 1\).

In terms of the Lie group action \((20)\), relation \((45)\) can be written as
\[
y = \theta_{\mu}(\mathbf{A}), \quad \mathbf{A} \in \mathcal{S}_r
\]
(slightly abusing notation by extending \(\theta\) to \(\mathcal{M}_r\)), where \(\mathcal{S}_r\) is the subgroup of \(\mathcal{S}\) that leaves the first \(d - 1\) identity leaf unchanged, or formally,
\[
\mathcal{S}_r = \{ \mathbf{A} \in \mathcal{S} : A_{[\mu]} = I_{n_\mu} \text{ for } \mu = 1, \ldots, d - 1 \}.
\]
One now could start the same machinery as in Section 4. After showing that \(\mathcal{S}_r\) acts properly on \(\mathcal{M}_r\), one would obtain that \(\mathcal{M}_r/\mathcal{S}_r\) is a smooth orbit manifold. Since the approach should be clear, we skip further details of the proof that \(\phi : \mathcal{M}_r/\mathcal{S}_r \to \mathbb{R}^{n_1 \times n_2 \times \ldots \times n_d}\) is an embedding and only formulate the main result.

Theorem 7. The set \(\mathcal{T}_r\) of tensors of TT-rank \(r\) is a globally embedded submanifold of \(\mathbb{R}^{n_1 \times n_2 \times \ldots \times n_d}\) which is diffeomorphic to \(\mathcal{M}_r/\mathcal{S}_r\). Its dimension is
\[
\dim(\mathcal{T}_r) = \dim(\mathcal{M}_r) - \dim(\mathcal{S}_r) = \sum_{\mu=1}^{d} r_{\mu-1} n_\mu - \sum_{\mu=1}^{d-1} r_{\mu}^2.
\]
This extends Theorem 3 in [62], where it only has been shown that \(\mathcal{T}_r\) is locally embedded. We also refer the reader to this source for a characterization of the tangent space of \(\mathcal{T}_r\) via a horizontal space obtained by orthogonality conditions similar to \((25)\).

In analogy to Theorem 5, it holds that the closure of \(\mathcal{T}_r\) is the set of tensors whose TT-rank is bounded by \(r\), which actually are all \(\mathcal{T}_r\)-decomposable tensors.
6. Applications

After our theoretical investigations of the HT format in the previous sections, we should not forget that it has been initially proposed as a promising tool for dealing with problems of high dimensionality. As outlined in the introduction, the HT format is accompanied by a list of concrete problems with accompanying algorithms to solve them. Besides the aesthetic satisfaction, our theory of the format’s geometry also has practical value in understanding and improving these algorithms. We hope to support this case with the following two examples: convergence theories for local optimization methods and a dynamical updating algorithm for time-varying tensors.

6.1. Alternating optimization in the hierarchical Tucker format

Consider a \(C^2 \)-function \(J: \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_T} \to \mathbb{R} \) on an open domain \(D \). The task is to find a minimizer of \(J \). Two important examples are the approximate solution of linear equations with

\[
J(X) = \| A(X) - Y \|_F^2 = \min,
\]

and the approximate calculation of the smallest eigenvalue by

\[
J(X) = \frac{(X, A(X))_F}{(X, X)_F} = \min,
\]

where in both cases \(A \) is a (tensor-structured) self-adjoint, positive linear operator and \(\langle \cdot, \cdot \rangle_F \) is the Frobenius (Euclidean) inner product.

Let \(T \) be a dimension tree and \(k \) be a \(T \)-rank, such that the manifold \(\mathcal{H} = \mathcal{H}_{T,k} \) is not empty and contained in \(D \). It is assumed that, on the one hand, \(\mathcal{H} \) is a good proxy to approximate the minimizers of \(J \) while, on the other hand, \(k \) is still small enough to make the HT format efficient. We can then circumvent the high-dimensionality of the domain \(D \) by restricting to the problem

\[
J(X) = \min_{X \in \mathcal{H}} X,
\]

or to the handy, but redundant formulation

\[
j(x) = J(\phi(x)) = \min_{x \in M} x = M_{T,k} \Box
\]

More generally, we want to solve for \(X \in \mathcal{H} \) such that

\[
DJ(X)[\delta X] = 0 \text{ for all } \delta X \in T_X \mathcal{H}.
\]

Alternatively, we consider

\[
DJ(x) = 0, \quad x \in M.
\]

Since \(D\phi(x) \) is a surjection onto \(T_X M \) by Corollary \(\Box \) problems \(\Box \) and \(\Box \) are equivalent in the sense that \(X^* = \phi(x^*) \) solves \(\Box \) if and only if \(x^* \) is a solution of \(\Box \). In particular, in that case every \(x^* \) solves \(\Box \). We hence call \(G x^* \) a solution orbit of \(\Box \). In the following, \(x^* \) always denotes a solution of \(\Box \) and \(X^* = \phi(x^*) \).

The idea of nonlinear relaxation \(\Box \) or the Gauss–Seidel method \(\Box \) is to solve \(\Box \) only with respect to one node in the tree at a time while keeping the others fixed. For the TT format this idea has been realized in \(\Box \), and for the HT format in \(\Box \).

To describe the method further, let \(t^1, t^2, \ldots, t^T \) be an enumeration of the nodes of \(T \). For notational simplicity, we now partition \(x \in M \) into block variables, \(x = (x_1, x_2, \ldots, x_{T^T}) \), where

\[
x_i = \begin{cases} U_{t^i} \in V_{t^i} = \mathbb{R}^{n_{t^i} \times k_{t^i}}, & \text{if } t^i \text{ is a leaf}, \\ B_{t^i} \in V_{t^i} = \mathbb{R}^{k_{t^i} \times k_{t^i}} & \text{if } t^i \text{ is an inner node}. \end{cases}
\]

\(\Box \)In practice, one would prefer minimizing \(j \) over the closure \(M = M_{T,k} \), that is, over all \((T, k) \)-decomposable tensors. For the theory, we would have to assume then that the solution is in \(M \), anyway, since otherwise there is little we can say about it. To give conditions under which this is automatically true, that is, all disposable ranks exploited, seems far from trivial.

20
For \(x \in M = M_{T, A} \) and \(i = 1, 2, \ldots, |T| \) we define embeddings

\[
p_{x,i}: V_i \to M, \quad \eta \mapsto (x_1, \ldots, x_{i-1}, \eta, x_{i+1}, \ldots, x_{|T|})
\]

and denote by

\[
E_{x,i} = p_{x,i}(V_i)
\]

their ranges. The elements in \(E_{0,i} \) play a particular role and will be called block coordinate vectors. Obviously, \(E_{x,i} = x + E_{0,i} \).

Let \(D_i j(x) = D j(x) \circ p_{0,i}: V_i \to \mathbb{R} \) denote the partial derivative of \(j \) at \(x \) with regard to the block variable \(x_i \). For \(x \) the current iterate, we define the result of one micro-step of Gauss-Seidel for a node \(t' \) as

\[
s_t(x) \in E_{x,i} \cap M,
\]

with the property that

\[
D_i j(s_t(x)) = D j(s_t(x)) \circ p_{0,i} = 0.
\]

(50)

In other words, \(\eta = p_{x,i}^{-1}(s_t(x)) \) is a critical point of \(j \circ p_{x,i}; \) the update equals \(\xi_{0,i} = s_t(x) - x = p_{0,i}(\eta - x_i) \). The nonlinear Gauss-Seidel iteration now informally reads

\[
x^{(n+1)} = s_t(x^{(n)}) = (s_{T|} \circ s_{T|-1} \circ \cdots \circ s_1)(x^{(n)}).
\]

(51)

Our aim is to give conditions under which this sequence can be uniquely defined in a neighborhood of a solution \(x^* \). For some possibly smaller neighborhood \(U \subseteq \mathcal{M} \), it holds \(D_i j(x^*) = DJ(\phi(x^*)) \circ p_{x,i} \). Hence we can characterize \(s_t(x) \in E_{x,i} \cap M \) by the property that \(\phi(s_t(x)) \) is a critical point of \(J \) on the range of \(P_{x,i} \) (note that \(P_{x,i}(x) = p_{x,i} \) since \(s_t(x) \in E_{x,i} \)). It can be easily verified that \(P_{x,i} \) is injective for \(x \in M \), and that the range is invariant under the action of \(\theta \), that is,

\[
P_{\theta(x)}(V_i) = P_{x,i}(V_i)
\]

(52)

for all \(A \in \mathcal{S} \) (for the TT format, both has been observed in [31]).

For fixed \(A \in \mathcal{S} \), let now \(\theta_A \) denote the linear map \(x \mapsto \theta_A(A) \). This is an isomorphism on \((\text{extending the domain of } \theta) \), the inverse being \(\theta^{-1} \).

Lemma 5. Let \(x^* \in \mathcal{M} \) be a solution of \([49] \). Partition the Hessian (matrix) \(D^2 j(x^*) \) according to the block variables \(x_i \) into \(D^2 j(x^*) = L + \Delta + U \), with \(L, \Delta \) and \(U = L^T \) being the lower block triangular, block diagonal and upper block triangular part, respectively.

(i) Assume that \(x^* \) possesses neighborhoods \(\mathcal{U}_i \subseteq \mathcal{V}_i \subseteq \mathcal{M} \) such that, for \(i = 1, 2, \ldots, |T| \), continuously differentiable operators \(s_i: \mathcal{U}_i \to \mathcal{V}_i \) satisfying \([50] \) can be defined. Then the \(s_i \) can be extended to maps \(\theta(\mathcal{U}_i, \mathcal{S}) \to \theta(\mathcal{V}_i, \mathcal{S}) \) via the relation

\[
s_t(\theta_A(x)) = \theta_A(s_t(x)), \quad A \in \mathcal{S},
\]

(53)

which then holds for all \(x \in \theta(\mathcal{U}_i, \mathcal{S}) \) and appropriate \(A \). For some possibly smaller neighborhood \(\mathcal{U}^* \subseteq \mathcal{M} \) of \(x^* \) the operator \(s \) given by \([51] \) can be defined on \(\mathcal{U} = \theta(\mathcal{U}^*, \mathcal{S}) \) and satisfies the same relation.
(ii) Furthermore we have
\[(L + A)Dx(x^*) = -U = (L + A) - D^2 j(x^*). \]
(54)

(iii) Assume that \(A\) is invertible, then there exist (locally) unique operators \(s_i\) and \(s\) satisfying the conditions of (i), especially \(s_i = \phi(s_i(x))\), and it holds
\[D x(x^*) = -(L + A)^{-1} U = I - (L + A)^{-1} D^2 j(x^*). \]
(55)

Remark 5. Equation (55) says that the errors \(e^{(n)} = x^{(n)} - x^*\) in the nonlinear (block) Gauss-Seidel method satisfy, in first order, the error recursion of the linear (block) Gauss-Seidel method for solving \(D^2 j(x^*) \cdot e = 0\).

Remark 6. We highlight an important special case in which one is in the favorable situation of having unique \(s_i\) even with \(\mathcal{V}_i = \mathcal{M}\), which includes the important best approximation problem [66] (cf. [65]). Namely, when \(J\) is strictly convex and possesses a critical point in \(\mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}\), then \(J\) is coercive and thus has a unique critical point on the range of \(P_{x,j}\). Since \(P_{x,j}\) is injective (for \(x \in \mathcal{M}\), this corresponds to a unique solution \(s_i(x)\) of (50)). However, it is of vital importance that one can guarantee \(s_i(x) \in \mathcal{M}\) only for \(x\) in a neighborhood \(\mathcal{U}\) of the orbit \(\mathcal{J} x^* \subseteq \mathcal{M}\), which under the given conditions contains the fixed points of \(s_i\).

Remark 7. As the formulation of (iii) implies, the non-singularity of \(A\) is in fact a condition on \(X^* = \phi(x^*)\), that is, if it holds, then for all \(x \in \mathcal{J} x^*\).

Proof (of Lemma 5). We first show that \(s_i\) defined by (53) satisfies (50). By the discussion preceding the lemma, we just have to show that \(\theta_{\mathbb{A}}(s_i(x)) \in E_{\theta_{\mathbb{A}}(s_i)} \cap \mathcal{M}\), and that \(\phi(\theta_{\mathbb{A}}(s_i(x))) = \phi(s_i(x))\) is a critical point of \(J\) on the range of \(P_{\theta_{\mathbb{A}}(s_i)}\). While the first property is obvious, the second follows from the aforementioned fact that the ranges of \(P_{x,j}\) and \(P_{\theta_{\mathbb{A}}(s_i)}\) are equal. This proves the main assertion of (i). The existence of a definition domain for \(s\) follows from the implicit function theorem; see also [65, 10.3.5]. It is then clear that there are unique extensions onto \(\theta(\mathcal{U}, \mathcal{J})\). Also \(s\) is then unique in some neighborhood of \(\mathcal{J} x^*\) the form \(\theta(\mathcal{U}, \mathcal{J})\).

If (53) holds, the nonlinear Gauss-Seidel method, although formally an algorithm on \(\mathcal{M}\), can be regarded as an algorithm on \(\mathcal{H}\) too, since equivalent representations are mapped onto equivalent ones. The counterpart of the iteration \(s\) in (51) is given in the following proposition.

Proposition 8. Under the conditions and notations of Lemma 5 \(\mathcal{O} = \phi(\mathcal{U})\) is an open neighborhood of \(X^* = \phi(x^*)\) in \(\mathcal{H}\). Furthermore, the operator
\[S : \mathcal{O} \rightarrow \mathcal{H}, \quad X = \phi(x) \mapsto \phi(s(x))\]
is a well-defined \(C^1\) map; \(X^*\) being one of its fixed points.

Proof. We first have to note that \(\phi\), when regarded as a map from \(\mathcal{M}\) onto \(\mathcal{H}\), is a submersion between manifolds and, as such, an open map. Hence, \(\mathcal{O}\) is open [65, 16.7.5] and we can pass smoothly to the quotient [57, Proposition 5.20].

In the end, one is interested in the sequence
\[X_{n+1} = S(X_n), \]
(56)
but the computations are performed in \(\mathcal{M}\) via \(s_i\). Fortunately, property (53) ensures that changing representation along an orbit during the iteration process (say, to a norm-balanced or orthogonalized HT) is allowed and will not affect the sequence (56). This is important for an efficient implementation of the alternating optimization schemes as done in [31,47].

6We repeat again that (53) is (locally) guaranteed if \(J\) is strictly convex (Remark 5), or if Lemma 5 (41) is applicable.
We now calculate the derivative of S. From $S^n \circ \phi = \phi \circ s^n$ (on U) and $s(x^*) = x^*$ we obtain
\begin{equation}
(DS(X^*))^n \circ D\phi(x^*) = D\phi(x^*) \circ (DS(x^*))^n.
\end{equation}
(57)

The vertical space $V_r \mathcal{M}$, which is the tangent space to \mathcal{M} at x^* (see Section 4.3), is the null space of $D\phi(x^*)$ by Corollary 2 and hence, by the above relation, has to be an invariant subspace of $DS(x^*)$. Thus, if $H_r \mathcal{M}$ is any horizontal space, we may regard $D\phi$ as isomorphism between $H_r \mathcal{M}$ and $T_{X^*} \mathcal{M}$ (cf. Corollary 2), and replace (57) by the equivalent equation
\begin{equation}
(DS(X^*))^n = D\phi(x^*) \circ (DS(x^*))^n \circ (D\phi(x^*))^{-1}.
\end{equation}
(58)

By a straightforward version of the contraction principle for submanifolds, the sequence (56) will be locally linearly convergent to X^* when $(DS(X^*))^n \rightarrow 0$ for $n \rightarrow \infty$. By (58), we have the following result, which is useful since information on $DS(x^*)$ is available through (54).

Proposition 9. Under the conditions of Lemma 5 assume $D\phi(x^*) \circ (DS(x^*))^n \rightarrow 0$ for $n \rightarrow \infty$. Then, the sequence (56) is locally linearly convergent to X^*.

Again, the condition does not depend on the specific choice of $H_r \mathcal{M}$ as long as it is complementary to $V_r \mathcal{M}$. Also note that the convergence region might be much smaller than \mathcal{O}.

6.1.2. The case of an invertible block diagonal

Suppose we are in the situation of (iii) in Lemma 5. Then, by (55), $DS(x^*)$ is the error iteration matrix of the linear block Gauss-Seidel iteration applied to the Hessian $D^2 j(x^*)$. If $D^2 j(x^*)$ is positive semidefinite (which is the case if x^* is a local minimum of (49)) and the block diagonal J is positive definite, then, for every $\xi \in M$ the sequence $(DS(x^*))^n[\xi]$ will converge to an element in the null space of $D^2 j(x^*)$; see [68, Theorem 2], although the older German Hilfssatz 1 is not cited there.

Theorem 8. Assume the Hessian $D^2 j(x^*)$ is positive semidefinite and its null space equals $V_r \mathcal{M}$ (cf. footnote 7, or, equivalently, $\text{rank}(D^2 j(x^*)) = \dim(\mathcal{N})$). Then condition (iii) of Lemma 5 that J should be positive definite is fulfilled and the sequence (56) is locally linearly convergent to X^*.

Proof. According to the remark preceding the theorem this follows from Proposition 9, since $V_r \mathcal{M}$ is the null space of $D\phi(x^*)$. To prove that Lemma 5 (iii) indeed holds, it suffices under the given assumption to verify that block coordinate vectors $\xi_{ij} = p_{x,i}(\eta)$ are not in $V_r \mathcal{M}$ unless they are zero. But since $\phi(x^* + \xi_{ij}) = x^* + P_{x,i}(\eta)$ (see (52)), $D\phi(x^*)[\xi_{ij}] = 0$ implies $P_{x,i}(\eta) = 0$ which is false unless $\eta = 0$ (injectivity of $P_{x,i}$).

Written out explicitly, the quadratic form $D^2 j(x^*)$ satisfies
\begin{equation}
D^2 j(x^*)[\xi, \xi] = D^2 J(X^*)[D\phi(x^*)[\xi], D\phi(x^*)[\xi]] + DJ(X^*)[D\phi(x^*)[\xi], \xi)].
\end{equation}
(59)

Hence, to prevent misunderstandings, the condition formulated in Theorem 8 is not that $D^2 J(X^*)$ has to be positive definite on $T_{X^*} \mathcal{M}$. One also has to take the second term in (59) into account, which is related to the curvature of \mathcal{M}. However, let Z be a critical point of J in $R^n \times R^n$ (i.e. $D^2 J(Z) = 0$ and $D^2 J(Z)$ be positive definite, then $D^2 j(x^*)$ will be positive definite too if $X^* = Z$. In that case, the manifold \mathcal{M} has been perfectly chosen for solving (48), which of course is a very lucky case, but still this is good to know.

One now could ask whether a similar conclusion holds when \mathcal{M} is “good enough” by which we mean that a critical point X^* on \mathcal{M} is close to a critical point Z on R^{2n} or, equivalently, $DJ(X^*)$ almost zero on R^{2n}. Deriving estimates using (59) without further knowledge of J, however, is not very helpful since one obtains that the distance one has to achieve between X^* and Z depends on X^* itself, cf. [36, Theorem 4.1]. However, for the important problem (46) of approximately solving a linear equation, it should be possible to formulate a condition on $\|X^* - Z\|_F$ in terms of \mathcal{M} (and A) only, since for local minima of (46) it necessarily holds
\begin{equation}
\|\mathcal{A}(X^*)\|_2^2 = \|Y\|_2^2 - \|\mathcal{A}(X^*) - Y\|_2^2 = \|\mathcal{A}(Z)\|_2^2 - \|\mathcal{A}(X^*) - \mathcal{A}(Z)\|_2^2.
\end{equation}

Quantitative conditions in that spirit (for \mathcal{A} being the identity) have been obtained for the TT format in [36, Theorem 4.2]. For the Tucker format something similar has been previously done in [38].

7If J is invertible, it even follows from (55) that $D\phi(x^*)$ is the identity on $V_r \mathcal{M}$. Namely, since J is constant on \mathcal{M} and $D\phi(x^*) = 0$, $V_r \mathcal{M}$ is in the null space of $D^2 j(x^*)$.

23
6.1.3. Rayleigh quotient minimization

Theorem 8 assumes that the function \(j \) satisfies a certain rank condition involving \(V_r, M \), which cannot be relaxed under the given circumstances. While this condition is likely reasonable for certain functions, it does not hold for the minimization of the Rayleigh quotient as in (47). The reason is that \(J \) in (47) is constant for any \(X \in S' \) on the subspace \(\text{span}(X) \setminus \{0\} \), that is, \(j = J \circ \phi \) is constant on \(\text{span}(x) \setminus \{0\} \) for any \(x \in M \). Therefore, \(D^2 j(x) \) is at most of rank \(\text{dim}(S') - 1 \). For the same reason, Lemma 5 (iii) is not applicable. However, these problems can be fixed by some obvious modifications of the preceding arguments, which we only outline shortly.

Namely, one now wants to consider the alternating optimization as an algorithm on the manifold

\[S' = \{ X \in S' : ||X||_F = 1 \}, \]

which is of dimension \(\text{dim}(S') - 1 \). To this end, one first introduces a new Lie group action

\[\theta : M \times S', (x, A, a) = a \theta_i(A), \]

where now \(S' = G \times GL_1 \). Then it is immediate that \(S' \) is diffeomorphic to \(M / S' \). The tangent space of the orbit \(S' x \) at \(x \) is

\[V'_i M = V_i M \oplus \text{span}(x). \]

The role of \(\phi \) is now replaced by the obviously surjective map

\[\psi : M \rightarrow S', x \mapsto \phi(x)/||\phi(x)||_F. \]

Namely, \(\psi \) indeed vanishes on the orbits of \(S' \), and its rank is easily shown to be \(\text{dim}(S') - 1 \). Hence it is a submersion, and even a local diffeomorphism if restricted to any (horizontal) space complementary to \(V'_i M \).

In principle, we can now proceed as above. There is just one small technical difference. Let \(X^* = \psi(x^*) \in S' \) be a solution of (48), where \(J \) is now the Rayleigh quotient (47). We want to define the nonlinear Gauss-Seidel iteration on the manifold \(S' \) (in a neighborhood of \(X^* \)) via

\[S'(\psi(x)) = \psi(s(x)). \]

If this is not well-defined by the implementation of \(s \), we still can give a condition which guarantees this locally. Without loss of generality we can assume that \(s \) should map on the manifold

\[N = \{ x \in M : ||x||_F = 1 \text{ for } i = 1, 2, \ldots, |T| \} \]

and that \(x^* \in N \). The pure existence of \(s_i(x) \) satisfying (50) is hence guaranteed by compactness arguments. However, a sufficient condition for (50) being well-defined in a neighborhood of \(X^* \) is that \(s(x) \) is the choice of \(s(x) \), that is, the choice of each \(s_i(x) \), is unique if restricted to a neighborhood of \(x^* \) in \(N \). Hence, denoting by \(A_j \) the diagonal blocks of \(D^2 j(x^*) \), we need \(A_j \) to be positive definite on \(\text{span}(x_j^*) \) \(\in V_i \) to apply the implicit function theorem, which also gives us that \(s \) is smooth.\(^6\)

Theorem 9. Assume the Hessian \(D^2 j(x^*) \) is positive semidefinite and its null space equals \(V'_i M \), or, equivalently, \(\text{rank}(D^2 j(x^*)) = \text{dim}(S') - 1 \). Then there exists a smooth nonlinear Gauss-Seidel operator \(s \) mapping a neighborhood of \(S' x^* \) on itself. In a corresponding neighborhood of \(X^* \in S' \) the operator \(S' \) given in (60) is well-defined and smooth. The sequence \(X_{n+1} = S'(X_n) \) is locally linearly convergent to \(X^* \).

Proof. The proof is the same as for Theorem 8. Concerning the existence of \(s \) one has to note that the block coordinate spaces \(p_{x_i}(\text{span}(x_i^*)) \) are not in \(V'_i M \), so that the implicit function theorem is applicable on \(N \) (see the remarks preceding the theorem).\(^\square \)

Remark 8. The condition in the theorem is reasonable if the smallest eigenvalue has multiplicity one. Namely, \(J \) is constant on the whole eigenspace, so if its dimension is larger than one, the Hessian of \(j \) likely will vanish on a space larger than \(V'_i M \). Since \(\mathcal{A} \) in (49) is assumed to be positive semidefinite, it seems to us that the existence of unique minimizers \(s_i(x) \in N \) is then guaranteed in a neighborhood of \(x^* \) even without involving the implicit function theorem (because \(\phi(s_i(x)) \) has to be the minimizer of \(J \) on the unit sphere in \(\text{span}(V_i) \)).

\(^{6}\)Every reasonable implementation of nonlinear Gauss-Seidel for Rayleigh quotient minimization would incorporate such a normalization step.
\(^{9}\)Note that \(A_j \) is not positive definite on \(V_i \), since \(\text{span}(x_j^*) \) is in its null space (due to the scaling invariance in each block coordinate).
6.2. Dynamical hierarchical Tucker rank approximation

Consider a time-varying tensor \(Y(s) \in \mathbb{R}^{n_1\times n_2\times \cdots \times n_d} \) where \(0 \leq s \leq S \). Let \((T, k)\) represent an HT format which is believed to be useful for approximating \(Y(s) \) at each \(s \). In other words, our aim would be solving the best approximation problem

\[
X(s) \in \mathcal{H} = \mathcal{H}_{T,k} \quad \text{such that} \quad ||Y(s) - X(s)||_F = \min.
\] (61)

Unfortunately, problem (61) is hard to compute (even for fixed values of \(s \)) and, contrary to the matrix case, there is no explicit solution known. For most approximation problems, however, one is usually content with a quasi-optimal solution. For instance, the procedure in [12] based on several SVD approximations of unfoldings of \(Y(s) \) delivers a tensor \(\hat{X}(s) \) such that, for every \(s \),

\[
||Y(s) - \hat{X}(s)||_F \leq \sqrt{2d - 3} ||Y(s) - X(s)||_F.
\] (62)

On the other hand, computing all these SVDs for every value of \(s \) can be very costly: \(O(dN^{d+1}) \) operations with \(N = \max(n_1, n_2, \ldots, n_d) \); see [12] Lemma 3.21. Applied to TT, the bound (62) can be tightened using a factor \(\sqrt{d+1} \); see, e.g., [17].

An alternative to solving (61), is the so-called dynamical low-rank approximation proposed in [37, 38] for time-dependent matrices and Tucker tensors, respectively. In this section, we will generalize this procedure to the HT tensors using the geometry of the previous section. For a theoretical and numerical investigation of such an approximation, we refer to [48, 70].

6.2.1. A non-linear initial value problem on \(\mathcal{H}_{T,k} \)

Let \(\dot{X} \) denote \(dX(s)/ds \). The idea of dynamical low-rank approximation consists of determining an approximation \(X(s) \in \mathcal{H} \) such that, for every \(s \), the derivative of \(X(s) \) is chosen as

\[
\dot{X}(s) \in T_{X(s)}\mathcal{H} \quad \text{such that} \quad ||\dot{Y}(s) - \dot{X}(s)||_F = \min.
\] (63)

Together with an initial condition like \(X(0) = Y(0) \in \mathcal{H} \), (63) is a flow problem on the manifold \(\mathcal{H} \) since \(\dot{X}(s) \in T_{X(s)}\mathcal{H} \) for every \(s \). Similarly as in [37, 38], we show how this flow can be formulated as a set of non-linear ordinary differential equations suitable for numerical integration.

It is readily seen that, at a particular value of \(s \), the minimization in (63) is equivalent to the following Galerkin condition: find \(\hat{X}(s) \in T_{X(s)}\mathcal{H} \) such that

\[
\langle \dot{X}(s) - \hat{Y}(s), \delta X \rangle_{\mathcal{H}} = 0 \quad \text{for all } \delta X \in T_{X(s)}\mathcal{H}.
\]

Define the orthogonal projection (with respect to the Euclidean inner product),

\[
P_X : \mathbb{R}^{n_1\times n_2\times \cdots \times n_d} \to T_X\mathcal{H} \quad \text{for any } X \in \mathcal{H},
\]

then (63) becomes

\[
\dot{X}(s) = P_X\dot{Y}(s).
\] (64)

This makes that, together with an initial condition \(X(0) \in \mathcal{H} \), the flow (64) could be integrated by methods of geometric integration [71]. However, due to the size of the tensors at hand, it is preferable avoiding unstructured tensors in \(\mathbb{R}^{n_1\times n_2\times \cdots \times n_d} \) and instead exploiting that \(\mathcal{H} \) is diffeomorphic to the quotient manifold \(M/\mathcal{G} \).

Since \(\tilde{\phi} : M/\mathcal{G} \to \mathcal{H} \) in Theorem 4 is a diffeomorphism, (64) induces a flow on the quotient manifold \(M/\mathcal{G} \) too, namely,

\[
\frac{d\tilde{x}(s)}{ds} = \tilde{\xi}(s) = D\tilde{\phi}^{-1}(\tilde{x}(s))[P_{\tilde{x}(s)}\tilde{Y}(s)], \quad \tilde{\phi}(\tilde{x}(0)) = X(0),
\]

with the property that \(\tilde{\phi}(\tilde{x}(s)) = X(s) \) for all \(s \). To integrate this flow on \(M/\mathcal{G} \), we lift the vector field \(\tilde{\xi}(s) \) to a unique horizontal vector field \(\xi(s) \) on \(M \) once an element \(x(0) \) in the orbit \(\pi^{-1}(\tilde{x}(0)) \) is chosen. To do this, introduce the shorthand notation \(F_x \) for the restriction of \(D\phi \) onto the horizontal spaces \(H_xM \) in (26) (which forms a bundle). Then we get another flow on \(M \),

\[
\frac{dx(s)}{ds} = \xi_x(s) = F_{\pi(x(s))}[P_{\pi(x(s))}\hat{Y}(s)], \quad \phi(x(0)) = X(0),
\] (65)
with the property that \(\phi(x(s)) = X(s) \) for all \(s \). Put differently, the isomorphisms \(F \) give us a unique and well-defined horizontal vector field and smoothness is guaranteed by Theorem 3.

From Corollary 2 we know how tangent vectors are structured. All that remains now, is deriving how the result of the projection \(P_{X(t)} \) of \(\dot{Y}(s) \) can be computed directly as a horizontal vector, that is, the result of \(F_{X(t)}^{-1} \) since \(M \) is a manifold that is dense in the Euclidean space \(M \). Contrary to the geometries in [37] [38] [62] that are based on \(U \) being orthonormalized, we only require \(U \) to be of full rank. This is much simpler to ensure during the integration.

Remark that in order to enhance the integrator’s efficiency, a special step size control could be used like in [39] (9). We did not use such an estimator in our numerical experiments since ode45 of MATLAB performed adequately.

6.2.2. The orthogonal projection onto \(T_X \beta \).

Given an \((T, k)\)-decomposable tensor \(X = \phi(x) \) with \(x = (U_i, B_i) \) and an arbitrary \(Z \in \mathbb{R}^{(n \times n) \times \cdots \times n} \), let \(P_XZ = \delta X \in T_X \beta \) be the desired tangent vector. From Corollary 2 we know that

\[
\delta U_t = (\delta U_{t_1} \otimes U_{t_2} + \delta U_{t_1} \otimes U_{t_2})(B_t^{(1)})^T + (U_{t_1} \otimes U_{t_2})(\delta B_t^{(1)})^T,
\]

holds for \(t = t_r \) and \(\delta U_{t_r} = \text{vec}(\delta X) \). We will outline the principle behind computing the corresponding horizontal vector of \(\delta X \), that is, \((\delta U_t, \delta B_t) \in H_t \beta \). Since the tangent space is defined recursively, we immediately formulate it in full generality for an arbitrary node. This has the benefit that, while our derivation starts at the root, it holds true for the children without change.

In order not to overload notation, we drop the explicit notation for the node \(t \) and denote \(B^{(1)} \) by \(B \). Then, in case of the root, \(\delta U = \text{vec}(\delta X) \) has to be of the form

\[
\delta U = (\delta U_1 \otimes U_2 + U_1 \otimes \delta U_2)B^T + (U_1 \otimes U_2)\delta B^T,
\]

such that \(\delta U_1 \perp U_1 \) and \(\delta U_2 \perp U_2 \). In addition, \(\delta B \) is required to be a horizontal vector \(B^h \). Recalling once again definition (26) for the horizontal space, an equivalent requirement is that

\[
\delta B^T = M \delta C
\]

such that

\[
M = (U_1^T U_1 \otimes U_2^T U_2)^{-1}(B^T)^+, \quad \delta C \in \mathbb{R}^{(k_1 k_2 - k) \times k} \quad \text{for } t \notin L \cup \{t_r\},
\]

\[
M = I_n, \quad \delta C \in \mathbb{R}^{k_1 k_2 \times 1} \quad \text{for } t = t_r.
\]

In the above, we used \(X^+ \in \mathbb{R}^{n \times (n-k)} \) to denote a basis for the orthogonal complement of the matrix \(X \in \mathbb{R}^{n \times n} \).

Let \(Z \in \mathbb{R}^{n \times k} \) be an arbitrary matrix. Then we have the unique decomposition

\[
Z = (U_1^+ \otimes U_2^+) \delta C^1 + (U_1^+ \otimes U_2^+) \delta C^2 + (U_1 \otimes U_2) M \delta C^3 + (U_1 \otimes U_2) M^T \delta C^4 + (U_1^+ \otimes U_2^+) \delta C^5
\]

where all five \(10\) subspaces are mutually orthogonal. Observe that the first three terms in this decomposition constitute the desired \(\delta U \) from (66). Hence, straightforward orthogonal projection onto these subspaces delivers \(\delta U \) as the sum of

\[
(P_1^+ \otimes P_2)Z = (\delta U_1 \otimes U_2)B^T, \quad (P_1 \otimes P_2)Z = (U_1 \otimes \delta U_2)B^T,
\]

and

\[
(U_1 \otimes U_2)^\top M[M^T(U_1^T U_1 \otimes U_2^T U_2)^{-1}M^T(U_1 \otimes U_2)^\top Z = (U_1 \otimes U_2)^\top \delta B^T,
\]

where we have used the orthogonal projectors

\[
P_1Z = U_1(U_1^T U_1)^{-1}U_1^T Z, \quad P_2^\top Z = Z - P_2Z.
\]

\[10\] In the root \(t_r \), there are only four subspaces since \(M^T \) for \(M = I_n \) is void.
We are now ready to obtain δB from (69). If $t = t_r$, we get immediately that

$$\delta B^T = (U_1^T U_1 \otimes U_2^T U_2)^{-1}(U_1 \otimes U_2)^T Z = [(U_1^T U_1)^{-1} U_1^T \otimes (U_2^T U_2)^{-1} U_2^T] Z.$$

For nodes that are not the root, we first denote V as follows

$$V = (B^T)^{k_{t_r}}$$

and introduce the oblique projector onto $\text{span}(U_1^T U_1 \otimes U_2^T U_2)^{-1} V$ along the span of $V^k = B^T$ (see, e.g., [72] Theorem 2.1) as

$$P_M = (U_1^T U_1 \otimes U_2^T U_2)^{-1} V [V^T (U_1^T U_1 \otimes U_2^T U_2)^{-1} V]^{-1} V^T.$$

After some straightforward manipulation on (69), we obtain

$$\delta B^T = P_M [(U_1^T U_1)^{-1} U_1^T \otimes (U_2^T U_2)^{-1} U_2^T] Z.$$

One can avoid $V = (B^T)^{k_{t_r}}$ by using P_M, the oblique projection onto the span of B^T along the span of $(U_1^T U_1 \otimes U_2^T U_2)^{-1} V$ as follows

$$P_M = I - P_M^T B (U_1^T U_1 \otimes U_2^T U_2)^{-1} B (U_1^T U_1 \otimes U_2^T U_2).$$

In order to obtain δU_1, we first reshape $Z \in \mathbb{R}^{n \times n \times k}$ into the third-order tensor

$$\tilde{Z} \in \mathbb{R}^{n \times n \times n_2}$$

such that $\tilde{Z}^{(1)} = Z^T$.

Then using (1), we can write (68) as a multilinear product (recall $B = B_t^{(1)}$),

$$(I_{k_1}, P_1^k, P_2) \circ \tilde{Z} = (I_{k_1}, \delta U_1, U_2) \circ B_{t_r} \,, \quad (I_{k_2}, P_1^k, P_2^k) \circ \tilde{Z} = (I_{k_2}, U_1, \delta U_2) \circ B_{t_r},$$

and after unfolding in the second mode, we get

$$P_1^k \tilde{Z}^{(2)} (I_{k_1} \otimes P_2) = \delta U_1 B_t^{(2)} (I_{k_2} \otimes U_2)^T.$$

So, isolating for δU_1 we obtain

$$\delta U_1 = P_1^k \tilde{Z}^{(2)} (I \otimes U_2 (U_2^T U_2)^{-1}) (B_t^{(2)})^T,$$

since $B_t^{(2)}$ has full rank. Similarly we have

$$\delta U_2 = P_2^k \tilde{Z}^{(3)} (I \otimes U_1 (U_1^T U_1)^{-1}) (B_t^{(2)})^T.$$

In the beginning of this derivation, we started with the root and $Z = \text{vec}(Z)$. It should be clear that the same procedure can now be done for the children by setting $Z = \delta U(l_{t_{r-1}})$ and $Z = \delta U(l_{t_{r-1}})$ to determine $\delta B(l_{t_{r-1}})$ and $\delta B(l_{t_{r-1}})$, respectively. Continuing this recursion, we finally obtain all δB_i and, in the leafs, the δU_i representing δX.

We emphasize that the implementation of the procedure above does not form Kronecker products explicitly. Instead, one can formulate most computations as multilinear products. Our MATLAB implementation of the projection operator is available at https://web.math.princeton.edu/~bartv/geom_ht. It uses the htucker toolbox [54] to represent and operate with HT tensors and their tangent vectors.

We remark that the current implementation uses Z as a full tensor. Clearly, this is not suitable for high-dimensional applications. When Z is available in HT format, it is possible to exploit this structure. It is however beyond the scope of the current paper to give the details and leave this for the forthcoming paper [70].

6.2.3. Numerical example

Let (T, k) be an HT format for d-dimensional tensors in $\mathbb{R}^{N \times N \times \cdots \times N}$ with $k_t = K$ for $t \in T \setminus t_r$. Consider the set $x(s) = (U_t(s), B_t(s))$ of parameterizations in M given by

$$U_t(s) = (2 + \sin(s)) \, \tilde{U}_t, \quad B_t(s) = \exp(s) \, \tilde{B}_t,$$

where the \tilde{U}_t and \tilde{B}_t are fixed. We apply the dynamical low-rank approximation to the time-dependent tensor

$$Y(s) = \phi(x(s)) + \omega \varepsilon \, \exp(c \, s \,(s + \sin(3s))) I, \quad 0 \leq s \leq 15,$$

(70)
with \(\omega \) a random perturbation of unit norm, \(c \) and \(\epsilon \) constants and \(I \) the tensor containing all ones. Observe that the norm of \(\phi(x(s)) \) grows like \(\exp(s \log_2 d) \) when \(T \) is a balanced tree. A similar tensor was used in the context of Tucker tensors in [38]. As initial value we take \(Y(0) \).

In order to compare our approach with point-wise approximation by SVDs, we display the absolute approximation error in Figure 5 for \(N = 45, d = 4, K = 3, \) and different values of \(\epsilon \in \{10^{-1}, 10^{-4}, 10^{-7}\} \). The dynamical low-rank approximations are the result of integrating (65) with ode45 in Matlab using a relative tolerance of \(10^{-3} \). The SVD approximations are computed in every sample point of \(s \) with explicit knowledge of the rank \(K \).

First, observe in Figure 5 that the absolute errors for the SVD approach grow in both cases. Since the norm of \(Y(s) \) grows too, this is normal and the relative accuracy is in line with (62). In both cases, we also observe that, as expected, the approximation error decreases with smaller \(\epsilon \).

For dynamical low-rank, the approximation errors are virtually the same as for the SVD approach for most of the values of \(s \). On the left panel, however, we see that the error for dynamical low-rank stays more or less constant and even goes to zero. This does not happen on the right. Hence, the dynamical low-rank algorithm achieves very high relative accuracy when \(c = 0 \). An explanation for this difference is that the factor \(c = 0 \) on the left ensures that \(\phi(x(s)) \) becomes bigger in norm compared to the noise factor \(\omega \). If \(s \) is large enough, \(Y(s) \) will have a numerically exact \((T,k)\)-decomposition. The dynamical low-rank algorithm seems to detect this and approximates \(Y(s) \) exactly. This happens at some point during the integration when \(c < 2 \). On the right, however, \(c \) is chosen such that both tensors are equally large in norm. Now \(Y(s) \) fails to be an exact \((T,k)\) tensor and dynamical low-rank is as accurate as the SVD approach.

In the next experiment, we investigate the computational time applied to the problem from above with \(c = 0 \) and \(\epsilon = 10^{-4} \). In Table 1 we see the results for several sizes \(N \) and ranks \(K \) with \(d = 4 \). In addition to the total time, the number of steps that the numerical integrator took is also visible. Observe that this is fairly constant. The scaled time is the total time divided by the number of function evaluations, that is, computing the horizontal vector \(\xi_h^k(s) \).

Next, since the dynamical rank approximation is able to form \(X(s) \) for every \(s \), we also computed 100 point-wise SVD-based approximations throughout the interval \(0 \leq s \leq 15 \) using htensor.truncate_ltr of [54]. The indicated scaled time is the mean. Since the solution is smooth, one can probably reduce this number somewhat, for example, by Chebyshev interpolation. Nevertheless, we can see from the table that there is a significant gap between the computational times of both approaches. It is also clear that dynamical approximation becomes faster with increasing \(N \) compared to the SVD approach. In addition, the rank \(K \) does not seem to have much influence.
Table 1: Computational results applied to (70) with $c = 0$ and $\epsilon = 10^{-4}$. Times are in seconds.

<table>
<thead>
<tr>
<th>N</th>
<th>d</th>
<th>K</th>
<th>dynamical total time</th>
<th>scaled time</th>
<th>steps</th>
<th>SVD total time</th>
<th>scaled time</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>4</td>
<td>3</td>
<td>9.62</td>
<td>0.050</td>
<td>193</td>
<td>7.22</td>
<td>0.72</td>
</tr>
<tr>
<td>35</td>
<td>4</td>
<td>3</td>
<td>19.1</td>
<td>0.10</td>
<td>187</td>
<td>28.4</td>
<td>0.28</td>
</tr>
<tr>
<td>45</td>
<td>4</td>
<td>3</td>
<td>39.8</td>
<td>0.21</td>
<td>187</td>
<td>79.2</td>
<td>0.80</td>
</tr>
<tr>
<td>25</td>
<td>4</td>
<td>6</td>
<td>10.4</td>
<td>0.056</td>
<td>187</td>
<td>7.13</td>
<td>0.71</td>
</tr>
<tr>
<td>35</td>
<td>4</td>
<td>6</td>
<td>23.8</td>
<td>0.13</td>
<td>187</td>
<td>30.9</td>
<td>0.31</td>
</tr>
<tr>
<td>45</td>
<td>4</td>
<td>6</td>
<td>49.4</td>
<td>0.26</td>
<td>193</td>
<td>82.8</td>
<td>0.83</td>
</tr>
<tr>
<td>25</td>
<td>4</td>
<td>9</td>
<td>11.3</td>
<td>0.062</td>
<td>181</td>
<td>7.73</td>
<td>0.78</td>
</tr>
<tr>
<td>35</td>
<td>4</td>
<td>9</td>
<td>24.3</td>
<td>0.12</td>
<td>205</td>
<td>29.3</td>
<td>0.30</td>
</tr>
<tr>
<td>45</td>
<td>4</td>
<td>9</td>
<td>50.5</td>
<td>0.25</td>
<td>205</td>
<td>80.2</td>
<td>0.81</td>
</tr>
</tbody>
</table>

7. Conclusion

We introduced a differential geometry of the hierarchical Tucker format for tensors with fixed dimension tree and fixed HT ranks. Using elementary tools from differential geometry, it was shown that this set admits a natural quotient manifold structure that can be embedded as a submanifold into the space of real tensors. In addition, we derived an explicit and unique expression for the parametrization of the tangent space by means of a horizontal space on the quotient manifold, also known as gauging the parametrization.

As second contribution we showed how this geometric description aids in establishing convergence criteria for the nonlinear Gauss–Seidel method using hierarchical Tucker tensors to minimize convex functionals or Rayleigh quotients. Finally, we extended the dynamical low rank approximation algorithm to hierarchical Tucker tensors and derived the orthogonal projection operator onto the tangent space, the main computational step in this algorithm. By means of numerical experiment, we have shown that this approach compares favorably to truncated singular value decompositions.

Our geometric derivations and the applications were restricted to the hierarchical Tucker format for finite dimensional vector spaces over \mathbb{R} and with binary dimension trees. Several generalizations of this format are possible, for example, to \mathbb{C}, and to general trees. Our results can be extended in a more or less straightforward way to these cases. Also, a generalization to Hilbert spaces is possible; see [49, 73, 74]. A hierarchical format for infinite dimensional Banach spaces, however, requires more advanced techniques, an is considered in [74].

Acknowledgements

A.U. was supported by the DFG-Priority Program 1324. The authors thank Daniel Kressner, Thorsten Rohwedder, and Christine Tobler for helpful discussions about different parts of this paper.

References

on Sparse Tensor Discretizations of High-Dimensional Problems.

