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SUBSPACE ACCELERATION FOR THE CRAWFORD NUMBER
AND RELATED EIGENVALUE OPTIMIZATION PROBLEMS∗

DANIEL KRESSNER† , DING LU‡ , AND BART VANDEREYCKEN‡

Abstract. This paper is concerned with subspace acceleration techniques for computing the
Crawford number, that is, the distance between zero and the numerical range of a matrix A. Our
approach is based on an eigenvalue optimization characterization of the Crawford number. We
establish local convergence of order 1 +

√
2 ≈ 2.4 for an existing subspace method applied to such

and other eigenvalue optimization problems involving a Hermitian matrix that depends analytically
on one parameter. For the particular case of the Crawford number, we show that the relevant part of
the objective function is strongly concave. In turn, this enables us to develop a subspace method that
only uses three-dimensional subspaces but still achieves global convergence and a local convergence
that is at least quadratic. A number of numerical experiments confirm our theoretical results and
reveal that the established convergence orders appear to be tight.
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1. Introduction. During the last few years, subspace methods for optimizing
eigenvalues of Hermitian matrices or singular values of non-Hermitian matrices have
been developed, analyzed, and applied to a variety of problems. A common trait
of these methods is that they use the subspace spanned by eigenvectors or singular
vectors from previous iterations to build a low-dimensional surrogate model that de-
termines the next iterate. Examples include subspace methods for computing (real)
pseudospectral abscissa for linear [15, 18] and nonlinear [19] eigenvalue problems, for
computing the H∞ norm of a linear control system [1], as well as for solving Hermitian
eigenvalue optimization problems depending on several parameters [13].

In this work, we revisit eigenvalue optimization problems depending on one pa-
rameter, with a particular focus on their application to Crawford number computa-
tion. The Crawford number [5, 24] of a matrix A ∈ Cn×n is defined as the distance
of its numerical range F(A) from zero:

(1) γ(A) = min{ |z| : z ∈ F(A) }, F(A) = { vHAv : v ∈ Cn, ‖v‖2 = 1 }.

This quantity plays an important role in the sensitivity analysis of matrix definite
pairs [4, 24], and the detection of hyperbolic quadratic eigenvalue problems [7, 11].
Possibly even more importantly, γ(A) and its generalization to bilinear forms on
Hilbert spaces play the role of the coercivity constant for (discretized) non-self-adjoint
differential/integral operators and their discretization; see [2] for a recent example.

By the Hausdorff–Toeplitz theorem, the numerical range F(A) is a compact con-
vex set in C. Hence, (1) is a convex optimization problem and a number of algorithms
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explicitly exploit this property, for example, by approximating the numerical range
as a sequence of convex polygons [26]. However, it turns out to be more effective to
avoid such geometric considerations in C ∼= R × R and exploit that (1) is in fact a
univariate optimization problem. To see this, we first write

A = S + ıK,

where S = (A+AH)/2 and K = (A−AH)/2ı are both Hermitian matrices. Using the
variational characterization of eigenvalues of Hermitian matrices, one then obtains

(2) γ(A) = max

{
max

θ∈[0,2π]
λmin(S cos θ +K sin θ), 0

}
;

see, e.g., [4, Thm. 2.1] and [11, eq. (2.8)]. Based on this formula, a level set algo-
rithm [4, 11] and bisection algorithms [3, 8] were developed. While being reliable,
these algorithms are only linearly convergent and they typically require a relatively
large number of iterations to attain high accuracy.

Contributions. The approach considered in this paper consists of applying exist-
ing subspace methods, specifically the one from [13], to (2) and, more generally, to
univariate eigenvalue optimization problems. We would like to emphasize the follow-
ing two novel contributions.

Existing convergence analysis [13, 15, 18] of subspace methods for eigenvalue or
singular value optimization establishes local superlinear convergence. The restriction
to the univariate case enables the use of univariate analytic interpolation results, which
in turn allows us to derive in section 2 a much stronger result: local convergence of
order σ = 1 +

√
2 ≈ 2.4. In contrast to [13], our analysis is sharper since numerical

experiments reveal that the obtained value for σ appears to be tight.
Restricting ourselves further to the specific eigenvalue optimization problem (2),

we establish in section 3 a strong concavity property for the objective function, a
variation of a result from [8]. This allows us to show that subspace methods enjoy a
rather useful “bracketing” property when applied to Crawford number computations.
Based upon these insights, we develop a “3-vector” subspace method that works with
only three-dimensional subspaces but still achieves global convergence and a local
convergence that is quadratic or even higher.

2. Hermitian eigenvalue optimization problem. In the following, we con-
sider the univariate eigenvalue optimization problem

(3) max
θ∈Ω

ϕ(θ) with ϕ(θ) = λmin(H(θ)),

where Ω ⊂ R is a closed interval, and H(θ) ∈ Cn×n is Hermitian and real analytic for
θ ∈ Ω, that is, it admits an analytic extension in an open neighborhood ΩC ⊂ C.

Given an orthonormal basis V ∈ Cn×k of a k-dimensional subspace of Cn, the
subspace acceleration techniques discussed, e.g., in [13, 22], proceed by considering
the reduced objective function

ϕ(θ;V ) = λmin(V HH(θ)V ).

Typically k � n and it can therefore be expected that computing the maximum of
ϕ(θ;V ) on Ω is cheaper than solving (3). In particular, this is the case when H
admits an affine linear decomposition H(θ) =

∑m
`=1 f`(θ)H` with scalar functions

f` and Hermitian matrices H` such that m � n. After precomputing V HH`V for
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` = 1, . . . ,m, each evaluation of ϕ(θ;V ) only requires the addition of m matrices and
the solution of one k × k eigenvalue problem.

The following Lemma 2.1 recalls results from [13, 22] on basic properties of the
reduced function ϕ(θ; V ); its proof is included for completeness.

Lemma 2.1. Let U and V be orthonormal bases of subspaces U ⊂ V of Cn. Then
the following properties hold:

(a) Monotonicity: ϕ(θ;U) ≥ ϕ(θ;V ) ≥ ϕ(θ).
(b) Interpolation: Let θ ∈ Ω and suppose that V contains an eigenvector belonging

to the eigenvalue λmin(H(θ)) of H(θ). Then, ϕ(θ;V ) = ϕ(θ). In addition, if
λmin(H(θ)) is a simple eigenvalue, then ϕ′(θ;V ) = ϕ′(θ), where all derivatives
are taken with respect to θ.

Proof. (a) Monotonicity follows directly from the variational characterization of
eigenvalues:

(4) ϕ(θ;U) = min
u∈U

uHH(θ)u

uHu
≥ min

u∈V

uHH(θ)u

uHu
= ϕ(θ;V ).

The second inequality is obtained from the first since ϕ(θ) = ϕ(θ; In).
(b) Let v(θ) be an eigenvector belonging to λmin(H(θ)). Since v(θ) ∈ V \ {0}

there is x ∈ Ck such that v(θ) = V x. Then, by definition of the eigenvector v(θ), we
have

ϕ(θ;V ) = min
z∈Ck

zHV HH(θ)V z

zHz
≤ xHV HH(θ)V x

xHx
=
v(θ)HH(θ)v(θ)

v(θ)Hv(θ)
= ϕ(θ).

Combined with (a), we obtain ϕ(θ;V ) = ϕ(θ). If ϕ(θ) is a simple eigenvalue of
H(θ), the Cauchy interlacing theorem yields that ϕ(θ;V ) is also a simple eigenvalue of
V HH(θ)V with eigenvector x. By well-known results on the derivatives of eigenvalues
(see, e.g., [16]), we obtain

ϕ′(θ) =
v(θ)HH ′(θ)v(θ)

v(θ)Hv(θ)
=
xHV HH ′(θ)V x

xHx
= ϕ′(θ;V ).

By Lemma 2.1, ϕ(θ;V ) provides an upper bound to ϕ(θ) that monotonically
decreases as the dimension of V increases. In view of the intimate relation between
gradients of eigenvalues and eigenvectors, it is a natural idea to extend V by an
eigenvector corresponding to ϕ(θ;V ). This idea leads to the basic subspace method
from [13], summarized in Algorithm 1. The difficulty of solving the reduced problem
in line 4 depends on the application. It turns out to be quite cheap for the Crawford
number, as we will see in section 3. Other applications with this property are also
listed in [13].

In the exceptional situation that Algorithm 1 stagnates it has found a global
maximum.

Lemma 2.2. If θk+1 = θj for some j ≤ k, then Algorithm 1 terminates and θk+1,
ϕk+1 solve (3).

Proof. Without loss of generality, we may assume j = k. By construction, λk is
a lower bound and ϕk+1 is an upper bound for maxθ∈Ω ϕ(θ). Now, if θk = θk+1, then

ϕk+1 = λmin(V Hk H(θk+1)Vk) = λmin(V Hk H(θk)Vk) = λmin(H(θk)) = λk,

where we used vk ∈ span(Vk) in the second-to-last equality.
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Algorithm 1 Subspace method for univariate eigenvalue optimization.

Input: Real analytic Hermitian matrix-valued function H(θ), initial guess θ0, toler-
ance tol > 0.

Output: Approximation solution θk+1, ϕk+1 of eigenvalue optimization problem (3).

1: Compute λ0 = λmin(H(θ0)) and corresponding normalized eigenvector v0.
2: Initialize V0 = v0.
3: for k = 0, 1, . . . , n− 1 do
4: Solve θk+1 = arg max

θ∈Ω
λmin(V Hk H(θ)Vk) and set ϕk+1 = λmin(V Hk H(θk+1)Vk).

5: Stopping criteria: if ϕk+1 − λk < tol · |ϕk+1| then terminate.
6: Compute the smallest eigenvalue λk+1 with normalized eigenvector vk+1 of

H(θk+1).
7: Subspace update: Vk+1 = orth([Vk, vk+1]).
8: end for

A consequence of this lemma is that if vk+1 ∈ span(Vk), we have Vk+1 = Vk and
θk+1 = θk. This implies we have solved (3). Let us note that Algorithm 1 converges
trivially after at most n steps, since Vn−1 will be a basis of Cn and Lemma 2.1
shows that ϕn solves (3) exactly. We would like to emphasize, however, that this
observation is merely a curiosity and of little practical value. The use of Algorithm 1
is that it produces very accurate approximations already after a few steps, certainly
much less than n when n is large. In [13, Thm. 3.1], an infinite-dimensional setting
was considered to meaningfully establish a global convergence result, in the sense that
every accumulation point of the sequence (θk)∞k=0 is in fact a global maximum of the
optimization problem (3).

2.1. Local convergence. Here and in the following we assume that the eigen-
values corresponding to ϕ(θi) in Algorithm 1 are simple and hence differentiable. By
the interpolation property established in Lemma 2.1(b), the reduced function ϕ(θ; Vk)
from the kth iteration of Algorithm 1 then constitutes a (nonpolynomial) Hermite in-
terpolation of ϕ(θ), that is, it interpolates both function values and derivatives at the
sampling points:

(5) ϕ(θi; Vk) = ϕ(θi) and ϕ′(θi; Vk) = ϕ′(θi) for i = 0, 1, . . . , k.

From (5) we can therefore expect a highly accurate approximation when the iterates
θi are close to a global maximum θ∗ of (3). Moreover, this process has a snowball
effect: the accuracy of all previous θ0, . . . , θk accumulates to produce the next, even
more accurate iterate θk+1. The following theorem quantifies this effect. Its proof is
deferred to section 2.2.

Theorem 2.3 (error recurrence). Let θ∗ solve (3) and assume that ϕ(θ∗) =
λmin(H(θ∗)) is a simple eigenvalue and ϕ′′(θ∗) < 0. Suppose that Algorithm 1 starts
with θ0 ∈ [θ∗ − r, θ∗ + r] for sufficiently small r > 0, and all subsequent iterates
θ1, θ2, θ3, . . . remain in [θ∗ − r, θ∗ + r]. Then

(6) |θk+1 − θ∗| ≤ |θk − θ∗| ∀k ≥ 1.

Moreover, there exists a constant R > 0 independent of k and θ0 such that the weighted
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error e` = |θ` − θ∗|/R satisfies

(7) ek+1 ≤ C · (k + 1) · ek
k−1∏
`=0

e2
` , k = 1, 2, . . . ,

where C = 16M/|ϕ′′(θ∗)R2| with M = maxz∈C : |z−θ∗|=R ‖H(z)‖2.

In an infinite-dimensional setting, the global convergence of Algorithm 1 estab-
lished in [13] implies that the assumption θk ∈ [θ∗−r, θ∗+r] of Theorem 2.3 is satisfied
when starting the analysis at k ≥ K with K sufficiently large.

We proceed by drawing conclusions on the asymptotic convergence from Theo-
rem 2.3. Because it converges in a finite number of steps, it is meaningless to make any
asymptotic statement about Algorithm 1 itself. To avoid this difficulty, we consider
the upper bounds produced by the recurrence (7) instead and establish high-order
convergence for these bounds.

Theorem 2.4. Consider a sequence (ek)∞k=0 satisfying the recurrence (7), with
3Ce2

0 < 1 and 2e1 ≤ 1. Then the sequence converges to zero with a local R-convergence
order

(8) σ = 1 +
√

2 ≈ 2.4142.

In other words, there is a sequence (εk)∞k=0 such that ek ≤ εk and limk→∞ |εk|/|εk−1|σ
<∞.

Proof. Introducing the auxiliary terms ẽ` = (` + 1)e`, we get from the error
recurrence (7) that

ẽk+1 ≤ 3C · ẽk
k−1∏
`=0

ẽ2
` , k = 1, 2, . . . .

We now define a sequence (εk)∞k=0 by letting εk satisfy this recurrence with “=” and
setting ε0 = ẽ0, ε1 = ẽ1. By induction, it holds that ẽk ≤ εk. Taking logarithms, we
have

(9) ln εk+1 = ln εk + 2

k−1∑
`=0

ln ε` + ln 3C, k = 1, 2, . . . .

Setting sk = 1
2 ln 3C +

∑k
`=0 ln ε`, this becomes equivalent to

sk+1 = 2sk + sk−1, s0 = ln ε0 +
1

2
ln 3C < 0, s1 = s0 + ln ε1 < 0.

By standard techniques for solving difference equations, there exist c1, c2 such that

sk = c1(1 +
√

2)k + c2(1−
√

2)k.

Observe that sk < 0 for all k. Since the first term dominates when k → ∞, we have
c1 < 0. From

ln εk
σk

=
sk − sk−1

σk
−→c1

√
2

σ
< 0, as k →∞,

one obtains Q-convergence of εk with order σ. Since ek ≤ ẽk ≤ εk for all k, this shows
the claimed R-convergence of ek.
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Remark 2.5. We note that the local convergence analysis in [13] also applies to
Algorithm 1. In particular, using [13, Thm. 3.3] one can show superlinear convergence
with order at least 1.618. In our setting and analysis, we obtained however a more
explicit bound for the error recurrence that lead to the improved order 2.414. As we
will see in the numerical experiments, this seems to be the correct order.

2.2. Proof of Theorem 2.3. Throughout this section, we suppose that the
assumptions of Theorem 2.3 hold. In particular, ϕ(θ∗) = λmin(H(θ∗)) is a simple
eigenvalue of H(θ∗) and ϕ′′(θ∗) < 0 holds. We also recall that H(θ) is assumed to
admit an analytic extension in an open neighborhood ΩC ⊂ C containing Ω.

In the following, we measure the distance between a vector u ∈ Cn and the
subspace spanned by V ∈ Cn×k as

(10) dist(V, u) = min {‖u− v‖2 : v ∈ span(V )} .

We let

(11) v(θ) = a normalized eigenvector belonging to λmin(H(θ)).

The lemma below shows that the reduced function ϕ(θ;V ) can be analytically
extended to a region around θ∗. Moreover, this region can be chosen uniformly over
all subspaces V containing a sufficiently good approximation of v(θ∗).

Lemma 2.6 (analyticity). Let V be an orthonormal basis satisfying dist(V, v(θ∗))
≤ δ. Provided that δ > 0 is sufficiently small, there exists a constant R > 0 (indepen-
dent of V ) such that the following statements hold:

(a) The function

(12) ϕ̂(z; V ) = λ∗(V
HH(z)V ),

where λ∗ denotes the eigenvalue closest to ϕ(θ∗; V ), is well defined on the
disc DC(θ∗; R) = {z ∈ C : |z − θ∗| ≤ R}.

(b) ϕ̂(z; V ) is complex analytic on DC(θ∗; R).
(c) ϕ̂(θ; V ) = ϕ(θ; V ) for θ ∈ R ∩ DC(θ∗; R). Hence, ϕ̂(·; V ) is the analytic

continuation of ϕ(·; V ).

Proof. (a) and (b) Let λmin−1(·) denote the second smallest eigenvalue of a Her-
mitian matrix. By our assumptions,

gap = λmin−1(H(θ∗))− λmin(H(θ∗)) > 0.

We claim this induces a nonzero gap for the reduced matrix V HH(θ∗)V provided
that δ is sufficiently small. To see this, let v(θ∗) = v + d with v ∈ span(V ) and
‖d‖2 = dist(V, v(θ∗)) ≤ δ. Clearly, v depends continuously on δ around zero and hence
vHH(θ∗)v/v

Hv → v(θ∗)
HH(θ∗)v(θ∗) = λmin(H(θ∗)) as δ → 0. We can therefore

choose δ > 0 such that

λmin(V HH(θ∗)V ) = min
x∈V

xHH(θ∗)x

xHx
≤ vHH(θ∗)v

vHv
< λmin(H(θ∗)) + gap/2.

In turn, using eigenvalue interlacing, the gap for the reduced problem satisfies

g̃ap = λmin−1(V HH(θ∗)V )− λmin(V HH(θ∗)V )

> λmin−1(H(θ∗))− λmin(H(θ∗))− gap/2 = gap/2.(13)

In particular, λmin(V HH(θ∗)V ) is a simple eigenvalue.
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We now choose R > 0 sufficiently small such that DC(θ∗; R) is contained in ΩC
(where H(z) is analytic) and, moreover,

‖H(z)−H(θ∗)‖2 ≤ gap/4 ∀z ∈ DC(θ∗; R).

Because V is an orthonormal basis, this also implies

(14) ‖V HH(z)V − V HH(θ∗)V ‖2 ≤ gap/4, ∀z ∈ DC(θ∗; R).

Note that V HH(θ∗)V is Hermitian while V HH(z)V is not. Applying classical eigen-
value perturbation results for nearly Hermitian matrices (see, e.g., [12] and [25,
Thm. 5.1, Chap. IV, and the discussion below its proof]) implies that there is ex-
actly one eigenvalue of V HH(z)V in the disc DC

(
λmin(V HH(θ∗)V ); gap/4

)
for each

z ∈ DC(θ∗; R), thus showing ((a)), that the eigenvalue function λ∗(V
HH(z)V ) is well

defined on DC(θ∗; R). This function is complex analytic due to the analyticity of
simple eigenvalues [14]. Since the choice of R to satisfy (14) is independent of V , once
δ is sufficiently small, and we have thus proved ((b)).

((c)) The result follows immediately from the continuity of λmin(V HH(θ)V ) for
θ ∈ R and the uniqueness of the eigenvalue λ∗(V

HH(θ)V ) in the interval θ ∈ [θ∗ −
R, θ∗ +R] ⊂ DC(θ∗, R).

Trivially, because of ϕ(θ) = ϕ(θ; In), Lemma 2.6 implies that ϕ(θ) also has an
analytic extension to ϕ̂(z) = ϕ̂(z; In) in the complex disc DC(θ∗; R) with the same
estimate for R.

Lemma 2.7 (analytic approximation). Let δ and R be as in Lemma 2.6. Then
there exists 0 < r ≤ R/2 such that the following statements holds:

(i) dist(v(θ∗), v(θ)) ≤ δ for all θ ∈ R with |θ − θ∗| ≤ r.
(ii) Consider any k+1 mutually distinct points {θi}ki=0 ⊂ [θ∗−r, θ∗+r] ordered in

decreasing distance to θ∗, and suppose that v(θ0), v(θ1), . . . , v(θk) ∈ span(V ).
Then the following hold:

(a) Both ϕ(θ) and ϕ(θ;V ) are real analytic on [θ∗ −R, θ∗ +R].
(b) With M = max

z∈C : |z−θ∗|=R
‖H(z)‖2,

(15) |ϕ′(θ∗;V )− ϕ′(θ∗)| ≤
8M(k + 1)

(R/2)2k+2
|θ∗ − θk|

k−1∏
i=0

|θ∗ − θi|2.

(c) For all θ ∈ R with |θ − θ∗| ≤ r,
(16) ϕ′′(θ;V ) ≤ ϕ′′(θ∗)/2 < 0.

Proof. (i) This follows immediately from the fact that the eigenvalue λmin(H(θ∗))
is simple, which implies the eigenvector v(θ) can be chosen to be continuous around
θ∗. Hence, v(θ)→ v(θ∗) as θ → θ∗; see, e.g., [14].

(ii)(a) This follows from Lemma 2.6, since dist(V, v(θ∗)) ≤ dist(v(θi), v(θ∗)) ≤ δ
according to (i).

(ii)(b) interpolation of ϕ(θ) close to θ∗. We first recall from Lemma 2.1 that

ϕ(θi;V ) = ϕ(θi), ϕ′(θi;V ) = ϕ′(θi) for i = 0, . . . , k.

Let Π be the permutation such that θΠ(0) < θΠ(1) < · · · < θΠ(k). Then the first

interpolation condition combined with Rolle’s theorem implies that there exist θ̂i
with

θΠ(i) < θ̂i < θΠ(i+1) and ϕ′(θ̂i;V ) = ϕ′(θ̂i) for i = 0, . . . , k − 1.
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This implies |θ∗ − θ̂i| < |θ∗ − θΠ(i)| if θΠ(i+1) ≤ θ∗ and |θ∗ − θ̂i| < |θ∗ − θΠ(i+1)| if
θΠ(i) ≥ θ∗. For i∗ with θΠ(i∗) ≤ θ∗ ≤ θΠ(i∗+1) the assumed ordering implies Π(i∗) = k
or Π(i∗ + 1) = k. Without loss of generality, let us suppose that Π(i∗) = k, which in

turn implies |θ∗ − θ̂i∗ | < |θ∗ − θΠ(i∗+1)| . In summary, we have

k−1∏
i=0

|θ∗ − θ̂i| =
i∗−1∏
i=0

|θ∗ − θ̂i|
k−1∏
i=i∗

|θ∗ − θ̂i|

<

i∗−1∏
i=0

|θ∗ − θΠ(i)|
k−1∏
i=i∗

|θ∗ − θΠ(i+1)| =
k−1∏
i=0

|θ∗ − θi|.(17)

Since the real analytic function ϕ′(θ;V ) − ϕ′(θ) is zero at 2k + 1 distinct points

θi and θ̂i in [θ∗ − r, θ∗ + r], standard interpolation error results (see, e.g., [6]) yield

|ϕ′(θ;V )− ϕ′(θ)| =
∣∣∣∣∣ϕ(2k+2)(ξ)− ϕ(2k+2)(ξ;V )

(2k + 1)!

k∏
i=0

(θ − θi)
k−1∏
i=0

(θ − θ̂i)
∣∣∣∣∣(18)

for all θ ∈ [θ∗ − r, θ∗ + r] with some ξ ≡ ξ(θ) ∈ [θ∗ − r, θ∗ + r]. Next, to bound
the derivative term, we use that ϕ(θ; V ) extends analytically to the complex disc
DC(θ∗; R) by Lemma 2.6. Using Cauchy’s integral formula (see, e.g., [21]),

(19) |ϕ(m)(ξ; V )| = |ϕ̂(m)(ξ; V )| =
∣∣∣∣∣m!

2πı

∮
|z−θ∗|=R

ϕ̂(z; V )

(z − ξ)m+1
dz

∣∣∣∣∣ ≤ 2M ·m!

(R/2)
m ,

where the last inequality uses |ϕ̂(z;V )| = |λ∗(V HH(z)V )| ≤ ‖H(z)‖2 ≤ M , as well
as |z − ξ| ≥ |z − θ∗| − |θ∗ − ξ| ≥ R− r ≥ R/2. Setting V = In, we also obtain

|ϕ(m)(ξ)| = |ϕ(m)(ξ; In)| ≤ 2M ·m!

(R/2)
m .

Plugging these two bounds with m = 2k + 2 and (17) into (18) yields (15).
(ii)(c) Because ϕ′(θ;V ) − ϕ′(θ) has 2k + 1 zeros, Rolle’s theorem implies that

ϕ′′(θ;V )−ϕ′′(θ) has 2k distinct zeros in [θ∗− r, θ∗+ r]. Therefore, in analogy to (15)
one can show that |ϕ′′(θ∗;V )− ϕ′′(θ∗)| → 0 as r → 0. In turn,

|ϕ′′(θ∗)− ϕ′′(θ;V )| ≤ |ϕ′′(θ;V )− ϕ′′(θ∗; V )|+ |ϕ′′(θ∗;V )− ϕ′′(θ∗)| → 0.

Because of ϕ′′(θ∗) < 0 this shows that (16) is satisfied when r > 0 is chosen sufficiently
small.

Now we are ready to prove the main result.

Proof of Theorem 2.3. Without loss of generality, we may assume that all θi,
i = 0, . . . , k are mutually distinct because otherwise ek+1 = 0 by Lemma 2.2 and (7)
is trivially satisfied.

Let us now assume that r is sufficiently small such that the statements of Lemma
2.7 and, in turn, Lemma 2.6 hold. Then ϕ(θ; Vk) is real analytic on [θ∗−R, θ∗+R]. The
optimality condition ϕ′(θk+1;Vk) = 0 in the kth iteration of Algorithm 1 combined
with Taylor expansion give

0 = ϕ′(θk+1;Vk) = ϕ′(θ∗; Vk) + ϕ′′(ξ;Vk)(θk+1 − θ∗)
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for some ξ with |ξ − θ∗| ≤ r Therefore,

(20) |θk+1 − θ∗| = |ϕ′(θ∗; Vk)|/|ϕ′′(ξ;Vk)| ≤ 2|ϕ′(θ∗; Vk)|/|ϕ′′(θ∗)|,

where we used (16) in the last inequality. Using the derivative bound (15) and ex-
ploiting ϕ′(θ∗) = 0, we obtain

|θk+1 − θ∗| ≤ |θk − θ∗| ·
16M(k + 1)

|ϕ′′(θ∗)| · (R/2)2
· (2r/R)2k.

This implies the monotonicity property (6) when choosing r sufficiently small.
The error recurrence (7) follows immediately from (20), combined with mono-

tonicity (6) and the derivative bound (15). (For notational simplicity, we replaced
R/2 by R.)

3. Crawford number computation. We will now apply and specialize the
developments from the previous section to the computation of the Crawford number,
which has the form of an eigenvalue optimization problem characterization (2). We
apply the subspace method, Algorithm 1, to maximize

(21) ϕ(θ) = λmin(H(θ)) with H(θ) = S cos θ +K sin θ

with the Hermitian matrices S = (A+AH)/2 and K = (A−AH)/2ı. This function is
clearly 2π periodic and continuous. When maximizing ϕ(θ), we can therefore restrict
its domain to any interval [θ0, θ0 + 2π].

3.1. Properties of the objective function. The result of the following lemma
implies that, assuming γ(A) > 0, the objective function ϕ is quasi-concave (unimodal)
on the open set {θ : ϕ(θ) > 0} and after restricting θ to an appropriately chosen
interval of length 2π. A similar result1 was also shown in [8, sec. 4.3] but we prove in
addition that ϕ is strongly concave.

Lemma 3.1 (strong concavity). Let γ(A) > 0. Then there exists θ0 ∈ R such
that

(22) {θ : ϕ(θ) > 0} ∩ [θ0, θ0 + 2π]

is an open, nonempty interval (`, u) of length at most π. Moreover, ϕ(θ) is strongly
concave on any closed subinterval of (`, u).

Proof. Let θ∗ be a maximizer of ϕ(θ). By replacing A with e−ıθ∗A, we may
assume without loss of generality that θ∗ = 0, and in turn ϕ(0) = γ(A) > 0. We will
prove the result for θ0 = −π.

We have
(23)
ϕ(θ) = min

‖v‖2=1
vHH(θ)v = min

‖v‖2=1
vHSv·cos θ+vHKv·sin θ = min

x+ıy∈F(A)
x cos θ+y sin θ.

Writing z = x + ıy = |z|(cos Arg z + ı sin Arg z) with the argument Arg z ∈ (−π, π],
we obtain

(24) ϕ(θ) = min
z∈F(A)

|z| · cos(θ −Arg z).

1The matrix K = (A − AH)/2ı needs to be invertible in order to apply Theorem 4.1 in [8] and
thus conclude quasi-concavity of ϕ. However, as one of the referees pointed out, one can apply the
result to a rotated matrix e−ıθA and reach the same conclusion. Since γ(A) > 0, there exists a θ
such that the corresponding matrix K becomes invertible.
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Note that
0 < ϕ(0) = min

z∈F(A)
|z| cos(Arg z)

implies that Arg z ∈ (−π/2, π/2) and, in turn, (Arg z − π/2,Arg z + π/2) ⊂ (−π, π)
for every z ∈ F(A). This allows us to write

{θ : ϕ(θ) > 0} ∩ [−π, π] =
⋂

z∈F(A)

{θ : cos(θ −Arg z) > 0} ∩ [−π, π]

=
⋂

z∈F(A)

(Arg z − π/2,Arg z + π/2).(25)

For the last equality, we have used that cos(θ−Arg z) > 0 is equivalent to θ−Arg z ∈
(−π/2, π/2). The right-hand side of (25) shows that this set is an interval of length at
most π. The left-hand side, together with ϕ(0) > 0 and the continuity of ϕ(θ), shows
that this interval is nonempty and open. This proves the first part of the lemma.

To show strong concavity, let [̂̀, û] ⊂ (`, u). Because ϕ(θ) is continuous there
exists δ > 0 such that

ϕ(θ) ≥ δ for θ ∈ [̂̀, û].

Denoting ϕz(θ) = |z| · cos(θ −Arg z), it follows from (24) that for every z̃ ∈ F(A)

ϕ′′z̃ (θ) = −ϕz̃(θ) ≤ − min
z∈F(A)

ϕz(θ) = −ϕ(θ) ≤ −δ for θ ∈ [̂̀, û].

Hence, the function ϕ(θ) is the minimum of strongly concave functions ϕz(θ) with
uniform bound on the second derivative on a closed interval. This proves strong
concavity of ϕ(θ) on [̂̀, û].

The strong concavity property implies, in particular, that the global maximizer
θ∗ of ϕ(θ) within any interval of length 2π when γ(A) > 0. Moreover, if ϕ(θ) is twice
differentiable at θ∗, we also have

(26) ϕ′′(θ∗) < 0.

This will for example be the case when ϕ(θ∗) = λmin(H(θ∗)) is a simple eigenvalue.

Remark 3.2. Being continuous and 2π-periodic, the function ϕ(θ) cannot be
strongly concave on an interval of length 2π. On the other hand, Figure 1 (see
also [4, Fig. 2]) demonstrates that ϕ(θ) may well be concave on an interval larger
than guaranteed by Lemma 3.1. In addition, one observes that the negative part of
ϕ(θ) is not necessarily convex.

As illustrated in Figure 1, the function value ϕ(θ) admits a geometric interpreta-
tion in terms of the numerical range F(A). Recalling (23), we have

ϕ(θ) = min
x+ıy∈F(A)

x cos θ + y sin θ.

This corresponds to the signed distance of the numerical range to zero along the
direction cos θ + ı sin θ (since the right-hand side corresponds to the length of the
orthogonal projection of points in the numerical range F(A) onto the direction vector).
It also implies that

(27) {x+ ıy : x cos θ + y sin θ − ϕ(θ) = 0}
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Fig. 1. Left: Numerical range of a random 4-by-4 matrix (left). Right: Corresponding function
ϕ(θ) on the interval [0, 2π].

defines the supporting line for the convex set F(A) = F(S + ıK) with normal cos θ+
ı sin θ. Its supporting point is given by

(28) p(θ) = v(θ)H(S + ıK)v(θ),

since the minimum of (23) is attained at an eigenvector v(θ), as defined in (11). We
will use these geometric properties in the following section to get a better understand-
ing of the subspace method.

3.2. Subspace method applied to Crawford number computation. As
mentioned before, the full subspace method for computing the Crawford number
simply consists of applying Algorithm 1 to the function ϕ from (21). The objective
function of the reduced maximization problem takes the form

ϕ(θ;Vk) = λmin(V Hk H(θ)Vk) = λmin(Sk cos θ +Kk sin θ),

where Sk = V Hk SVk = (Ak + AHk )/2 and Kk = V Hk KVk = (Ak − AHk )/2ı with
Ak = V Hk AVk. This shows that the reduced problem amounts to computing the
Crawford number of Ak:

(29) γ(Ak) = max
{

max
θ∈[0,2π]

ϕ(θ;Vk), 0
}
.

Because γ(Ak) ≥ γ(A), one can immediately stop the algorithm and return γ(A) = 0
once it detects γ(Ak) = 0.

Since Ak is expected to be a small matrix, the computation of γ(Ak), together
with the optimal value θk+1 in line 4 of Algorithm 1, is not expensive and can be
performed by many algorithms; see, e.g., [11, 8, 26, 3]. Our implementation uses
a straightforward adaptation of the criss-cross type algorithm from [20], which we
observed to work very well in our numerical experiments.

3.2.1. Properties of the reduction objective function and convergence.
Because of (29), the strong concavity property established in Lemma 3.1 also holds
for the reduced objective function ϕ(θ;Vk). In particular, the global maximizer of
ϕ(θ;Vk) is unique (within one period). This property allows us to gain additional
insights into the behavior of the subspace method.
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Lemma 3.3. Let V be an orthonormal basis of a subspace V of Cn. Assume that
γ(A) > 0 and let θ`, θu be such that θ` < θu < θ` + 2π. If v(θ`), v(θu) ∈ V, then

arg max
θ∈[θ`,θ`+2π]

ϕ(θ;V ) ∈ (θ`, θu) if and only if arg max
θ∈[θ`,θ`+2π]

ϕ(θ) ∈ (θ`, θu).

Proof. Suppose that

θV = arg max
θ∈[θ`,θ`+2π]

ϕ(θ;V ) ∈ (θ`, θu) and θ∗ = arg max
θ∈[θ`,θ`+2π]

ϕ(θ) 6∈ (θ`, θu),

which implies θ` < θV < θu < θ∗ ≤ θ` + 2π. Letting β = max{ϕ(θ`), ϕ(θu), 0},
Lemmas 2.1 and 3.1 give

ϕ(θ`) = ϕ(θ`;V ) ≤ β, ϕ(θV ;V ) > β,

ϕ(θu) = ϕ(θu;V ) ≤ β, ϕ(θ∗;V ) ≥ ϕ(θ∗) > β.

In particular, this implies that ϕ(θ;V ) has two different local, strictly positive maxima
within an interval of length 2π. This contradicts the strong concavity property from
Lemma 3.1. Hence, θV ∈ (θ`, θu) implies θ∗ ∈ (θ`, θu). The proof of the other direction
proceeds analogously.

The particular structure of ϕ allows us, for the special case of the Crawford
number, to remove some of the assumptions of Theorem 2.3 on the local convergence
of the subspace method.

Theorem 3.4 (convergence of subspace method). Consider A ∈ Cn×n with
γ(A) > 0. Let θ∗ be the maximizer of (21) and assume that λmin(H(θ∗)) is a sim-
ple eigenvalue. If the initial guess θ0 is sufficiently close to θ∗, then the iterates
θ1, θ2, θ3, . . . produced by Algorithm 1 satisfy the monotonicity property (6) and the
error recurrence (7).

Proof. Lemma 3.1 shows that the assumption ϕ′′(θ∗) < 0 of Theorem 2.3 is
satisfied. It remains to show that the other assumption—all iterates remain close to
θ∗—is also satisfied.

Without loss of generality, we may assume that θ0 < θ∗ = 0, ϕ(θ0) > 0. Consid-
ering eigenvectors v(θ0), v(θ∗) with ‖v(θ0)‖2 = ‖v(θ∗)‖2 = 1, this implies
(30)
γ(A) = v(θ∗)

HH(θ∗)v(θ∗) = v(θ∗)
HSv(θ∗), 0 = v(θ∗)

HH ′(θ∗)v(θ∗) = v(θ∗)
HKv(θ∗).

The reduced function during the first iteration takes the form

(31)
ϕ(θ; v(θ0)) = λmin

(
v(θ0)HH(θ)v(θ0)

)
= α cos θ + β sin θ = |z0| cos(θ −Arg z0)

with α = v(θ0)HSv(θ0), β = v(θ0)HKv(θ0), and z0 = α + ıβ. Since ϕ(θ0; v(θ0)) =
ϕ(θ0), we obtain the super-level set

Ω0 = {θ : ϕ(θ; v(θ0)) ≥ ϕ(θ0)} = {θ : cos(θ −Arg z0) ≥ cos(θ0 −Arg z0)}.

Since ϕ(θ0) > 0, we get cos(θ0 − Arg z0) > 0. In addition, by strong concavity
ϕ′(θ0) > 0 and thus Lemma 2.1 implies sin(θ0 − Arg z0) < 0. Hence, by elementary
trigonometry θ0 − Arg z0 ∈ (−π/2, 0) and so we obtain up to a 2π period that Ω0 =
[θ0, −θ0 + 2 Arg z0]. Because of the monotonicity property in Lemma 2.1, the iterates
of Algorithm 1 satisfy for k ≥ 2 the inequalities

ϕ(θk; v(θ0)) ≥ ϕ(θk; Vk−1) ≥ ϕ(θ∗) ≥ ϕ(θ0),
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and, hence, they stay in the superlevel set:

{θ0, θ1, . . .} ⊂ Ω0.

We now show that the length of Ω0 becomes arbitrarily small when choosing θ0

sufficiently close to 0. First, from the interpolation conditions in Lemma 2.1 it follows
that

ϕ(θ0) = ϕ(θ0; v(θ0)) = α cos θ0 + β sin θ0,

ϕ′(θ0) = ϕ′(θ0; v(θ0)) = −α sin θ0 + β cos θ0.

By solving this linear equation in α ≡ α(θ0), β ≡ β(θ0), we obtain

α(θ0) = ϕ(θ0) cos θ0 − ϕ′(θ0) sin θ0, β(θ0) = ϕ(θ0) sin θ0 + ϕ′(θ0) cos θ0.

Using Taylor expansions of α(θ0), β(θ0) around 0, and exploiting ϕ′(0) = 0, we have

(32)
β

α
= θ0 +

ϕ′′(0)

ϕ(0)
θ0 +O(θ2

0)

and therefore

|Ω0| = 2|Arg z0 − θ0| =2
∣∣∣ arctan

β

α
− θ0

∣∣∣ = 2
∣∣∣ϕ′′(0)

ϕ(0)
θ0

∣∣∣+O(θ2
0).

Since ϕ(0) = γ(A) > 0 and ϕ′′(0) are constants independent of θ0, |Ω0| → 0 as θ0 → 0.
In summary, for every r > 0, we can attain

{θ0, θ1, . . . } ⊂ Ω0 ⊂ [−r, r],

by choosing θ0 < 0 sufficiently close to 0, which completes the proof.

We end this section with a geometric interpretation of the subspace method in
terms of the numerical range; see Figure 2. Recalling (1), we have the reduced Craw-
ford number

(33) γ(Ak) = min{ |z| : z ∈ F(Ak) }, Ak = Sk + ıKk.

It follows immediately from definition (1) that the numerical range of the reduced
matrix Ak is a subset of the original one:

F(Ak) = F(V Hk AVk) ⊂ F(A).

The boundaries of F(A) and F(Ak) touch each other at the supporting points

p(θi) = vHi (S + ıK)vi, i = 1, . . . , k,

because the eigenvectors v1, . . . vk in Algorithm 1 are contained in span(Vk). The two
boundaries also share the supporting lines

{x+ ıy : x cos θi + y sin θi − ϕ(θi) = 0}, i = 1, . . . , k,

due to the interpolation ϕ(θi; Vk) = ϕ(θi) together with (27)–(28). In the particular
case of a polygonal numerical range (which is equivalent to A being a normal matrix),
the reduced numerical range interpolates the edge of the polygon exactly if the two
vertices belong to the supporting points, as illustrated in the right plot of Figure 2.
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Fig. 2. Geometric illustration of the subspace method, Algorithm 1, for Crawford number
computation. Left: The thick black line and the yellow region correspond to the full and reduced
numerical range, respectively. The black dots are the supporting points, and the red dot is the closest
point in the yellow region to 0. Right: Example of a polygonal numerical range for which the reduced
numerical range reduces to a line on the boundary (the thick black line with the red dot).

3.3. The 3-vector subspace method. The concavity property of ϕ(θ) leading
to the bracketing property in Lemma 3.3 allows us to develop a variant of the subspace
method that only uses 3 vectors to generate the projection subspace but still enjoys
favorable convergence properties.

Given three sampling points 0 < `k < θk < uk ≤ 2π such that the global max-
imum θ∗ is contained in [`k, uk], the kth iteration of our 3-vector subspace method
proceeds by first determining an orthonormal basis Vk of the corresponding three
eigenvectors v(`k), v(θk), v(uk). It then computes

θ̂ = arg max
θ∈[0,2π]

λmin(V Hk H(θ)Vk).

By Lemma 3.3, θ̂ ∈ [`k, uk] and, moreover,

θ∗ ∈
{

[`k, θk] if θ̂ ∈ [`k, θk],(34)

[θk, uk] otherwise.(35)

Therefore, we set [`k+1, θk+1, uk+1] = [`k, θ̂, θk] if θ̂ ∈ [`k, θk] and [`k+1, θk+1, uk+1] =

[θk, θ̂, uk] otherwise. In turn, we obtain a shorter interval [`k+1, uk+1] that still con-
tains θ∗. This allows us to repeat the process until convergence is achieved, leading
to Algorithm 2.

Note that in contrast to the (full) subspace method, Algorithm 2 will not produce
the exact solution after n − 1 steps. The following theorem shows that it still con-
verges globally and attains fast local convergence. For simplicity and generality, the
initial search interval in Algorithm 2 equals [0, 2π]. Smaller intervals can, however,
be obtained using the procedure in [3, section 7] but at the expense of computing all
the eigenvalues of the pair (S,K) with S = (A+AH)/2 and K = (A−AH)/2ı.

Theorem 3.5 (convergence of 3-vector method). Let γ(A) > 0. Then the iter-
ates θ1, θ2, θ3, . . . produced by Algorithm 2 are globally convergent to θ∗. The conver-
gence is locally at least quadratic, provided that λmin(H(θ∗)) is a simple eigenvalue.
Moreover, if the sequence is also locally alternating around θ∗, i.e.,

(θk+1 − θ∗)(θk − θ∗) < 0 ∀k > p

with some p ∈ N, then the local convergence order is improved to σ ≈ 2.26953.
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Algorithm 2 3-vector subspace method.

Input: Matrix A ∈ Cn×n, initial guess θ0 ∈ (0, 2π), tolerance tol > 0.
Output: Approximation of Crawford number γ(A).

1: Initialize: `0 = 0, u0 = 2π, and V0 = orth([v(`0), v(θ0), v(u0)]).
2: for k = 0, 1, 2, . . . do
3: θk+1 = arg max[0,2π] λmin(V Hk H(θ)Vk) with ϕk+1 = λmin(V Hk H(θk+1)Vk).
4: if ϕk+1 ≤ 0, then return γ(A) = 0.
5: Stopping criteria: if k > 0 and ϕk+1 − λk < tol · |ϕk+1|, then return γ(A) =

ϕk+1.
6: Interval update: if θk+1 ∈ [`k, θk], then (`k+1, uk+1) = (`k, θk), otherwise

(`k+1, uk+1) = (θk, uk).
7: Compute smallest eigenvalue λk+1 and corresponding eigenvector v(θk+1) of

H(θk+1).
8: Subspace update: Vk+1 = orth([v(`k+1), v(θk+1), v(uk+1)]).
9: end for

Proof. Since (`k)∞k=0 is monotonically increasing, it converges to a limiting point
`. Similarly, (uk)∞k=0 monotonically decreases to a limiting point u. As (`k) and (uk)
contain all iterates θk for k = 0, 1, 2, . . . , it follows that (θk)∞k=0 has at most two
limiting points ` and u. Let (θki), i = 0, 1, . . . , be a converging subsequence and
assume, without loss of generality, that it converges to `.

Since span(Vki−1) contains v(`ki−1), the interpolation and monotonicity proper-
ties from Lemma 2.1 imply

(36) ϕ(`ki−1; Vki−1) = ϕ(`ki−1) ≤ ϕ(θ∗) ≤ max
θ∈[0,2π]

ϕ(θ; Vki−1) = ϕ(θki ; Vki−1)

and

|ϕ(`ki−1; Vki−1)− ϕ(θki ; Vki−1)|
= |λmin(V Hki−1H(`ki−1)Vki−1)− λmin(V Hki−1H(θki)Vki−1)|
≤ ‖V Hki−1(H(`ki−1)−H(θki))Vki−1‖2.

The right-hand side converges to zero due to the continuity of H(θ), since both sub-
sequences (θki)

∞
i=0 and (`ki−1)∞i=1 converge to the same limiting point `. Therefore,

the inequalities in (36) become equalities as ki →∞, and it holds that

lim
ki→∞

ϕ(`ki−1; Vki−1) = lim
ki→∞

ϕ(`ki−1) = ϕ(`) = ϕ(θ∗),

using the continuity of ϕ(θ). This shows that any converging subsequence of (θk)∞k=0

converges to θ∗, and hence θk → θ∗.
It remains to discuss the local convergence order. According to the updating

strategy in lines 6 and 8, span(Vk+1) contains the two eigenvectors v(θk+1) and v(θk).
Therefore, θk+2 can be viewed as being produced by the subspace method, Algo-
rithm 1, with a subspace containing v(θk) and v(θk+1). Note that we may assume
θk 6= θk+1 because otherwise (36) implies θk = θk+1 = θ∗ and Algorithm 2 returns
the exact solution. Due to the local monotonicity behavior of the subspace method
(see (6)), it holds that |θk+2 − θ∗| ≤ |θk+1 − θ∗| provided that θk and θk+1 are suffi-
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ciently close to θ∗. Moreover, using the local error recurrence (7), we obtain

ek+2 ≤ 2C · ek+1e
2
k.

Then, following the proof of Theorem 2.4, we obtain a convergence order of σ = 2,
which is the root of σ − σ2 − 2 = 0 that has magnitude larger than 1.

If the sequence is locally alternating, then the subspace updating scheme in line 6
yields {`k+1,mk+1, uk+1} = {θk+1, θk, θk−1} for k > p. Therefore, the subspace
contains the three vectors v(θk−1), v(θk) and v(θk+1). For the reason mentioned
above, we may assume that θk−1, θk, θk+1 are mutually distinct. In turn, the error
recurrence (6) improves to

ek+2 ≤ C · ek+1e
2
ke

2
k−1.

This leads to a convergence order of about σ = 2.26953, determined by the root of
the cubic equation σ3 − σ2 − 2σ − 2 = 0 with magnitude larger than 1.

Although the 3-vector subspace method enjoys global convergence, the function
values ϕk produced by Algorithm 2 are not guaranteed to monotonically decrease
because the subspace monotonicity span(Vk+1) ⊂ span(Vk) is lost.

Numerically, we usually observed that the alternating property, required for faster
local convergence in Theorem 3.5, holds once θk is sufficiently close to θ∗. In the
following, we provide some theoretical evidence, by showing that this property holds
in the first step. For this purpose, we first establish the following technical result.

Lemma 3.6. Let γ(A) > 0 and let θ∗ be the maximizer of (21). Denote v(θ)
as in (11). Assume that λmin(H(θ∗)) is a simple eigenvalue. Then the following
statements hold:

(a) ϕ′′(θ∗) ≤ −γ(A).
(b) ϕ′′(θ∗) = −γ(A) if and only if v(θ∗) is an eigenvector of H ′(θ∗).
(c) If v(θ∗) is an eigenvector of H ′(θ∗), then there is r > 0 such that v(θ) = v(θ∗)

for all |θ − θ∗| ≤ r.
Proof. Consider the spectral decomposition H(θ∗) =

∑n
i=1 λiviv

H
i with λ1 =

λmin(H(θ∗)) and v1 = v(θ∗). Using existing results on the second derivative of eigen-
values [16] and vH1 H

′′(θ∗)v1 = −vH1 H(θ∗)v1, we obtain

ϕ′′(θ∗) = vH1 H
′′(θ∗)v1 + 2

n∑
i=2

|vHi H ′(θ∗)v1|2
λ1 − λi

= −γ(A)− 2

n∑
i=2

|vHi H ′(θ∗)v1|2
λi − λ1

.(37)

This proves (a).
Concerning part (b), (37) shows that ϕ′′(θ∗) = −γ(A) if and only if |vHi H ′(θ∗)v1|2

= 0 for i = 2, . . . , n. Since {v1, . . . , vn} is an orthonormal basis, the later condition is
equivalent to H ′(θ∗)v1 ∈ span{v1}, that is, v1 is an eigenvector of H ′(θ∗).

To prove part (c), we assume θ∗ = 0 without loss of generality (by replacing A
with e−ıθ∗A). Because of

H(θ) = S cos θ +K sin θ = sin(θ)H ′(0) + cos(θ)H(0),

and H ′(0)v(0) = αv(0) for some (fixed) α ∈ R, we have H(θ)v(0) = λ̃v(0) with

λ̃ = sin(θ)α + cos(θ)λ1. Hence v(0) is an eigenvector of H(θ) with eigenvalue λ̃.
For sufficiently small |θ|, this remains the smallest eigenvalue of H(θ) because of the
simplicity assumption.
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The alternating property for the first iterate now follows.

Lemma 3.7. Let γ(A) > 0 and assume that λmin(H(θ∗)) is a simple eigenvalue.
Then the first iterate of Algorithm 2 satisfies

(38) (θ1 − θ∗)(θ0 − θ∗) ≤ 0

for θ0 sufficiently close to θ∗.

Proof. Without loss of generality, assume that θ0 < θ∗ = 0. The first iterate θ1

is determined as the maximizer of ϕ(θ; v(θ0)).
If v(θ∗) is an eigenvector of H ′(θ∗), then Lemma 3.6(c) implies v(θ0) = v(θ∗)

(provided that θ0 is sufficiently close to θ∗). Thus, θ1 is already the exact maximizer
and (38) is trivially satisfied. Now, suppose that v(θ∗) is not an eigenvector of H ′(θ∗)
and, hence, γ(A) + ϕ′′(θ∗) < 0 holds by Lemma 3.6(a) and (b). Recalling from (31)
that ϕ(θ; v(θ0)) = α cos θ+β sin θ with α = v(θ0)HSv(θ0) and β = v(θ0)HKv(θ0), we
obtain from 0 = ϕ′(θ1; v(θ0)) that tan θ1 = β/α. Using the expansion (32) for β/α,
it thus follows that

tan θ1 = θ0 +
ϕ′′(0)

ϕ(0)
θ0 +O(θ2

0) =
γ(A) + ϕ′′(0)

γ(A)
θ0 +O(θ2

0).

This implies θ1 > 0 for θ0 < 0 sufficiently close to 0 and shows (38).

4. Numerical experiments. All algorithms discussed in this paper have been
implemented in MATLAB.2 The primary purpose of the first experiment is to confirm
our theoretical results and to demonstrate that the derived local convergence orders
seem to be tight. We also compare with another algorithm [26] for Crawford number
computation. In the end, we apply our subspace algorithms to the discretized bound-
ary integral operators from [2] and show the potential of the algorithms for large-scale
problems.

In finite precision, the user-supplied tolerance tol in Algorithms 1 and 2 should
not be taken too strict. Provided that eigenvalues are computed in a backward stable
way, it is advisable to terminate when ϕk+1 − λk < ‖A‖2εm with εm the machine
precision.

Example 1. Our convergence analysis implies for k sufficiently large that

|ϕk − ϕ∗| ≈ c|ϕk−1 − ϕ∗|σ

with σ ≈ 2.4142 for the (full) subspace method (Algorithm 1) and σ ≈ 2.2695 for the
3-vector variant (Algorithm 2). In turn,

ln ek ≈ σ ln ek−1 + ln c with ek = |ϕk − ϕ∗|.
In the following, we numerically verify the value of the slope σ. Since it is rather diffi-
cult to test high convergence orders in double precision, we perform the computation
with 620 decimal digits using the Advanpix MP toolbox.3 We substitute the “exact”
value for ϕ∗ by the result of a computation with 700 decimal digits.

Scenario 1: λmin(H(θ∗)) is a simple eigenvalue. Figure 3 plots ln ek vs. ln ek−1

for Algorithms 1 and 2 applied to the 120 × 120 matrix A = F + ıM − cIn, where
F is the Fiedler matrix, M is the Moler matrix, and c = 4000 − 4000ı; see also [26].
The numerical range of A is shown in the left plot of Figure 3. Figure 4 shows the

2This is available at www.unige.ch/∼dlu.
3This is available from www.advanpix.com.

www.unige.ch/~dlu
www.advanpix.com
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Fig. 3. Numerical range (left) and observed order of convergence of Algorithm 1 (middle) and
Algorithm 2 (right) for a shifted sum of the Fiedler and Moler matrices.
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Fig. 4. Numerical range (left) and observed order of convergence of Algorithm 1 (middle) and
Algorithm 2 (right) for a rotated Grcar matrix.

results obtained for A = G · exp(πı/3)− (4 + 2ı) · In, where G is the Grcar matrix of
size n = 120.

For both matrices, we observe that the derived convergence orders from Theo-
rems 3.4 and 3.5 seem to be tight.

Scenario 2: λmin(H(θ∗)) is a multiple eigenvalue. Figure 5 shows the convergence
of the subspace methods for the tridiagonal matrix

(39) A = tridiag

 ı ı . . . ı
1 1 a3 . . . an

ı ı . . . ı

+ 0.5ı · In with aj = 2 +
j

n

with n = 120. Visually, the point of the numerical range closest to zero is on the real
line. Therefore the eigenvalue relevant for the convergence analysis is the smallest
eigenvalue 1 of (A+AH)/2. As this eigenvalue has multiplicity 2, our local convergence
results do not apply. Indeed, the convergence plots reveal that the convergence orders
established in Theorems 3.4 and 3.5 are not attained. On the other hand, one still
obtains fast local convergence, seemingly quadratic convergence for the full subspace
method, and superlinear convergence for the 3-vector variant. Further experiments
show that the observed order of convergence remains the same when setting a3 =
· · · = ad = 1, despite the increase of the eigenvalue multiplicity to d. We have
also constructed matrices A with λmin(H(θ∗)) a multiple eigenvalue for which the
convergence orders were less than the one in Figure 5. They always seem to be at
least linear.
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Fig. 6. Left: Black dots and red crosses denote shifts used in the experiment. Red crosses
denote shifts for which Uhlig’s algorithm takes more than 60 iterations to converge, with the number
of required iterations marked beside. Right: Relative error of the computed Crawford number, sorted
in increasing order.

Example 2. In this example, we compare the performance of the subspace methods
with Uhlig’s algorithm4 [26]. As a test matrix A, we use the Grcar matrix of size
n = 120 mentioned above, but this time the matrix is not rotated. Although the
smallest eigenvalue is not multiple, the small eigenvalues of the symmetric part of A
form a cluster. This corresponds to a visually flat vertical portion of the boundary
of the numerical range; see Figure 6. In this flat portion, the angle has little impact
on the distance which could make it difficult to determine the optimal angle. In our
experiment, we compute the Crawford number of the shifted matrices

A− (x0 + y0ı)In

with x0 +y0ı marked as black dots in Figure 6. One can equivalently view these shifts
as zero and compute its distance to the numerical range.

In all experiments, we used the tolerance tol = 10−13 to terminate the algorithms.
The iteration numbers shown in Figure 6 show that Uhlig’s algorithm sometimes faces

4The source code is available from http://www.auburn.edu/∼uhligfd.

http://www.auburn.edu/~uhligfd
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Fig. 7. Left: L-shaped obstacle discretized with mesh size h = 0.2. Right: Numerical range of
the discretized boundary integral operator Ahk for wave numbers k = 2, 10, 20 and h = 0.2.

convergence difficulties. In the worst case it requires more than 800 iterations—and so
also 800 eigenvalue computations of the matrix H(θ)—until convergence. In contrast,
both Algorithms 1 and 2 converge with a maximum number of 9 iterations and an
average of 5.5. The error plot in Figure 6 reveals that the subspace methods are as
accurate as Uhlig’s algorithm.5

Example 3. We now consider the Crawford number computation problem arising
from the study of coercivity constants of boundary integral operators in acoustic
scattering [2]. The integral operators of interest are defined by

(40) ak(u, v) =

∫
Γ

Bku(y) · v(y) ds(y) with Bk = I +Kk − ıkSk,

where k > 0 is the wave number, Γ is the boundary of a sound-soft bounded obstacle
in R3, u(x), v(x) ∈ L2(Γ), I is the identity operator, and Kk and Sk are defined by

Kku(x) = 2

∫
Γ

∂Φ(x, y)

∂n(x)
u(y) ds(y), Sku(x) = 2

∫
Γ

Φ(x, y)u(y) ds(y), x ∈ Γ.

Here, Φ(x, y) = eık|x−y|/(2π|x − y|) for x, y ∈ R3, x 6= y, and n(x) is the outpoint
unit normal at Γ. To estimate the coercivity constant γ of the boundary integral
operator (40) (i.e., the largest γ with γ‖u‖2 ≤ |ak(u, u)| for all u ∈ L2(Γ)), we
discretize it to a matrix Ahk and compute its Crawford number. In order to achieve
a good estimation, it is preferable to use a small mesh size h in discretization. This
in general leads to a large dense matrix Ahk for which the eigenvalue computation of
H(θ) is expensive. So it is crucial to compute the Crawford number using as few
eigenvalue evaluations as possible.

In our experiment, we consider the three-dimensional time-harmonic acoustic
scattering from an L-shaped sound–soft bounded obstacle Γ ⊂ R3 displayed in Fig-
ure 7. We discretize the boundary integral operators (40) by the Galerkin boundary
element library BEM++,6 with triangular mesh (generated by gmsh7 with Delaunay’s

5For the relative error computation, we compute the “accurate” solution by bisection methods
with tolerance equal to the machine precision.

6The software is available from http://www.bempp.org/.
7The software is available from http://gmsh.info/.

http://www.bempp.org/
http://gmsh.info/
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Table 1
Computation results for Example 3 with mesh size h = 0.02.

wave number memory Crawford number its. timing
k Ahk γ(Ahk) (h)

2 46 GB
Alg. 1 1.556145884392413e-01 5 2.5
Alg. 2 1.556145884392399e-01 5 2.5
Uhlig’s 1.556145884392416e-01 11 4.4

10 54 GB
Alg. 1 1.880394259192281e-01 7 6.1
Alg. 2 1.880394259192268e-01 7 6.1
Uhlig’s 1.880394259192323e-01 30 29.9

20 60 GB
Alg. 1 1.777716873410842e-01 8 8.1
Alg. 2 1.777716873410808e-01 10 10.8
Uhlig’s 1.777716873410810e-01 24 24.9

algorithm) and piecewise linear basis functions. For a detailed description of the
Galerkin discretization of the boundary integral operator, we refer to [23]. In order to
speed up the assembly of the boundary integral operator, BEM++ stores the coefficient
matrix Ahk as a hierarchical matrix [9]. Since matrix vector and transpose matrix
vector products can be efficiently evaluated for hierarchical matrices, we compute the
smallest eigenvalue of H(θ) using the MATLAB function eigs [17].

We summarize in Table 1 the experimental results for three wave numbers k =
2, 10, 20. The boundary integral operators were discretized with mesh size h = 0.02
to matrices Ahk of size n = 396 162. From the timing statistics, it is clear that the sub-
space acceleration in Algorithms 1 and 2 has significantly reduced the computational
cost. As in the previous experiment, all three algorithms terminate with tolerances
tol = 10−13.

5. Conclusions. We have analyzed the convergence of the subspace method for
univariate eigenvalue optimization. The obtained convergence order not only improves
upon existing results but it also appears to be tight. For the special case of the
Crawford number, we have established novel properties of the objective function. This
has resulted in a three-dimensional subspace method that is proven to enjoy favorable
convergence properties and seems to work very well for the examples considered in
this paper.

The developments in this paper offer several possibilities for future research. In
particular, this concerns the proper treatment of large-scale problems and computing
variations of the Crawford number, such as the inner numerical radius [4]. In addition,
the subspace acceleration and its bracketing property may also prove useful for the
shrinking problem in [10].
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