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The absence of spurious local minima in certain nonconvex low-rank matrix recovery problems has
been of recent interest in computer science, machine learning and compressed sensing since it explains
the convergence of some low-rank optimization methods to global optima. One such example is low-
rank matrix sensing under restricted isometry properties (RIPs). It can be formulated as a minimization
problem for a quadratic function on the Riemannian manifold of low-rank matrices, with a positive
semidefinite Riemannian Hessian that acts almost like an identity on low-rank matrices. In this work new
estimates for singular values of local minima for such problems are given, which lead to improved bounds
on RIP constants to ensure absence of nonoptimal local minima and sufficiently negative curvature
at all other critical points. A geometric viewpoint is taken, which is inspired by the fact that the
Euclidean distance function to a rank-k matrix possesses no critical points on the corresponding embedded
submanifold of rank-k matrices except for the single global minimum.
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1. Introduction

On the space R
m×n of real m × n matrices we consider a quadratic function

fA,B(X) = 1
2 〈A[X], X〉F − 〈B, X〉F (1.1)

with a given symmetric linear operator A : Rm×n → R
m×n and matrix B. The gradient of this function

equals

∇fA,B(X) = A[X] − B

and critical (or stationary) points of the function fA,B thus correspond to solutions of the linear matrix
equation

A[X] = B. (1.2)

Thus, critical points only exist if B is in the range of A. This is, for instance, the case when A is positive
definite with respect to the Frobenius inner product, in which case the solution to the matrix equation
(1.2) is also unique.
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2 A. USCHMAJEW AND B. VANDEREYCKEN

For m = n and L a symmetric positive definite n × n matrix a well-known example of the type
described above is the Lyapunov matrix equation

LX + XL = B, (1.3)

which has a unique solution X∗ for any right-hand side B, since the operator A[X] = LX + XL is
symmetric positive definite on R

m×n.

1.1 Rank constrained quadratic problems

In certain applications the aim is to solve (1.1) or (1.2) with the additional requirement that the solution
(or its approximation) is of sufficiently low rank. For instance, when B in the Lyapunov equation (1.3)
itself is low rank, it can be proven (Penzl, 2000, Thm. 1) that X∗ has exponentially decaying singular
values and, hence, can be approximated well by a low-rank matrix. To obtain such approximations there
exist a few methods that are built from classical solvers in numerical linear algebra, like the ADI and
Krylov methods; see Simoncini (2016) for a recent overview.

Let k � min(m, n) and denote by

Mk = {
X ∈ R

m×n : rank(X) = k
}

the smooth manifold of fixed rank-k matrices, and by

M�k = {
X ∈ R

m×n : rank(X) � k
}

its closure in R
m×n. A natural alternative approach for obtaining low-rank (approximate) solutions to

the matrix equation (1.2) is to minimize the quadratic function (1.1) on the set M�k:

min
X∈M�k

fA,B(X). (1.4)

Since the set M�k is closed this problem admits at least one solution if A is positive definite on the
cone M�2k, that is, 〈X,A[X]〉F > 0 for all X ∈ M�2k (see Proposition 2.5 below). In the case that
B = A[X∗] for some X∗ ∈ R

m×n it holds that

fA,B(X) = 1
2

〈
X − X∗,A[X − X∗]

〉
F + fA,B(X∗), (1.5)

and thus, if, say, A is positive semidefinite, the minimizers of fA,B on M�k admit an interpretation as
best rank-k approximations of X∗ in energy (semi)norm.

The constrained optimization problem (1.4) is nonconvex and can be tackled by various meth-
ods. While our forthcoming theoretical results do not depend on the particular method used we
point out two popular and efficient approaches. The first is based on the bilinear representation
X = UVT for low-rank matrices, which allows us to optimize the m × k and n × k matrices
U and V using local search algorithms. This is also known as the Burer–Monteiro factoriza-
tion in the more general context of low-rank approximations for semidefinite programs (SDPs)
(Burer & Monteiro, 2003) and can be very efficient when k � mn since it avoids construct-
ing large matrices of size m × n explicitly. It is advisable to break the nonuniqueness of the
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ON CRITICAL POINTS OF QUADRATIC LOW-RANK MATRIX OPTIMIZATION PROBLEMS 3

factorization X = UVT by adding penalty terms or applying alternating least squares; see, e.g.,
Li et al. (2019), Park et al. (2017), Wen et al. (2012), Zhu et al. (2018).

Another family of methods is based on exploiting that the set Mk is a smooth Riemannian
manifold. This allows again the use of local search algorithms but now using techniques from
Riemannian optimization (Absil et al., 2008). As these methods directly optimize over Mk they
do not require regularization since nonuniqueness of representations is not an issue. In addition
careful implementations using retractions and low-rank factorization have similar cost per iteration
as algorithms based on bilinear factorizations; see, e.g., Shalit et al. (2012), Vandereycken (2013),
Vandereycken & Vandewalle (2010).

There has been considerable interest in the case of positive semidefinite operators A. This concerns,
for instance, the nonconvex formulation of low-rank matrix completion problems (Candès & Recht,
2009)

min
X∈Mk

1
2 〈X,PΩ [X]〉F − 〈X,PΩ [B]〉F ,

which corresponds to solutions of

PΩ [X] = PΩ [B].

Here, A = PΩ is the orthogonal projection on a subset Ω of known entries, which means that A is not
invertible. Solvers for these problems with good theoretical guarantees are based on convex relaxation
(Candès & Recht, 2009; Candès & Plan, 2011), but they can also be treated well by nonconvex local
optimization techniques (Keshavan et al., 2010; Wen et al., 2012; Jain et al., 2013; Vandereycken, 2013;
Ge et al., 2016), which are much less costly per iteration; see also Chi et al. (2019) for a recent overview.
More generally, problems with a semidefinite operator are instances of a matrix sensing problem (Recht
et al., 2010), that is, the recovery of a matrix from a few linear measurements. Here in general one is
faced with the problem

min 1
2‖F[X] − b‖2

F (1.6)

where F is a linear operator from R
m×n to R

d and d � mn. Up to an inconsequential constant this
problem fits our symmetric and semidefinite framework (1.4) using A = FTF and B = FT[b].

1.2 Contributions and existing results

In this paper we focus on problems of the form (1.1) where A is positive semidefinite. In many
applications it can be observed in numerical experiments that if one true solution X∗ of the corresponding
matrix equation has exactly low rank, that is, the global minimizer X∗ of the function (1.1) is an element
of Mk for some small rank k, and if this rank is known, then local optimization methods for (1.4) do
typically recover this global minimizer. This is somewhat surprising since the problem is nonconvex.
Furthermore, in the so-called noisy case, when X∗ is only close to but not in Mk, such algorithms
typically return different local minima on Mk that are, however, all close to X∗.

As explained in many works, the reason for this fortunate behavior seems to be a relatively benign
optimization landscape: given an objective function f that is sufficiently well conditioned and convex
when restricted to cones M�k, the local minima always appear to be global minima after restricting f to
Mk. In other words other critical points are either saddle points or local maxima, and are hence unlikely
to attract sequences generated by local optimization algorithms that impose monotonic reduction of
the objective. Moreover, the saddle points have directions with sufficiently large negative curvature
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4 A. USCHMAJEW AND B. VANDEREYCKEN

(called the strict saddle property in Ge et al., 2015), so that algorithms can escape them sufficiently fast.
Such remarkable properties have been rigorously proven under suitable assumptions for different low-
rank optimization problems like matrix completion (Sun & Luo, 2015; Ge et al., 2016), matrix sensing
(Bhojanapalli et al., 2016; Park et al., 2017), more general convex functions on M�k (Zhu et al., 2018;
Li et al., 2019), SDPs (Boumal et al., 2016, 2019) and also for some other problems in the context of
compressed sensing such as phase retrieval (Sun et al., 2018) and sparse dictionary recovery (Sun et al.,
2015, 2017a,b, 2018). See also Ge et al. (2017) for an overview.

Our aim here is to provide similar results by studying the critical points of quadratic functions fA,B
as in (1.1) on manifolds Mk for semidefinite operators A. We will show that when the restriction of A to
the cone M�2k behaves like a sufficiently small perturbation of identity, and if a solution of the matrix
equation (1.2) lies on Mk, then fA,B has no local minima on Mk except the global one. Additionally,
bounds on the negative eigenvalues of the Riemannian Hessian at other critical points are given. This
is important for escaping such critical points in local search methods. These results are in Theorem 3.5
and Corollary 3.6, which, to our knowledge, provide improved and simple conditions on the restricted
isometry constants δk (see Definition 3.1) when applied to matrix sensing as compared to those we could
find in the literature. For example, we obtain that δ3k � 0.3446 or δ2k � 0.2807 are each sufficient for
absence of local minima in noiseless matrix sensing with nonsymmetric matrices. This can be compared
to the condition δ4k � 0.0363 in Park et al. (2017), δ4k � 1/5 in Li et al. (2019), Zhu et al. (2018)
and δ2k < 1/5 in Bhojanapalli et al. (2016) for symmetric positive semidefinite matrices (observe
that δk � δ� for all integers k � �, hence our bounds are less restrictive). On the other hand there
exist examples showing that with δ2 � 1/2 quadratic functions may exhibit nonglobal local minima
on the set of positive semidefinite rank-1 matrices, even in the noiseless case (Zhang et al., 2018; Li
et al., 2019). Other sufficient conditions in the literature for guaranteed recovery of rank-k matrices using
different approaches include δ2k < 1/3 (Jain et al., 2010) for the singular value projection (iterative hard
thresholding (IHT)) algorithm, and even δ2k � 1/2 (Cai & Zhang, 2013) for nuclear norm minimization,
which has the additional theoretical advantage of not requiring the rank k as an input parameter. These
last two approaches, however, can become very expensive to implement for large matrices compared to
local methods that operate on rank-k matrices directly.

The most general version of our analysis is Theorem 3.9, which also deals with the inexact (or noisy)
case, where the matrix equation (1.2) admits only an approximate solution on M�k of some accuracy
ε � 0. In this case all critical points whose Riemannian Hessians have small or no negative eigenvalues
(e.g., local minima) are optimal up to a constant. While the statements are in principal easy to use it
might be difficult to gain intuition about the actual values. We therefore provide some concrete examples
on the interplay of restricted spectral bounds, negative eigenvalues of the (Riemannian) Hessian and ε

in Section 3.4.
Our strategy to obtain our results is motivated by an interesting observation on the Euclidean distance

function f (X) = ‖X − B‖2
F , namely that for B ∈ Mk it has no critical points on Mk at all except for the

global minimum X = B. In order to generalize this rather peculiar behavior of the operator A = Id to
more general ones we introduce a certain norm in which we measure the distance of X − (A[X] − B)

from the cone M�k. By comparing upper and lower bounds for this distance we obtain our results.
Currently, the main results in this paper do not cover the important cases of matrix completion or

matrix equations with badly conditioned operators (as they arise in numerical linear algebra), but some
of the observations obtained alongside still provide general insight into the problem.

Finally, we hope to make a contribution to the subject by taking a geometric viewpoint on the
problem that focuses on the critical points of the constrained problem (1.4), regardless of the method
or parametrization used for representing the low-rank matrices. This is in contrast to Li et al. (2017,
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ON CRITICAL POINTS OF QUADRATIC LOW-RANK MATRIX OPTIMIZATION PROBLEMS 5

2019), Park et al. (2017), Zhu et al. (2018) where an explicit regularization has to be used to cope with
the nonuniqueness of the X = UVT factorization. Also, thanks to the manifold setup, we believe our
analysis has potential implications for most local search methods for (1.4). This is illustrated in the last
section on numerical examples where we solve matrix sensing problems with a few popular nonconvex
algorithms. The methods are not novel but serve their purpose in confirming our theoretical result on
nonexistence of spurious local minima.

2. Properties of critical points

In this work we study the critical points of the function fA,B defined in (1.1) on the smooth manifold Mk
of fixed rank-k matrices only. We briefly justify this restriction to the smooth part of M�k in Section 2.2.
In general we neither assume that B is in the range of A, nor that A is positive semidefinite. Instead, a
so-called restricted positive definiteness on the cones M�k will play a crucial role for the main results
in Section 3 on the absence of local minima of fA,B on Mk.

2.1 Tangent space and critical points

A point X ∈ Mk is called a critical point of fA,X on Mk, if ∇fA,B(X) = A[X] − B is orthogonal to the
tangent space TXMk at X. This tangent space is known to be the set (see, e.g., Helmke & Shayman,
1995, Prop. 4.1)

TXMk = {CX + XD : C ∈ R
m×m, D ∈ R

n×n}. (2.1)

Note that all matrices in TXMk have rank at most 2k, that is, TXMk ⊆ M�2k.

Let Pcol
X and Prow

X denote the respective orthogonal projections on the column and row space of a
matrix X. From (2.1) we see that a matrix Z is orthogonal to TXMk if Pcol

X Z = 0 and ZProw
X = 0 or, in

other words,

Z = (I − Pcol
X )Z(I − Prow

X ).

Hence, with X = UΣVT and Z = ŨΣ̃ṼT two singular value decomposition (SVDs), we obtain that

X + Z = [
U Ũ

] [
Σ 0
0 Σ̃

] [
V Ṽ

]T
(2.2)

is also an SVD. A main consequence of this is that

rank(X + Z) = rank(X) + rank(Z) for Z orthogonal to TXMk. (2.3)

The seemingly simple observation (2.2) turns out to be quite useful and is the main argument for
Lemma 2.3 below. In fact its immediate consequence (2.3) already has some surprising implications on
the critical points of the Euclidean distance function which arises, up to a constant, from fA,B by taking
A = Id to be the identity operator.

Proposition 2.1 For any B ∈ Mk the function f (X) = 1
2‖X − B‖2

F has only one critical point on Mk,
namely the global minimizer X∗ = B.
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6 A. USCHMAJEW AND B. VANDEREYCKEN

Proof. Since ∇f (X) = X − B, the condition for a critical point is that X − B is orthogonal to TXMk.
Then, by (2.3),

k = rank(X − (X − B)) = rank(X) + rank(X − B) = k + rank(X − B),

which implies X = B. �
The following equivalent statement is even more interesting from a geometric point of view. It

follows directly from X − Y being the gradient of the function f (X) = 1
2‖X − Y‖2

F .

Proposition 2.2 Let X and Y be two distinct points on Mk. Then X − Y is not orthogonal to TXMk.

Our aim in this paper is to study how far the observation in Proposition 2.1 for the identity operator
carries over to those functions fA,B in which A is a perturbation of the identity, at least in a restricted
sense. For this we will have to quantify the ‘rank increase’ property (2.3). The starting point will be the
inequality stated in Lemma 2.3 below, which first requires some definitions.

By σ1(Z) � σ2(Z) � · · · we denote the singular values of a matrix Z, with the agreement σi(Z) = 0
for i � min(m, n). We then consider the norm

‖Z‖σ ,k :=
√

σ 2
1 (Z) + · · · + σ 2

k (Z) = max
Y∈M�k
‖Y‖F=1

〈Y , Z〉F . (2.4)

Here the equality of both expressions is a consequence of the fact that truncated SVD yields best
approximations in the Frobenius norm on the cone M�k, and hence maximizes the orthogonal projection
on it. The norm properties of ‖Z‖σ ,k then follow easily from the expression on the right-hand side
of (2.4). Note that ‖X‖σ ,k � ‖X‖F for every matrix X. The norm (2.4) is a unitarily invariant norm,
that is, ‖UZV‖σ ,k = ‖Z‖σ ,k for all orthogonal U and V . Hence, the truncated SVD also provides best
rank-k approximations in this norm; see, e.g., Horn & Johnson (2013, Section 7.4.9). Therefore, for any
fixed Z,

dist‖·‖σ ,k
(Z, M�k) := min

Y∈M�k

‖Z − Y‖σ ,k =
√

σ 2
k+1(Z) + · · · + σ 2

2k(Z). (2.5)

For the case of the identity operator A = Id we have obtained a contradiction to the existence of
two critical points X �= X∗ = B on Mk from two facts: on the one hand the matrix X − (A[X] − B) =
X − ∇fA,B(X) should have a higher rank than X, that is, a positive distance to M�k, while on the other
hand it cannot, since it equals X∗. For A close to Id we expect a similar contradiction, but to obtain it,
we need both upper and lower bounds for the distance of X − (A[X] − B) from M�k. Our key idea is to
obtain such bounds for the distance in the ‖ · ‖σ ,k-norm.

Lemma 2.3 Let X be a critical point of fA,B on Mk and

α = dist‖·‖σ ,k
(X − (A[X] − B), M�k).
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ON CRITICAL POINTS OF QUADRATIC LOW-RANK MATRIX OPTIMIZATION PROBLEMS 7

(i) For any Y ∈ M�k,

α � ‖(Id− A)[X − Y]‖σ ,k + ‖B − A[Y]‖σ ,k.

(ii) Let 0 � j � k be the largest integer such that σi(A[X] − B) > σk−i+1(X) for 1 � i � j. Then

α2 �
j∑

i=1

σ 2
k−i+1(X) +

k∑
i=j+1

σ 2
i (A[X] − B).

Proof. Item (i) is immediate from the definition of α and the triangle inequality:

α � ‖X − (A[X] − B) − Y‖σ ,k � ‖X − A[X] + A[Y] − Y‖σ ,k + ‖B − A[Y]‖σ ,k.

To show (ii) we use the characterization

α =
√

σ 2
k+1(X − A[X] + B) + · · · + σ 2

2k(X − A[X] + B),

which holds by (2.5). Let ςi = σi(X) and si = σi(A[X] − B) for abbreviation. By (2.2) (with Z =
−A[X] + B) the largest 2k singular values of the matrix X − A[X] + B are among the 3k numbers
ς1, . . . , ςk, s1, . . . , s2k. By definition of j the largest k of these numbers are ς1, . . . , ςk−j, s1, . . . , sj (the

notation is slightly abusive when j = k), and hence α2 is the sum of squares of the largest k remaining
ones. In particular α2 is larger than or equal to any sum of squares of k of the remaining singular values,
which implies the asserted lower bound. �

In agreement with what was pointed out above, the inequalities (i) and (ii) in Lemma 2.3 are
contradictory in the case A = Id and Y = B ∈ Mk unless X = B. Our strategy is to show that
they remain contradictory when A acts like a perturbation of identity on low-rank matrices. However,
different from the case A = Id, we will have to confine ourselves to local minima on Mk, or at least
critical points with almost positive semidefinite Riemannian Hessian (see Section 2.4), in order to deal
with the a priori unknown singular values of X in the lower bound for α.

2.2 Restriction to the smooth part Mk

We justify why we are ignoring potential local minima of fA,B on M�k of rank less than k. By the
textbook definition (e.g., Rockafellar & Wets, 1998, Theorem 6.12) X ∈ M�k is a critical point of
the nonsmooth problem (1.4) if −∇fA,B(X) = −A[X] − B belongs to the polar cone of the Bouligand
tangent cone at X. In particular local minima on M�k are critical points. If rank(X) = s � k the
Bouligand tangent cone can be shown to be (Harris, 1995; Cason et al., 2013; Schneider & Uschmajew,
2015)

TB
XM�k = TXMs + {Z ∈ R

m×n : rank(Z) � k − s}.

As then follows, when s < k, the polar cone (TB
XM�k)

◦ is just the point {0}, and hence a critical point
satisfies ∇fA,B(X) = 0, that is, solves the equation A[X] = B. Let us repeat this as a proposition.
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8 A. USCHMAJEW AND B. VANDEREYCKEN

Proposition 2.4 Let X ∈ M�k be a critical point of fA,B on M�k in the sense that −∇fA,B(X) ∈
(TB

XM�k)
◦. Then either rank(X) = k and X is a critical point of fA,B on Mk, or A[X] = B. In the latter

case, if A is a positive semidefinite operator, then X is a global minimizer of fA,B on R
m×n.

Now we can make different assumptions regarding the critical points X satisfying rank(X) < k. If we
assume A is positive semidefinite, then by the above proposition such X are necessarily unconstrained
global minimizers of fA,B. If we assume instead that there exists at least one solution A[X∗] = B with
rank(X∗) � k and A satisfies the condition λ(A, 2k) > 0 (see (2.6) below for the definition) then it
follows that X = X∗. Finally, if we simply assume that the equation A[X] = B does not admit solutions
of rank strictly less than k at all, such a critical point X cannot exist and therefore all critical points of fA,B
on M�k in this broader sense in fact lie in Mk. This is for instance the case if A is positive definite and
rank(X∗) � k, where X∗ is the unique solution A[X∗] = B, that is, the global unconstrained minimizer
of fA,B (Schneider & Uschmajew, 2015).

Based on these facts all subsequent theorems will be formulated for critical points on the smooth
manifold Mk only. A key challenge, however, is to bound the distance of critical points X ∈ Mk to
M�k−1, that is, the smallest singular value σk(X), from below; see Section 2.4.

2.3 Restricted spectral bounds

The central tool to analyze the local minima of fA,B on Mk is the ‘restricted spectral bounds’, that is,
the minima and maxima of the Rayleigh quotient of the symmetric operator A on cones of low-rank
matrices. We use the following definitions:

λ(A, k) = min
X∈M�k
‖X‖F=1

〈X,A[X]〉F (2.6)

and

Λ(A, k) = max
X∈M�k
‖X‖F=1

〈X,A[X]〉F . (2.7)

Note that both the minimum and maximum are attained since M�k is closed.
Obviously, whenever k′ � k,

λ(A, k′) � λ(A, k) � Λ(A, k) � Λ(A, k′).

In particular,

λ(A, k) � Λ(A, �)

for all combinations of k and �.
If A �= 0 is positive semidefinite then Λ(A, 1) > 0, since the space R

m×n possesses an orthonormal
basis of rank-1 matrices. Furthermore, one can then show that

Λ(A, k + �) � Λ(A, k) + Λ(A, �).
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ON CRITICAL POINTS OF QUADRATIC LOW-RANK MATRIX OPTIMIZATION PROBLEMS 9

For this inequality to hold it is sufficient that λ(A, k + �) � 0.1

We note that the lower spectral bounds provide conditions for the existence of minimizers as follows.

Proposition 2.5 Assume λ(A, 2k) > 0. Then the function fA,B has at least one minimizer on M�k,
that is, problem (1.4) admits at least one solution.

Proof. Fix Y ∈ M�k. Since λ(A, 2k) > 0 the representation

fA,B(X) = fA,B(Y) + 〈A[Y] − B, X − Y〉F + 1
2 〈X − Y ,A[X − Y]〉F

easily shows that f is coercive on M�k, that is, fA,B(X) → ∞ for ‖X‖F → ∞ on M�k. It means that
the restriction of fA,B to M�k has bounded sublevel sets, and so the existence of a minimizer follows
from the fact that M�k is closed. �

We will also need upper estimates for mixed products 〈Y ,A[Z]〉F in terms of the restricted spectral
bounds. They can be derived using the ‘parallelogram identity’, similar to Candès & Plan (2011,
Lemma 3.3).

Lemma 2.6 Let λi � λ(A, i) � Λ(A, i) � Λi for all i. Then for any Y ∈ M�k and Z ∈ M��,

〈Y ,A[Z]〉F � 1
4 (Λk+� − λk+�)(‖Y‖2

F + ‖Z‖2
F) + 1

2 (Λk+� + λk+�)〈Y , Z〉F . (2.8)

Proof. Since A is symmetric we have

4〈Y ,A[Z]〉F = 〈Y + Z,A[Y + Z]〉F − 〈Y − Z,A[Y − Z]〉F

� Λk+�‖Y + Z‖2
F − λk+�‖Y − Z‖2

F ,

which easily yields the asserted bound. �
The upper bound (2.8) will be required for the shifted operator Id−A. Under the assumptions of the

lemma it follows from the definitions that

Λ(Id− A, k) = 1 − λ(A, k) � 1 − λk

and

λ(Id− A, k) = 1 − Λ(A, k) � 1 − Λk

for all k. Therefore, by applying (2.8),

〈Y , (Id− A)[Z]〉F � 1
4 (Λk+� − λk+�)(‖Y‖2

F + ‖Z‖2
F) + 1

2 (2 − Λk+� − λk+�)〈Y , Z〉F . (2.9)

1 Using SVD, every matrix Z of rank at most k + � can be written as Z = sX + tY , where s, t ∈ R and X and Y are of rank at
most k and �, respectively, and orthonormal with respect to the Frobenius inner product. Consider then the 2×2 symmetric matrix

G =
[〈X,A[X]〉F 〈Y ,A[X]〉F〈X,A[Y]〉F 〈Y ,A[Y]〉F

]
. With a = [s, t]T it follows that 〈Z,A[Z]〉F = aTGa. Hence, the matrix G is positive semidefinite

since λ(A, k + �) � 0. From aTGa ≤ trace(G) = (〈X,A[X]〉F + 〈Y ,A[Y]〉F)‖a‖2
2 ≤ (Λk + Λ�)‖Z‖2

F one obtains the result.
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10 A. USCHMAJEW AND B. VANDEREYCKEN

Let us further introduce the constants

Γ (A, k, �) = max
Y∈M�k , Z∈M��

‖Y‖F=‖Z‖F=1

〈Y ,A[Z]〉F .

They can be related to the ‖ · ‖σ ,k-norms introduced in (2.4) in the following way.

Lemma 2.7 Let Z have rank �, then ‖A[Z]‖σ ,k � Γ (A, k, �)‖Z‖F .

The proof is immediate from the right-hand side of (2.4).
The scaling behavior of Γ (A, k, �) with respect to the ranks k and � will turn out to be useful later to

relate our results to existing ones.

Lemma 2.8 For the positive integers p, q,

Γ (A, pk, q�) � √
pq Γ (A, k, �).

Proof. Let Y and Z be the maximizers in Γ (A, pk, q�). Using SVD we can write Y = a1Y1 +· · ·+apYp,
where the matrices Y1, . . . , Yp ∈ M�k are pairwise orthogonal and have Frobenius norm 1, and the

scalars a1, . . . , ap are not negative. Observe that a2
1+· · ·+a2

p = 1. We decompose Z = b1Z1+· · ·+bqZq
similarly. Hence,

Γ (A, pk, q�) =
p∑

i=1

q∑
j=1

aibj〈Yi,A[Zj]〉F �
( p∑

i=1

ai

) ⎛
⎝ q∑

j=1

bj

⎞
⎠ Γ (A, k, �)

and the result follows from the Cauchy–Schwarz inequality. �

2.4 Estimates related to the Riemannian Hessian

Here we provide lower estimates on the smallest singular values of a critical point X ∈ Mk of fA,B on
Mk. These estimates are expressed in terms of the restricted spectral bounds (2.6)–(2.7) of the operator
A and the singular values of the residual A[X] − B, as well as a lower bound on the eigenvalues of the
Riemannian Hessian of fA,B at X. We refer to Absil et al. (2008, Ch. 5) for the concept of the Riemannian
Hessian.

Denote by HX the Riemannian Hessian of fA,B (restricted to Mk) at X ∈ Mk. As the metric on
the submanifold Mk we choose the restriction of the Frobenius inner product from the ambient space
R

m×n.2 Let X = UΣVT an SVD of X, and set

Ḡ = UΣ1/2, H̄ = VΣ1/2.

2 This is arguably the most simple metric one can take. It is used in the Riemannian algorithms in Shalit et al. (2012),
Vandereycken (2013), Vandereycken & Vandewalle (2010), Wei et al. (2016) for low-rank optimization. Other metrics also exist
in Meyer et al. (2011), Mishra et al. (2012), Mishra et al. (2013) but they do not always lead to improved bounds in the current
context.
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ON CRITICAL POINTS OF QUADRATIC LOW-RANK MATRIX OPTIMIZATION PROBLEMS 11

By (2.1) every tangent vector Z ∈ TXMk can be written as

Z = ΔG · H̄T + Ḡ · ΔHT, (2.10)

for some matrices ΔG ∈ R
m×k and ΔH ∈ R

n×k. With this representation of tangent vectors we prove
in Appendix A that

HX[Z, Z] = 〈Z,A[Z]〉F + 2〈ΔG · ΔHT, (I − Pcol
X )(A[X] − B)(I − Prow

X )〉F , (2.11)

with Pcol
X and Prow

X being the orthogonal projections onto the column and row spaces of X, respectively.
When X is a critical point of fA,B on Mk then (I − Pcol

X )(A[X] − B)(I − Prow
X ) = A[X] − B (see

Section 2.1), and so the Riemannian Hessian at such points reads

HX[Z, Z] = 〈Z,A[Z]〉F + 2〈ΔG · ΔHT,A[X] − B〉F . (2.12)

In the case that X is a local minimum the Riemannian Hessian is positive semidefinite, that is,
HX[Z, Z] � 0 for all Z ∈ TXMk. In the following proposition we consider arbitrary critical points
X for which the Riemannian Hessian satisfies a nonpositive lower spectral bound.

Proposition 2.9 Let X be a critical point of fA,B on Mk and let ς1 � · · · � ςk > 0 denote its singular
values. Further, let s1 � · · · � sk � 0 denote some k largest singular values (some might be zero) of
A[X] − B. Assume for some μ � 0 that the Riemannian Hessian satisfies

HX[Z, Z] � −μ‖Z‖2
F for all Z ∈ TXMk.

Then for any j = 1, . . . , k and Λ2j > 0 with Λ(A, 2j) � Λ2j,

√
ς2

k + · · · + ς2
k−j+1 �

√
s2

1 + · · · + s2
j

Λ2j + μ
= ‖A[X] − B‖σ ,j

Λ2j + μ
.

Proof. Let p1, . . . , pj be the normalized dominant j left singular vectors of A[X] − B, and q1, . . . , qj the
dominant right singular vectors (or some of them if there are equal singular values). We consider the
matrices

ΔG = 0 · · · 0 s1/2
1 p1 · · · s1/2

j pj

and

ΔH = 0 · · · 0 −s1/2
1 q1 · · · −s1/2

j qj .

Then

〈ΔG · ΔHT,A[X] − B〉F = −(s2
1 + · · · + s2

j ).

We now consider the tangent vector

Z = ΔG · H̄T + Ḡ · ΔHT =
j∑

i=1

s1/2
i ς

1/2
k−j+ipiv

T
k−j+i − s1/2

i ς
1/2
k−j+iuk−j+iq

T
i
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12 A. USCHMAJEW AND B. VANDEREYCKEN

of the form (2.10) for this choice of ΔG and ΔH. Since X is a critical point, that is,A[X]−B is orthogonal
to TXMk, each vector pi is orthogonal to all columns u1, . . . , uk of U, and each qi is orthogonal to the
columns v1, . . . , vk of V (see Section 2.1), or si = 0. Therefore, Z is a sum of 2j rank-1 (or 0) matrices
that are pairwise orthogonal with respect to the Frobenius inner product. Thus,

‖Z‖2
F = 2(s1ςk−j+1 + · · · + sjςk).

In light of (2.12) one obtains the inequalities

−2μ(s1ςk−j+1 + · · · + sjςk) � HX[Z, Z] � 2Λ2j(s1ςk−j+1 + · · · + sjςk) − 2(s2
1 + · · · + s2

j ).

Rearranging and applying the Cauchy–Schwarz inequality leads to

s2
1 + · · · + s2

j � (Λ2j + μ)

√
ς2

k + · · · + ς2
k−j+1

√
s2

1 + · · · + s2
j ,

which is equivalent to the asserted inequality. �
We present two corollaries of Proposition 2.9 that will not be used later, but are of independent

interest. They concern the positive semidefinite case μ = 0, which includes local minima, for the case
that B = A[X∗] for some X∗ ∈ R

m×n, that is, B is in the range of A.

Corollary 2.10 Let B = A[X∗] and X be a critical point of fA,B on Mk at which the Riemannian
Hessian HX is positive semidefinite. Assume rank(X − X∗) � � and λ(A, �) > 0. Then the kth singular
value of X satisfies the inequality

σk(X) � 1√
�

· λ(A, �)

Λ(A, 2)
· ‖X − X∗‖F .

Proof. Let s1 � · · · � s� denote the � largest singular values (some might be zero) of A[X] − B =
A[X − X∗]. Then, since X − X∗ ∈ M�� and by (2.4), we have the lower bounds

s1 �

√
s2

1 + · · · + s2
�

�
= ‖A[X − X∗]‖σ ,�√

�
� 〈X − X∗,A[X − X∗]〉F√

�‖X − X∗‖F

� λ(A, �)√
�

‖X − X∗‖F .

The assertion now follows from the previous proposition with μ = 0, j = 1, and Λ2 = Λ(A, 2), which
is positive by assumption. �

Since the kth singular value of a rank-k matrix equals its distance to M�k−1 in the Frobenius norm,
the previous corollary can be rephrased in the following way.

Corollary 2.11 Under the same assumptions as in Corollary 2.10,

distF(X, M�k−1) � 1

2

(
1√
�

· λ(A, �)

Λ(A, 2)

)
σk(X

∗).
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ON CRITICAL POINTS OF QUADRATIC LOW-RANK MATRIX OPTIMIZATION PROBLEMS 13

Proof. If ‖X − X∗‖F � σk(X
∗)/2, then

σk(X
∗) � distF(X∗, M�k−1) � distF(X, M�k−1) + ‖X − X∗‖F

implies distF(X, M�k−1) � σk(X
∗)/2, which is stronger than the asserted bound (since λ(A, �) �

Λ(A, 2)). If on the other hand ‖X − X∗‖F > σk(X
∗)/2 the previous corollary provides the asserted

bound since distF(X, M�k−1) = σk(X). �
Note that in the case that X∗ ∈ Mk we can choose � = 2k and the lower bounds in both corollaries

become independent of the size of considered matrices.

3. RPD property and its implications for critical points

We now come to the main results of the paper on the critical points of the function fA,B for the case
that A almost acts as an identity operator on cones of low-rank matrices. This property is quantified
by the restricted positive definiteness (RPD) constants below, which are equivalent to the restricted
isometry property (RIP) constants in matrix sensing. The most notable result then is for the case that
B = A[X∗] for some X∗ ∈ Mk. In this so-called ‘noiseless case’, and under the RPD assumptions, one
can show that fA,B has no local minima on Mk except the single global minimum X∗. Moreover, at all
other critical points the Riemannian Hessian has sufficiently negative eigenvalues, which is important in
optimization methods in order to ‘escape’ such saddle points. The required bounds for the RPD constants
for obtaining this conclusion are, to our knowledge, considerably weaker than the ones available in the
literature. The results for the noiseless case are stated in Section 3.2. In Section 3.3 the most general
version of our analysis is stated, which deals with the case that the equation A[X] = B admits only
an approximate solution Xε on the set M�k. Then local minima or saddle points with small negative
curvature may exist, but their distance to Xε will be bounded.

3.1 RPD property

We still consider the family (1.1) of quadratic functions fA,B, and make some assumptions on the
restricted spectral bounds of A that quantify deviation from the identity.

Definition 3.1 (RPD property). Let k � 1. We say that the symmetric operator A satisfies a (k, δk)-
RPD property if there exist 0 � δk < 1 such that

1 − δk � λ(A, k) � Λ(A, k) � 1 + δk, (3.1)

with λ(A, k) and Λ(A, k) defined in (2.6) and (2.7).

Remark 3.2 In the context of the matrix sensing problem (1.6) the RIP condition,

(1 − δk)‖X‖2
F � ‖F[X]‖2

F � (1 + δk)‖X‖2
F for all X ∈ M�k,

was introduced in Recht et al. (2010) and used in many subsequent works. We have already mentioned
that the matrix sensing problem fits our framework using the operator A = FTF. So the RPD
property above is equal to the RIP in this model. In fact, if we assume A to be positive semidefinite,
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14 A. USCHMAJEW AND B. VANDEREYCKEN

we can always find a decomposition A = FTF where F : Rm×n → R
d with d = rank(A). Then we can

write

fA,B(X) = 1
2 (‖F[X] − b‖2

F − ‖b‖2
F)

with B = FT[b], so that there is no essential difference between the matrix sensing problem and our setup
of finding critical points of (then convex) quadratic functions fA,B on Mk. Regarding the existence of
operators A obeying suitable RPD bounds we can therefore rely on the well-known results on operators
F satisfying RIP conditions; see Recht et al. (2010). A typical result is, for example, that specifically
scaled random Gaussian matrices give rise to F that satisfy a (k, δk)-RIP with high probability if d �
δ−2

k k(m + n); see Candès & Plan (2011). We refer to Davenport & Romberg (2016) for more references
on the RIP.

Remark 3.3 Let us comment on operators whose restricted spectral bounds are not centered around 1.
We may say that the symmetric operator A is positive definite on the cone M�k if λ(A, k) > 0. We can
then define the restricted condition number as

κ(A, k) = Λ(A, k)

λ(A, k)
,

and consider the scaled operator ωkA with

ωk = 2

λ(A, k) + Λ(A, k)
.

This operator has the spectral bounds

λ(ωkA, k) = ωkλ(A, k) = 1 − δk, Λ(ωkA, k) = ωkΛ(A, k) = 1 + δk,

where

δk = κ(A, k) − 1

κ(A, k) + 1
.

Obviously, a matrix X ∈ Mk is a critical point (local minimum) of fA,B on Mk if and only if it is a critical
point (local minimum) of ωfA,B = fωA,ωB for any ω > 0. Therefore, the results below on those operators
that satisfy RPD conditions translate to more general operators A if the properly scaled operator ωkA
satisfies the assumptions. Yet this will mean that A must have a rather small restricted condition number
κ(A, 2k) or κ(A, 3k). We will comment on this issue at the end of Section 3.2, and in Remark 3.11.

We note that with the RPD bounds (3.1) the estimate (2.9) leads in a straightforward way into the
following upper bound (see also Park et al., 2017, Proposition 2.1 for essentially the same result).

Lemma 3.4 Under the (k, δk)-RPD conditions,

Γ (Id− A, k, �) = max
Y∈M�k , Z∈M��

‖Y‖F=‖Z‖F=1

〈Y , (A− Id)[Z]〉F � δk+�.
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ON CRITICAL POINTS OF QUADRATIC LOW-RANK MATRIX OPTIMIZATION PROBLEMS 15

Table 1 Error bounds for different values of μ. The second column states a sufficient condition on
δ3k, taken as 0.9 times the upper bound (3.3), to obtain the estimate on ‖X − Xε‖F in the third column
(choosing δ2 = δ2k = δ3k in (3.4)). The fourth and fifth columns display the results when δ3k is less than
0.5 times the upper bound

μ δ3k � 0.9 · δcrit
3k ‖X − Xε‖F δ3k � 0.5 · δcrit

3k ‖X − Xε‖F

0 0.3101 24.73 ·ε 0.1723 4.91 ·ε
0.2 0.2860 27.49 ·ε 0.1589 5.46 ·ε
0.4 0.2649 30.23 ·ε 0.1472 6.01 ·ε
0.6 0.2465 32.96 ·ε 0.1369 6.57 ·ε
0.8 0.2303 35.74 ·ε 0.1279 7.13 ·ε
1 0.2159 38.52 ·ε 0.1199 7.69 ·ε

3.2 Noiseless case

In the noiseless case we assume that there exist X∗ ∈ Mk such that B = A[X∗]. In other words it is
assumed that a desired low-rank solution X∗ to the matrix equation A[X] = B can be found among
the critical points of fA,B on Mk (provided we know k), which allows, for example using Riemannian
optimization methods, for finding it.

Theorem 3.5 Let X∗ ∈ Mk such that B = A[X∗] and μ � 0. Assume A satisfies RPD properties such
that

δ3k < −
(

1 + √
2

2
√

2
+ μ

2

)
+

√√√√(
1 + √

2

2
√

2
+ μ

2

)2

+ 1√
2

.

Then on Mk, X∗ is the unique solution of A[X] = B and the unique global minimum of fA,B. At all other
critical points X �= X∗ of fA,B on Mk the Riemannian Hessian satisfies

HX[Z, Z] < −μ‖Z‖2
F

for some tangent vector Z ∈ TXMk. Alternatively, the same statements hold in the case that

δ2k < −
(

3

4
+ μ

2

)
+

√(
3

4
+ μ

2

)2

+ 1

2
.

Proof. The uniqueness statements follow from the representation (1.5) together with the RPD
assumptions. The statement on the other critical points follows from considering the special case ε = 0
in the more general Theorem 3.9 proved below. �

As an example consider the value μ = 1. Then under the conditions

δ3k � 0.2399 or δ2k � 0.1861

the Riemannian Hessian at all critical points except the global minimum X∗ has a negative eigenvalue
smaller than −1. More examples on the relation between μ and δ are presented in Tables 1 and 2.

We highlight the case μ = 0 separately as it implies the absence of local minima.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/advance-article-abstract/doi/10.1093/im
anum

/drz061/5743529 by guest on 24 M
arch 2020



16 A. USCHMAJEW AND B. VANDEREYCKEN

Table 2 Same as Table 1 but with conditions on δ2k

μ δ2k � 0.9 · δcrit
2k ‖X − Xε‖F δ2k � 0.5 · δcrit

2k ‖X − Xε‖F

0 0.2526 24.28 ·ε 0.1403 4.85 ·ε
0.2 0.2301 27.05 ·ε 0.1278 5.41 ·ε
0.4 0.2108 29.84 ·ε 0.1171 5.97 ·ε
0.6 0.1943 32.64 ·ε 0.1079 6.53 ·ε
0.8 0.18 35.45 ·ε 0.1 7.1 ·ε
1 0.1675 38.27 ·ε 0.0930 7.66 ·ε

Corollary 3.6 Let X∗ ∈ Mk and A[X∗] = B. Assume A satisfies RPD properties such that

δ3k < −1

2

(
1 + 1√

2

)
+

√
1

4

(
1 + 1√

2

)2

+ 1√
2

≈ 0.3446.

Then on Mk, X∗ is the unique solution of A[X] = B and the unique global minimum of fA,B. There
exist no other local minima of fA,B on Mk. Alternatively, the same statements hold in the case that

δ2k < −1

2

(
1 + 1

2

)
+

√
1

4

(
1 + 1

2

)2

+ 1

2
=

√
17 − 3

4
≈ 0.2807.

For reference we also generalize Theorem 3.5 to operators whose restricted spectral bounds are not
centered around 1. The proof follows according to Remark 3.3 by considering the scaled operators ω3kA
and ω2kA, respectively.

Corollary 3.7 Let X∗ ∈ Mk and B = A[X∗] and μ � 0. Assume λ(A, 3k) > 0 and that

κ(A, 3k) − 1

κ(A, 3k) + 1
< −

(
1 + √

2

2
√

2
+ μ

2

)
+

√√√√(
1 + √

2

2
√

2
+ μ

2

)2

+ 1√
2

,

where κ(A, 3k) = Λ(A, 3k)/λ(A, 3k). Then X∗ is the unique solution of A[X] = B on Mk and the
unique global minimum of fA,B. At all other critical points X �= X∗ of fA,B on Mk the Riemannian
Hessian satisfies

HX[Z, Z] < − 1
2 (λ(A, 3k) + Λ(A, 3k))μ‖Z‖2

F

for some tangent vector Z ∈ TXMk. Alternatively, the same conclusions hold (with λ(A, 3k), Λ(A, 3k)
replaced by λ(A, 2k), Λ(A, 2k)) in the case that λ(A, 2k) > 0 and

κ(A, 2k) − 1

κ(A, 2k) + 1
< −

(
3

4
+ μ

2

)
+

√(
3

4
+ μ

2

)2

+ 1

2
.
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ON CRITICAL POINTS OF QUADRATIC LOW-RANK MATRIX OPTIMIZATION PROBLEMS 17

Taking μ = 0 we get the following sufficient conditions for the absence of local minima X �= X∗:

κ(A, 3k) � 2

1 − 0.3446
− 1 � 2.0515, κ(A, 2k) � 2

1 − 0.2807
− 1 � 1.7804.

3.3 General case

In the general case the exact solution X∗ of the matrix equation A[X] = B may have rank larger than k
but still admits good low-rank approximations, that is, it will be close to M�k. Or, the given matrix B
may only satisfy A[X∗] ≈ B approximately and may not even belong to the range of A. In the matrix
sensing problem (1.6) this may correspond to noisy observations b. For linear matrix equations (1.2)
this corresponds to a perturbation of the right-hand side.

In the main result of this paper we focus on points Xε ∈ M�k that satisfy ‖A[Xε] − B‖σ ,2k � ε and
estimate the distance of certain other critical points on Mk (including local minima) to Xε. After giving
the proof we calculate some concrete values and make some comments on how to interpret this result in
the context of the strict saddle point property. Regarding potential critical points of fA,B on M�k with
rank strictly less than k we refer once more to Proposition 2.4.

We first present a lemma that will allow us to state our conditions on the RPD constants in the main
result more conveniently.

Lemma 3.8 Let c, μ > 0. Then the restriction of the function

δ �→ K(c, μ, δ) =
(

1 − δ

1 + δ + μ
− cδ

)−1

= 1 + δ + μ

1 − (1 + c + cμ)δ − cδ2

to the positive axis possesses a single pole and is positive if and only if

0 < δ < −
(

1 + c

2c
+ μ

2

)
+

√(
1 + c

2c
+ μ

2

)2

+ 1

c
.

For fixed c and μ it holds that K(c, μ, δ) → ∞ when δ approaches the upper bound. On the other hand
the bound is monotonically decreasing with respect to c and μ.

Proof. The statement is equivalent to

δ2 + (
1 + 1

c + μ
)
δ − 1

c < 0

under the restriction δ > 0. This open parabola is negative at zero and therefore δ must lie between zero
and the positive root, which is the asserted condition. �

We state the main result. Note that we could replace the ‖ · ‖σ ,2k-norm in the assumptions with the
Frobenius norm, since ‖A[Xε] − B‖F � ε would be a stronger condition.

Theorem 3.9 Let A, B and ε > 0 be given such that there exists Xε ∈ M�k satisfying

‖A[Xε] − B‖σ ,2k � ε. (3.2)
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18 A. USCHMAJEW AND B. VANDEREYCKEN

Let μ � 0. Consider a critical point X ∈ Mk of fA,B on Mk satisfying

HX[Z, Z] � −μ‖Z‖2
F for all Z ∈ TXMk.

The following two statements hold.

(i) If A satisfies RPD properties such that

δ2 � δ2k � δ3k < −
(

1 + √
2

2
√

2
+ μ

2

)
+

√√√√(
1 + √

2

2
√

2
+ μ

2

)2

+ 1√
2

(3.3)

(the first two inequalities pose no restriction), then X satisfies the estimate

‖X − Xε‖F �
(√

2 + 1

1 + δ2 + μ

) [
1 + δ2 + μ

1 − δ2k − √
2(1 + μ)δ3k − √

2δ2δ3k

]
· ε. (3.4)

(ii) Alternatively, if

δ2 � δ2k < −
(

3

4
+ μ

2

)
+

√(
3

4
+ μ

2

)2

+ 1

2
(3.5)

(the first inequality is no restriction), then X satisfies the estimate

‖X − Xε‖F �
(√

2 + 1

1 + δ2 + μ

) [
1 + δ2 + μ

1 − (3 + 2μ)δ2k − 2δ2δ2k

]
· ε.

Proof. We assume X �= Xε, otherwise there is nothing to show. We consider upper and lower
bounds for

α = dist‖·‖σ ,k
(X − (A[X] − B), M�k).

Obviously,

α � ‖X − A[X] + B − Xε‖σ ,k,

and by the triangle inequality,

α � ‖(Id− A)[X − Xε]‖σ ,k + ‖A[Xε] − B‖σ ,k � ‖(Id− A)[X − Xε]‖σ ,k + ε.

Lemmata 2.7 and 2.8 give

‖(Id− A)[X − Xε]‖σ ,k � Γ (Id− A, k, 2k)‖X − Xε‖F �
√

2Γ (Id− A, k, k)‖X − Xε‖F .

Applying Lemma 3.4 to either of these bounds then results in the two estimates

α � δ3k‖X − Xε‖F + ε (3.6)
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ON CRITICAL POINTS OF QUADRATIC LOW-RANK MATRIX OPTIMIZATION PROBLEMS 19

and

α �
√

2δ2k‖X − Xε‖F + ε. (3.7)

We turn to the lower bound on α provided by Lemma 2.3. Let ς1 � · · · � ςk > 0 denote the singular
values of X, and s1 � · · · � s2k the 2k largest singular values (some might be zero) of A[X] − B. By the
lemma, there exists some 0 � j � k for which

α2 � ς2
k + · · · + ς2

k−j+1 + s2
j+1 + · · · + s2

k . (3.8)

(If j = 0 there are no ςi, while if j = k there are no si.) By Proposition 2.9 (with j = 1),

ςk � s1

1 + δ2 + μ
.

Due to ςk−j+1 � · · · � ςk and s1 � · · · � sj, (3.8) then entails

α �
(

1

1 + δ2 + μ

) √
s2

1 + · · · + s2
k � 1√

2

(
1

1 + δ2 + μ

) √
s2

1 + · · · + s2
2k. (3.9)

Using (2.4) we can estimate

√
s2

1 + · · · + s2
2k �

〈
X − Xε

‖X − Xε‖F
,A[X] − B

〉
F

=
〈

X − Xε

‖X − Xε‖F
,A[X − Xε]

〉
F

+
〈

X − Xε

‖X − Xε‖F
,A[Xε] − B

〉
F

� (1 − δ2k)‖X − Xε‖F − ε.

With (3.9) we arrive at the lower bound

α � 1√
2

(
1

1 + δ2 + μ

)
(1 − δ2k)‖X − Xε‖F − 1√

2

(
1

1 + δ2 + μ

)
ε. (3.10)

Taken together and multiplying by
√

2 the bounds (3.6) and (3.10) yield the inequality

[
1 − δ2k

1 + δ2 + μ
− √

2δ3k

]
‖X − Xε‖F �

(√
2 + 1

1 + δ2 + μ

)
ε.

Since δ2 � δ2k � δ3k the term in brackets on the left-hand side is positive under the given condition
(3.3) on δ3k by Lemma 3.8 (here c = √

2). This leads to the assertion in item (i). Item (ii) is obtained by
combining (3.7) and (3.10) instead. �
Remark 3.10 The theorem is formulated for the distances ‖X − Xε‖F in the Frobenius norm, but in
applications the difference in function values

∣∣fA,B(X) − fA,B(Xε)
∣∣ may be more relevant, in particular if
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20 A. USCHMAJEW AND B. VANDEREYCKEN

fA,B takes the form (1.5) of a shifted squared (semi)norm for the operator A up to a constant (one may
additionally assume fA,B(Xε) = 0). Using Taylor expansion at Xε,

fA,B(X) − fA,B(Xε) = 〈A[Xε] − B, X − Xε〉F + 1
2 〈X − Xε,A[X − Xε]〉F,

and thus, under the assumptions of the theorem,

∣∣fA,B(X) − fA,B(Xε)
∣∣ � ε‖X − Xε‖F + 1 + δ2k

2
‖X − Xε‖2

F .

Now the estimates for ‖X − Xε‖F from the theorem can be used.

Remark 3.11 Similar to Corollary 3.7, and based on Remark 3.3, the theorem can be generalized to
operators whose restricted spectral bounds are not centered around 1, but are otherwise well conditioned
on M�2k or M�3k. If the conditions on δ2k or δ3k in Theorem 3.9 are fulfilled for a scaled operator ωA
where ω > 0, the statement of the theorem remains true for the initial operator A if one replaces μ and
ε by μ/ω and ε/ω, respectively.

3.4 Some concrete bounds

The constants in the estimates on ‖X − Xε‖F provided by Theorem 3.9 become arbitrarily large when
δ3k and δ2k approach the required upper bounds. Therefore, in order to obtain reasonable estimates one
needs smaller values for δ3k and δ2k. To gain some intuition on the actual numbers, we computed for
several values of μ the guaranteed error bounds for ‖X − Xε‖F when A satisfies an RPD property with
δ3k or δ2k is 90% or 50% of the critical upper bounds (3.3) and (3.5), respectively. These values are
presented in Table 1 (for δ3k) and Table 2 (for δ2k), where ε and Xε are as in the theorem. Clearly, when
μ is fixed, smaller RPD constants lead to better estimates.

In the context of so-called strict saddle point properties that have been discussed in related work,
one can spell out these results as follows: for given μ > 0 and assuming δ3k (or δ2k) satisfies the bound
asserted in the table, all critical points X of fA,B on Mk either have the asserted distance ‖X − Xε‖F to
a point Xε ∈ M�k satisfying ‖A[Xε] − B‖σ ,2k < ε, or the Riemannian Hessian at X has at least one
negative eigenvalue strictly less than −μ. In particular the rows for μ = 0 in the tables provide bounds
on the distance of local minima to the set of all such Xε.

4. Numerical experiments

We now report on numerical experiments that verify our main result in Theorem 3.9. The experiments
confirm that different algorithms indeed find ε-close solutions of the noisy matrix sensing problem, as
predicted by theory. Note that the conditions on the RPD constants δ2k or δ3k obtained in this work are
only sufficient, and perhaps still rather loose. The influence of these constants is not explored here in
detail.

We consider m = n and construct matrix sensing problems involving two types of RPD operators A
on R

n×n. The first construction, called deterministic, is of the vectorized form A = Id+ δ ·QDQT with
Q a random orthogonal matrix and D a diagonal matrix with random ±1 on its diagonal. Such an A will
be RPD with constant δk = δ for all k. The other construction, called random, uses the nearly isometric

random matrices from Recht et al. (2010). In particular A = FTF with F ∈ R
d×n2

and Fij random
Gaussian N (0, 1/d). For certain large enough choices of n and d this A will satisfy any desired RPD

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/advance-article-abstract/doi/10.1093/im
anum

/drz061/5743529 by guest on 24 M
arch 2020



ON CRITICAL POINTS OF QUADRATIC LOW-RANK MATRIX OPTIMIZATION PROBLEMS 21

property with high probability; see Recht et al. (2010). Due to size limitation, however, we took n = 50,
k = 5, d = 5nk which does not yet correspond to δ3k � δcrit

3k but still allows us to verify convergence of
the algorithms.3

In all cases we generate an ‘exact’ solution X∗ = GHT ∈ Mk with G, H random Gaussian matrices
of size n × k. We then compute B = A(X∗) + ε · N with N a random Gaussian matrix, scaled so that
‖N‖F = 1, and ε � 0 a noise factor. This guarantees in particular that ‖A[Xε] − B‖σ ,2k � ε as required
in Theorem 3.9. When ε > 0 the global minimizer of fA,B is unknown and we therefore take Xε = X∗.

The methods that minimize fA,B for rank-k matrices are as follows:

• Embedded SD: Riemannian steepest descent on Mk with the embedded submanifold geometry
and Euclidean restricted metric. This is the same geometry as in Shalit et al. (2012), Vandereycken
(2013), Vandereycken & Vandewalle (2010), Wei et al. (2016).

• Embedded CG: Same as Embedded SD but now with nonlinear conjugate gradients. This
corresponds to the solver GeomCG from Vandereycken (2013) but applied to sensing instead of
completion.

• Quotient SD: Same as the embedded solver but using the quotient geometry from Mishra et al.
(2012).

• ALS: Alternating least squares with QR stabilization of the iterates to avoid ill-conditioning. This
appears, for example, in Wen et al. (2012, §2.1) where it is called the nonlinear Gauss–Seidel
method.

All methods except ALS were implemented using Manopt (Boumal et al., 2014) with standard
options except that we used exact line search to verify theoretical convergence rates. For ALS the
asymptotic rate is computed as the largest eigenvalue of modulus less than one of the linearized iteration
matrix at the limit point, which is obtained from a block triangular decomposition of the Hessian
of F(G, H) = f (GHT) as in the general nonlinear Gauss–Seidel method; see [Ortega & Reinboldt
(1970), §10.3.4-5]. Computations were done in Matlab v2017b using 34 decimal digits4 to better
judge whether the iterates have converged to the global optimum. In the figures we will also display
estimated asymptotic convergence rates ρ� for the iterations � = 1, 2, . . . . These were computed from
the (Riemannian) Hessian HX at the limit point X. In particular, with κ the condition number of HX as
computed by Manopt, we used

ρSD =
(

κ − 1

κ + 1

)2

, ρCG =
(√

κ − 1√
κ + 1

)2

.

The rate ρSD of SD corresponds to the Euclidean case with exact line search and is well known. For SD
on Riemannian manifolds this rate has been suggested to hold as well; see Udriste (1994, p. 270).5 The
rate ρCG is intended for numerical verification and is rigorous for the unconstrained CG method. For
ALS the asymptotic rate is computed from a block triangular decomposition of the Euclidean Hessian;
see Ortega & Reinboldt (1970).

3 The Riemannian Hessian at convergence has condition number about 18, which is too large when δ3k < δcrit
3k .

4 We used the Advanpix multiprecision toolbox.
5 The rate without the square is easy to prove; see, e.g., Udriste (1994, Ch. 7, Thm. 4.3).
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22 A. USCHMAJEW AND B. VANDEREYCKEN

Fig. 1. Deterministic A with n = 50, k = 5 and δ = 0.95 · δcrit
3k . Both panels show in open circles for zero noise (ε = 0), and in

closed circles for ε = 10−5. Left panel shows in line the asymptotic convergence rate based on spectrum of Hessian.

Fig. 2. Random Gaussian A with n = 50, k = 5, d = 5nk. Both panels show in open circles for zero noise (ε = 0), and in closed
circles for ε = 10−5 (every five iterations shown). Left panel shows in line the asymptotic convergence rate based on spectrum
of the Hessian.

We could have compared to many different solvers, but for simplicity, we have restricted ourselves
to mainly Riemannian algorithms since they are cheap per iteration and typically perform very well.
In addition many other low-rank optimization methods, like iterative hard thresholding or projected
gradient descent, have the same asymptotic behavior. Another reason was to verify that the Riemannian
Hessian used in Theorem 3.9 indeed captures the correct behavior in the convergence plots.

The convergence plots are displayed in Figs 1 and 2. The left panels show convergence of the
function values and clearly indicate a good correspondence of the theoretical asymptotic rates. The
right panel is to verify that the error of the local minima obtained for the noisy problem are on the order
of ε, as predicted by Theorem 3.9. This bound is explored in more detail in Table 3 for the deterministic
case. Compared to Fig. 1, we continued the iteration for 500 iterations and took the minimal value of
‖X(�) − Xε‖F as approximation of the limit point of each iteration. Note that Table 1 predicts that the
error should be bounded by 24.28 · ε, which is always achieved. Indeed, (for ε > 0) we observe a much
better constant 1.2 · ε for the final error in this example.
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Table 3 Statistics for 20 random realizations of the deterministic A operator
with n = 50, k = 5 and δ = 0.9 · δcrit

3k

ε min500
�=1 ‖X(�) − Xε‖F

Max Mean Min

0 4.021 · 10−12 1.058 · 10−12 1.190 · 10−14

10−10 1.165 · 10−10 6.600 · 10−11 2.603 · 10−11

10−08 1.135 · 10−08 9.103 · 10−09 2.739 · 10−09

10−06 1.131 · 10−06 9.269 · 10−07 7.029 · 10−07

10−04 1.153 · 10−04 9.062 · 10−05 6.752 · 10−05

10−02 1.148 · 10−02 9.288 · 10−03 6.435 · 10−03

5. Conclusion

We have studied some properties of critical points of quadratic functions on manifolds of fixed-rank
matrices. In particular, estimates for singular values of local minima have been derived that relate them
to the singular values of the gradient at local minima. Then, under certain assumptions on bounds for
the Rayleigh quotient of the Hessian on the cones of bounded rank matrices, which generalize the
popular RIP conditions for matrix sensing, our estimates imply that there cannot be spurious local
minima far away from the global one. In particular, local minima are absent in the noiseless case.
The required restricted spectral bounds to obtain these results are considerably weaker than in related
previous publications.

So far our approach does not cover the important cases of matrix completion or the typical matrix
equations in numerical linear algebra, as they do not meet the restricted spectral bounds. However, some
of the presented techniques may still be useful when studying these cases as well.
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A. Proof of the Riemannian Hessian

Take X = UΣVT ∈ Mk and let ExpX : B → Mk be the exponential map defined on a sufficiently
small ball B ⊂ TXMk around zero. It was shown in Vandereycken (2012, Proposition A1) (see also
Absil & Malick, 2012, Proposition 24 for a different proof) that

ExpX(Z) = X + Z + (I − Pcol
X )ZVΣ−1UTZ(I − Prow

X ) + O(‖Z‖3). (A.1)

The Riemannian Hessian HX : TXMk → TXMk of fA,B on Mk is obtained as the standard
(Euclidean) Hessian of the pullback f ◦ExpX at 0; see Absil et al. (2008, Proposition 5.5.4). Substituting
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(A.1) into

fA,B(X) = 1
2 〈A[X], X〉F − 〈B, X〉F

gives the expansion

fA,B(ExpX(Z)) = fA,B(X) + 〈A[X] − B, Z〉F + 1
2 〈A[Z], Z〉F

+ 〈A[X] − B, (I − Pcol
X )ZVΣ−1UTZ(I − Prow

X )〉F + O(‖Z‖3).

The third and fourth terms on the right-hand side of this expansion are second order in Z. The
Riemannian Hessian is therefore

HX[Z, Z] = 〈A[Z], Z〉F + 〈A[X] − B, (I − Pcol
X )ZVS−1UTZ(I − Prow

X )〉F .

With the particular choices

Ḡ = UΣ1/2, H̄ = VΣ1/2, Z = ΔG · H̄T + Ḡ · ΔHT,

we have (I−Pcol
X )ZVΣ−1UTZ(I−Prow

X ) = (I−Pcol
X )ΔG·ΔHT(I−Prow

X ). This establishes our expression
(2.11) for the Riemannian Hessian.
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