Hypothesis testing

Maria Süveges

Laurent Eyer

September 22, 2010

Observatory of Geneva

Are these stars variable or not?

 Y_1,\ldots,Y_n : time series of random variables (u-band magnitudes of any of two stars SDSS Stripe 82, $\lambda=3551 \text{Å}$)

Problems

If Y_1, \ldots, Y_n are magnitudes of a star at t_1, \ldots, t_n , then

- eventual variability?
- mean magnitude?

Tough problem, because...

- ... random photon numbers on the detector;
- ... random electron numbers in the counter;
- ... errors of measurements: random and systematic instrumental errors, atmospheric effects, human mistakes;
- ... errors with many kinds of inter-dependence both on each other and on the true value to be measured;
- ... time series characteristics combined with irregular, but not completely random sampling;
- ... and so on.

Put it in a very simple way:

- 1. Can the variations observed in the light curve be due entirely to the noise?
- 2. What is the mean magnitude of the stars?

In a more statistical way:

- **1.** Is the estimated standard error of the observations compatible with a given error σ_0 ?
- 2. Is the estimated mean compatible with some assumed (constant) value μ_0 ?

Sample quantities corresponding our questions:

1. The average

$$\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i.$$

2. The empirical variance

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}.$$

We know from Laurent:

For
$$Y_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$$
,

$$\frac{\bar{Y} - \mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1),$$

$$\frac{\bar{Y} - \mu}{S / \sqrt{n}} \sim t_{n-1},$$

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2.$$

Hypothesis test for the variance:

- **0.** Make the fundamental assumptions. Here: $Y_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$.
- **1.** Formulate the null hypothesis and the alternative. Here:

$$H_0: \sigma^2 = \sigma_0^2$$
 against $H_1: \sigma^2 > \sigma_0^2$.

2. Choose a test statistic that has a known distribution under H_0 :

$$\xi^2 = \frac{(n-1)S^2}{\sigma_0^2} = \frac{\sum_{i=1}^n (Y_i - \bar{Y})^2}{\sigma_0^2},$$

so that $\xi^2 \sim \chi^2_{n-1}$, and calculate its value $\xi^2_{\rm obs}$ on the sample.

- **3.** Fix a significance level α (often, $\alpha=0.05$). Compute the p-value: $p=\Pr_{H_0}\{\xi^2>\xi_{\rm obs}^2\}$, or find the critical quantile $c_{\alpha}=\chi_{n-1}^2(1-\alpha)$.
- **4.** Reject H_0 if $p < \alpha$ or equivalently, if $\xi_{obs}^2 > \chi_{n-1}^2 (1 \alpha)$.

Hypothesis test for the mean:

- **0.** Make the fundamental assumptions. Here: $Y_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$.
- **1.** Formulate the null hypothesis and the alternative:

$$H_0: \mu = \mu_0$$
 against $H_1: \mu \neq \mu_0$.

2. Choose a test statistic that has a known distribution under H_0 :

$$Z=rac{ar{Y}-\mu_0}{\sigma/\sqrt{n}}$$
 so that $Z\sim\mathcal{N}(0,1),$ if σ can be taken as known, or $T=rac{ar{Y}-\mu_0}{S/\sqrt{n}}$ so that $T\sim t_{n-1},$ if not.

Calculate the value $T_{\rm obs}$ or $Z_{\rm obs}$ on the sample.

3. Fix a significance level α .

Compute the
$$p$$
-value: $p = P_{H_0}\{T > t_{\rm obs}\}$, or find the critical quantiles $-c_{\alpha/2} = c_{1-\alpha/2} = t_{n-1}(1-\alpha/2)$.

4. Reject H_0 if $p < \alpha/2$ or if $p > 1 - \alpha/2$; equivalently, if $t_{\rm obs} > t_{n-1}(1 - \alpha/2)$ or $t_{\rm obs} < t_{n-1}(\alpha/2)$.

Only looks simple...

The main problem:

To find a test statistic for which we fully know its distribution.

For our case, the test statistics are based on the iid normality of Y_i .

Most often exact null distributions cannot be found.

What can help: distributional convergence.

- Central Limit Theorem;
- other asymptotic convergence theorems (maximum likelihood estimators, periodogram value at a given frequency, deviance statistic for model comparison);
- convergence to distributions that cannot be analytically calculated in general (tests for equality of distributions).

Testing for the variance

$$H_0$$
: $\sigma^2=\sigma_0^2$ against H_1 : $\sigma^2>\sigma_0^2$.
$$\xi_{\mathrm{obs}}^2=\frac{\sum_{i=1}^n\left(Y_i-\bar{Y}\right)^2}{\sigma_0^2} \sim \chi_{n-1}^2$$

Star 3965175: $\sigma_0^2 = 0.45^2$

$$n = 53$$

$$\chi_{n-1}^2(1-\alpha) = 69.83$$

$$\xi_{\rm obs}^2 = 48.93$$

 $\mathsf{p\text{-}value} = 0.59$

 H_0 not rejected.

Testing for the variance

$$H_0$$
: $\sigma^2=\sigma_0^2$ against H_1 : $\sigma^2>\sigma_0^2$.
$$\xi_{\mathrm{obs}}^2=\frac{\sum_{i=1}^n\left(Y_i-\bar{Y}\right)^2}{\sigma_0^2} \sim \chi_{n-1}^2$$

Star 3965175: $\sigma_0^2 = 0.45^2$

$$n = 53$$

$$\chi_{n-1}^2(1-\alpha) = 69.83$$

$$\xi_{\rm obs}^2 = 48.93$$

p-value = 0.59

 H_0 not rejected.

Star 3943930: $\sigma_0^2 = 0.26^2$

$$n = 52$$

$$\chi_{n-1}^2(1-\alpha) = 68.67$$

$$\xi_{\rm obs}^2 = 98.66$$

 $\text{p-value} = 4.9 \times 10^{-5}$

 H_0 rejected.

Testing for the mean I.

Star 3865175:

$$H_0$$
 : $\mu=22.5$ against H_1 : $\mu
eq 22.5$.
$$Z=rac{ar{X}-22.5}{\sigma_0/\sqrt{n}} \mid H_0 \quad \sim \quad \mathcal{N}(0,1)$$

Testing for the mean II.

Star 3943930:

$$H_0$$
 : $\mu=22.5$ against H_1 : $\mu \neq 22.5$.
$$T=\frac{\bar{X}-\mu}{S/\sqrt{n}} \sim t_{n-1}$$

Types of errors

Decision:

Reject
$$H_0 \iff \xi^2 > c_{\alpha}$$
.

	H_0 not rejected	H_0 rejected
H_0 true	Correct decision	Type I error, probability α
H_1 true	Type II error, probability β	Correct decision

Probability of Type I error:

$$\alpha = \Pr\left\{\xi^2 > c_\alpha \mid H_0\right\}$$

Probability of Type II error:

$$\beta = \Pr\left\{\xi^2 \le c_\alpha \mid H_1\right\}$$

 α : size of the test

 $1-\beta$: power of the test

Types of errors

For simplicity: let now Y_1, \ldots, Y_n n measurements of the magnitudes of a star, suppose the errors on the measurements are all equal, and suppose $Y_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$.

Hypotheses, now both simple:

$$H_0: \sigma^2 = \sigma_0^2 = 0.26$$
 against $H_1: \sigma^2 = \rho_0^2 = 0.36$.

Test statistic:

$$\xi^2 = \frac{(n-1)S^2}{\sigma_0^2},$$

Under H_0 ,

$$\xi^2 \sim \chi_{n-1}^2.$$

Under H_1 , a rescaled chi-squared.

Types of errors

Attention: the type II error β cannot in general be exactly calculated, only if we have a simple alternative H_1 and we know the distribution of the test statistic under H_1 .

- If $H_0: \sigma^2 = \sigma_0^2$ against $H_1: \sigma^2 = \rho_0^2$ $\Longrightarrow \beta$ can be calculated;
- If $H_0: \sigma^2 = \sigma_0^2$ against $H_1: \sigma^2 > \sigma_0^2$ $\Longrightarrow \beta$ cannot be calculated.

Fundamental assumption was:

$$Y_i \overset{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2).$$

Fundamental assumption was:

$$Y_i \overset{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2).$$

Not the case: Errors at different times are different!

$$Y_i \overset{\text{ind}}{\sim} \mathcal{N}(\mu, \sigma_i^2).$$

Fundamental assumption was:

$$Y_i \overset{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2).$$

Not the case: Errors at different times are different!

$$Y_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\mu, \sigma_i^2).$$

For the mean: maximum likelihood \Longrightarrow weighted sample mean $\hat{\mu}$.

For the variance: standardize the observations by $Y_i^\star = (Y_i - \hat{\mu})/\sigma_i$, then as this is iid standard normal, compare $\sum_{i=1}^n Y_i^{\star 2}$ to a χ^2_{n-1} .

Are Y_i^{\star} really standard normal?

And this is not all....

Outliers are still possible. Formally speaking:

$$Y_i \stackrel{\text{ind}}{\sim} \pi F_{1,i} + (1-\pi)F_{2,i}.$$

Solutions include:

- Remove outliers based on knowledge of experimental conditions;
- Apply robust statistical methods.

Remedy: maximum likelihood (should have some reasonable distributional assumption other than normality)

Crucial points

Precise formulation

What do I want to test?

 H_0 : ... against H_1 : ...

Choice of test statistics

Corresponding to the precise formulation, and making the unavoidable assumptions and simplifications in order to have a fully known (asymptotic) distribution under H_0 .

Clear on the underlying assumptions

What are the necessary conditions?

Normality? Outliers?

Check: QQ plots.

Homogeneous errors?

Check: plot the errors versus time (or your covariate).

Independence of the errors and the observed quantity?

Check: plot the errors versus the observed quantity.

What does the test tell us? Not that the star is variable: but only that the observations are more variable than our assumption about the noise.