Introduction to statistics

Laurent Eyer Maria Suveges, Marie Heim-Vögtlin SNSF grant

Recent history at the Observatory

- Request of "something on statistics" from PhD students, because of an impression of lack of knowledge
	- Daniel Schaerer
	- Amaury Triaud, Richard Anderson
	- Maria Suveges, Damien Segransan, Stéphane Paltani, Laurent Eyer
- Cafés statistiques in 2005-2006: http://obswww.unige.ch/~eyer/CAFSTAT/

- General Introduction, definitions, hypothesis testing, today
- Chi2 statistics, maximum likelihood, wednesday 6 October 2010
- Monte Carlo Markov chain, Wednesday 10 November 2010

Some statistical resources for this introduction

- Probabilités, analyse des données et statistique Gilbert Saporta
- Introduction à la statistique, Stephan Morgenthaler
- Advanced theory of statistics Maurice Kendall & Allan Stuart
- Statistics in theory and practice, Robert Lupton
- Introductory statistics with R, Peter Dalgaard
- wikipedia (it seems quite good, but always to take with care)

Random Variables

- Discrete:
	- Spectral type (G2V, KIII)
	- Galaxy type, galaxy zoo

Class Button Description Elliptical galaxy $\mathbf{1}$ Clockwise/Z-wise spiral galaxy $\overline{2}$ ര Anti-clockwise/S-wise spiral galaxy 3 ெ Spiral galaxy other (e.g. edge on, unsure) $\overline{4}$ Star or Don't Know (e.g. artefact) 5 6 Merger ⌒

- Continuous:
	- magnitude, flux, colour, radial velocity, parallax/distance, temperature, elemental abundances, magnetic field, age, etc...

Distribution

 \bullet Definition: density is a function $f(x)$ such that:

$$
\Pr(a < X < b) = \int_a^b f(x)dx \qquad \Pr(X = k) = p(k)
$$

- Distribution of one variable: univariate *f*(*x*)
- Distribution of several variables: multivariate *f*(*x, y, . . .*)
- Marginalization: $u(x) = \int^\infty \, f(x,y) dy$ $-\infty$
- If and only if: $f(x, y) = u(x)v(y)$ the variables are independent
- Cumulative Distribution Function CDF:

$$
F(x) = \int_{-\infty}^{x} f(x') dx'
$$
 Digression on "LateXiT"

Example: Gaussian / Normal distribution

Poisson distribution

Discrete probability distribution (no density)

$$
X \sim \text{Poisson}(\lambda) \qquad \text{Number of plot } \\ \text{Number of people} \\ \Pr(X = k) = \exp(-\lambda) \frac{\lambda^k}{k!}
$$

tons on a detector ple in a shop

For large λ

 $\mathcal{N}(\lambda,\lambda)$

Moments of a distribution

• Information of location, the mean

$$
E(X) = \mu = \int_{-\infty}^{\infty} x f(x) dx
$$

• Information of dispersion, the variance

$$
\text{Var}(X) = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx
$$

• Moment of order n about the mean:

$$
\mu_n = \int_{-\infty}^{\infty} (x - \mu)^n f(x) dx
$$

Normal: μ Poisson: λ

standard deviation

$$
\sigma = \sqrt{\text{Var}(X)}
$$

Normal: σ 2Poisson: λ

3d and 4th moments of a distribution

• Skewness, asymmetry

• Kurtosis

$$
\mu_4/\sigma^4 = \int_{-\infty}^{\infty} (x - \mu)^4 f(x) dx / \sigma^4
$$

$$
\mu_4/\sigma^4 - 3
$$

Normal: 0
Poisson: 1/ λ

Example of different values of kurtosis: "boxiness" -- tail heaviness

Covariance and correlation

• Covariance

$$
Cov(X,Y) = \int \int (x - \mu_x)(y - \mu_y) f(x, y) dx dy
$$

• Correlation

$$
Corr(X, Y) = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}
$$

Examples of correlation

from wikipedia

Quantiles

• x_p : p-quantiles of $f(x)$

$$
p = \int_{-\infty}^{x_p} f(x) dx
$$

• Measure of location: Median

$$
1/2 = \int_{-\infty}^{x_{1/2}} f(x) dx
$$

from www.aiacces.net

• Measure of dispersion: Inter-quantile range

$$
IQR = x_{3/4} - x_{1/4}
$$

Data, samples

• Usually we have observations, e.g. additive process

$$
y_i = f(t_i) + \epsilon_i \qquad \qquad i = 1, \dots, n
$$

Deterministic random variable

- We want a characterisation of the deterministic and random parts
- Suppose something about the random variable, often normality: $\mathcal{N}(0, \sigma^2)$

Estimators

- Assumption of models
- Estimate the parameters of a distribution, moments

- Exercise 1: Sample mean:
$$
\hat{\mu} = \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i
$$
 $E(\bar{X}) = \mu$

- Exercise 2: Sample variance (bias):

$$
\hat{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2 \qquad E(\hat{\sigma^2}) = \frac{n}{n-1} \sigma^2
$$

redefine
$$
\hat{\sigma^2} = S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2
$$

- Sample quantiles are estimators of quantiles
	- Exercise 3: what is the sample median of {1 , 2, 3, 109812308}?

Central limit theorem

The distribution of the mean of a sufficiently large number of random variables can be approximated by a Gaussian distribution!

$$
X_i
$$
, $i = 1, ..., n$ iid with $E(X_i) = \mu \text{Var}(X_i) = \sigma^2$

iid= Independent identically distributed

$$
\frac{\bar{X} - \mu}{\sigma / \sqrt{n}}
$$
 follows approximately $\mathcal{N}(0, 1)$

One reason why the Gaussian distribution is so important

Distribution derived from Normal distribution 1) Chi square distribution

If
$$
X_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, 1)
$$

\n mean:
\n**k**
\n**mean: k**
\n**k**
\n**mean: k**
\n**k**
\n**gamma: k**
\n**mean: k**
\n**binomial**
\n**variance: 2 k**
\n**skewness:** $\sqrt{8/k}$
\n**kurtosis: 12/k**
\n $X_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma)$
\n**k**
\n**logrees of freedom**
\n $\frac{e^{k}}{e^{k}} = e^{k}$
\n $\frac{e^{k}}{e^{k}}$
\nWhen k is large χ_k^2
\n χ_k
\

Distribution derived from Normal distribution 2) Student distribution

$$
\frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1)
$$
\n
$$
\frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}} \sqrt{n}} \sim t_{n-1}
$$
\n
$$
\frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}} \sqrt{n}} \sim t_{n-1}
$$
\n
$$
f(x) = \frac{\Gamma(\frac{n+1}{2})}{\sqrt{n\pi} \Gamma(n/2)} \left(1 + \frac{x^2}{n}\right)^{-(n+1)/2} \text{ variance: } n/(n-2) \text{ n} > 2
$$
\n
$$
t_{\infty} = \mathcal{N}(0, 1)
$$
\nNote\n
$$
t_{\infty} = \mathcal{N}(0, 1)
$$
\n
$$
t_{\infty} = \mathcal{N}(0,
$$

Estimators of Variance of different statistics

STANDARD ERRORS 243 Variance multiplied by n Statistic **Notes** True for any population with Mean, m'_1 , ..., μ_2 (= σ^2) finite second moment μ_{2} . Sample variance, m_2 . . . $\mu_4 - \mu_2^2$ For normal parent, $= 2\sigma^4$. Sample s.d., s , \ldots For normal parent, $= \sigma^2/2$. $(\mu_4 - \mu_2^2)/(4\mu_2)$ For normal parent, $= 6\sigma^2$. Third moment, m_3 . . . $\mu_6 - \mu_3^2 - 6\mu_4 \mu_2 + 9\mu_3^3$ For normal parent, = $96\sigma^8$. Fourth moment, m_4 ... $\mu_s - \mu_4^2 - 8\mu_5 \mu_2 + 16\mu_2\mu_3^2$ $\sqrt{b_1} = m_3/m_2^{3/2}$ For normal parent only. See **Contract Contract Contract** 12.18 and Exercise 12.9. $b_3 = m_4/m_2^2$ 24 For normal parent only. See Exercise 12.10. See Example 10.5 For normal parent, $= V^2/2$ Coefficient of variation, V . approx. See Yasukawa (1926) for for-Distribution skew for moderate Pearson mode (cf. 6.3) mulae and tables η . See 10.13 For normal parent, Mean deviation. $= \sigma^2(1-2/\pi)$. See 10.14 For normal parent. Gini's mean difference . . $= (0.8068)^2 \sigma^2$. $1/(4y_0^2)$ when y_0 is ordinate at For normal parent and small Median samples see Hojo (1931) and median K. Pearson (1931). For large normal samples equals $(1.2533)^2\sigma^2$. $3/(16y^2)$ where y is the ordin-For normal parent, Ouartile . . $= (1.3626)^{2} \sigma^{2}$. ate at the quartile See also Hojo (1931). See 10.10 For normal parent, Deciles $(\text{deciles } 4, 6) = (1.2680)^2 \sigma^2$; $(\text{deciles } 3, 7) = (1.3180)^2 \sigma^2$; $(\text{deciles } 2, 8) = (1.4288)^2 \sigma^2$; $(\text{deciles } 1, 9) = (1.7094)^2 \sigma^2$. For normal parent, $\frac{1}{4}$ {3/16y₁² + 3/16y₂² Semi-interquartile range $= (0.7867)^2 \sigma^2$. $-1/8y_1 y_2 \sigma^2$, where y_1, y_2

are the quartile ordinates

For bivariate normal parent,

See Example 10.6

Correlation coefficient r

from Kendall & Stuart

Graphical representation QQ Plots

End of the Introduction