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Caveat

The presentation aims at being user-focused and at
presenting usable recipes

Do not expect a fully mathematically rigorous description!

This has been prepared in the hope to be useful even in
the stand-alone version

Please provide me feedback with any misconception or
error you may find, and with any topic not addressed here
but which should be included



Monte Carlo
Methods

Stéphane Paltani

What are
Monte-Carlo
methods?
General concepts

Applications

Simple examples

Generation of
random variables

Markov chains
Monte-Carlo

Error estimation

Numerical
integration

Optimization

Outline

What are Monte-Carlo methods?
General concepts
Applications
Simple examples

Generation of random variables

Markov chains Monte-Carlo

Error estimation

Numerical integration

Optimization



Monte Carlo
Methods

Stéphane Paltani

What are
Monte-Carlo
methods?
General concepts

Applications

Simple examples

Generation of
random variables

Markov chains
Monte-Carlo

Error estimation

Numerical
integration

Optimization

General concepts

Monte-Carlo methods:
I have been invented in the context of the

development of the atomic bomb in the 1940’s
I are a class of computational algorithms
I can be applied to vast ranges of problems
I are not a statistical tool
I rely on repeated random sampling
I provide generally approximate solutions
I are used in cases where analytical or numerical

solutions don’t exist or are too difficult to implement

I can be used by the Lazy ScientistTM even when an
analytical or numerical solution can be implemented
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Overview of the method

Monte-Carlo methods generally follow the following steps:

1. Determine the statistical properties of possible inputs
2. Generate many sets of possible inputs which follows

the above properties
3. Perform a deterministic calculation with these sets
4. Analyze statistically the results

The error on the results typically decreases as 1/
√

N
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Numerical integration

Most problems can be solved by integration

Monte-Carlo integration is the most common application
of Monte-Carlo methods

Basic idea: Do not use a fixed grid, but random points,
because:

1. Curse of dimensionality: a fixed grid in D dimensions
requires ND points

2. The step size must be chosen first
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Error estimation

Given any arbitrary probability distribution and provided
one is able to sample properly the distribution with a
random variable (i.e., x ∼ f (x)), Monte-Carlo simulations
can be used to:

I determine the distribution properties (mean,
variance,. . . )

I determine confidence intervals, i.e.
P(x > α) =

∫∞
α f (x)dx

I determine composition of distributions, i.e. given
P(x), find P(h(x)), h(x) = x2; cos(x)− sin(x); . . .

Note that these are all integrals!
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Optimization problems

Numerical solutions to optimization problems incur the
risk of getting stuck in local minima.

Monte-Carlo approach can alleviate the problem by
permitting random exit from the local minimum and find
another, hopefully better minimum
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Numerical simulations

I Radiation transfer is Google-wise the main
astrophysical application of Monte-Carlo simulations
in astrophysics

I In particle physics and high-energy astrophysics,
many more physical processes can be simulated

Some physical processes are discretized and random by
nature, so Monte-Carlo is particularly adapted
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Numerical simulations
GEANT4

GEANT4 is also used to determine the performance of
X-ray and gamma-ray detectors for astrophysics
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Probability estimation
Head vs tail probability

What is the probability to obtain either 3, 6 or 9 heads if
one draws a coin ten times?

I Binomial probability:
P = B(3; 10,0.5)+B(6; 10,0.5)+B(9; 10,0.5) ' 0.33

I Monte-Carlo simulation:
1. Given a random variable y ∼ U(0,1), define “head” if

y < 0.5, “tail” otherwise
2. Draw 10 random variables xi ∼ U(0,1), i = 1, . . . ,10
3. Count the number of heads H, and increment T if

H = 3,6, or 9
4. Repeat 2.–3. N times, with N reasonably large
5. The probability is approximately T/N

I Note that this is an integration on a probability
distribution, even if it is discrete!
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Error estimation
What is the uncertainty on the mean?

Assuming N random variables xi ∼ N (0, σ), i = 1, . . . ,N,
the estimator of the mean is: x̄ = N−1∑N

i=1 xi and its
uncertainty is:

σx̄ = σ/
√

N

The Monte-Carlo way:
1. Draw a set of N random variables

yi ∼ N (0, σ), i = 1, . . . ,N
2. Calculate the sample mean ȳ = N−1∑N

i=1 yi

3. Redo 1.–2. M times
4. The uncertainty on the mean σx̄ is the root mean

square of ȳj , j = 1, . . . ,M, i.e.
σ2

x̄ = (M − 1)−1∑M
j=1
(
ȳj − ŷ

)2, with ŷ = M−1∑M
j=1 ȳj
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Numerical integration
How to calculate π?

1. Draw N point (x , y) uniformly at random in a square
2. Count the C points for which x2 + y2 < 1
3. The ratio C/N converges towards π/4 as N1/2
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Random number generators
Basic principles

I We want to draw many random variables
Ni ∼ U(0,1), i = 1, . . . which satisfy (or approximate
sufficiently well) all randomness properties

I Ni ∼ U(0,1), ∀i is not sufficient. We also want that
f (Ni ,Nj , . . .) ∀i , j , . . . has also the right properties

I Correlations in k -space are often found with a bad
random-number generators

I Another issue is the period of the generator
I The ran() function in libc has been (very) bad.

Do not use this function in applications when good
randomness is needed says man 3 rand
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Random number generators
Basic algorithm

I Many random number generators are based on the
recurrence relation:

Nj+1 = a · Nj + c (mod m)

These are called linear congruential generators. c is
actually useless.

I “Divide” by m + 1 to get a number in the range [0; 1[

I Choices of a,m in standard libraries are found to
range from very bad to relatively good

I A “minimal standard” set is a = 75 = 16807, c = 0,
m = 231 − 1 = 2147483647. This is RAN0

I Note that the period is at most m
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Random number generators
Improvements on RAN0

1. Multiplication by a doesn’t span the whole range of
values, i.e. if Ni = 10−6, Ni+1 ≤ 0.016, failing a
simple statistical test

I Swap consecutive output values: Generate a few
values (∼ 32), and at each new call pick one at
random. This is RAN1

2. The period m = 231 − 1 might be too short
I Add the outcome of two RAN1 generators with

(slightly) different m’s (and a’s). The period is the
least common multiple of m1 and m2 ∼ 2 · 1018. This
is RAN2

3. The generator is too slow
I Use in C inline Ni+1 = 1664525 · Ni + 1013904223

using unsigned long. Patch the bits into a real
number (machine dependent). This is RANQD2
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Random number generators
Implementations and recommendations

NR: Numerical Recipes
GSL: GNU Scientific Library

Library Generator Relative speed Period

NR RAN0 1.0 ∼ 231

NR RAN1 1.3 ∼ 236

NR RAN2 2.0 ∼ 262

NR RANQD2 0.25 ∼ 230

GSL MT19937 0.8 ∼ 219937

GSL TAUS 0.6 ∼ 288

GSL RANLXD2 8.0 ∼ 2400

Always use GSL! See the GSL doc for the many more
algorithms available
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Transformation method
The method

The transformation method allows in principle to draw
values at random from any distribution

1. Given a distribution p(y), the cumulative distribution
function (CDF) of p(y) is F (y) =

∫ y
0 p(w) dw

2. We want to draw y uniformly in the shaded area, i.e.
uniformly over F (y); by construction 0 ≤ F (y) ≤ 1,

3. We draw x ∼ U(0,1) and find y so that x = F (y)

4. Therefore y(x) = F−1(x), x ∼ U(0,1)
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Transformation method
Example

Exponential deviates: p(y) = λe−λy

F (y) = 1− e−λy = x

y(x) = −1
λ

ln(1− x)

Note: this is equivalent to

y(x) = −1
λ

ln(x),

since, if x ∼ U(0,1), then 1− x ∼ U(0,1) as well

Note also that it is rather uncommon to be able to
calculate F−1(x) analytically. Depending on accuracy, it is
possible to calculate an numerical approximation
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Transformation method
A point in space

To draw a point in a homogeneous sphere of radius R:
1. φ can be drawn uniformly from U(0,2π)

2. θ has a sine distribution p(θ) = sin(θ)/2, θ ∈ [0;π[
Transformation: θ = 2 arccos(x)

3. Each radius shell has a volume f (R) ∼ R2 dR, so
R ∝ 3√x

4. Alternatively, draw a point at random on the surface
of a sphere (x , y , z)/

√
x2 + y2 + z2 with

x , y , z ∼ N (0,1)
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Rejection method
The method
If the CDF of p(x) is difficult to estimate (and you can
forget about inversion), the rejection method can be used

1. Find a comparison function f (x) that can be
sampled, so that f (x) ≥ p(x), ∀x

2. Draw a random deviate x0 from f (x)

3. Draw a uniform random deviate y0 from U(0, f (x0))

4. If y0 < p(x0), accept x0, otherwise discard it
5. Repeat 2.–4. until you have enough values

The rejection method can be very inefficient if f (x) is very
different from p(x)
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Rejection method
Example

The Poisson distribution is discrete: P(n;α) = αn e−α

n!

Make it continuous:

P(x ;α) =
α[x ] e−α

[x ]!

A Lorentzian f (x) ∝ 1
(x−α)2+c2 is a good comparison

function
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Rejection method
A point in space

A simpler way to draw a point in a homogeneous sphere
of radius R based on rejection:

1. Draw three random variables x , y , z from U(−R,R)

2. Keep if x2 + y2 + z2 < R2, reject otherwise
3. Repeat 1.–2. until you have enough values

Efficiency is 4π
3 /2

3 ' 0.52
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Distributions

GNU Scientific Library implements (not exhaustive!):

Gaussian Binomial
Correlated bivariate Gaussian Poisson
Exponential
Laplace
Cauchy Spherical 2D, 3D
Rayleigh
Landau
Log-normal
Gamma, beta
χ2, F, t
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Quasi-random sequences
What is random?

All sets of points fill “randomly” the area [[0; 1]; [0; 1]]

The left and center images are “sub-random” and fill more
uniformly the area

These sequences are also called low-discrepancy
sequences

These sequences can be used to replace the RNG when
x ∼ U(a,b) is needed
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Quasi-random sequences
Filling of the plane

The sequence fills more or less uniformly the plane ∀N
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Quasi-random sequences
Examples of algorithms

I Sobol’s sequence: Count in binary, but using Gray
code and put a radix in front: 0.1, 0.11, 0.01, 0.011,
0.001, 0.101, 0.111, . . .
This can be generalized to N dimensions
This is the red set of points

I Halton’s sequence: H(i) is constructed the following
way: take i expressed in a (small) prime-number
base b (say b = 3), e.g. i = 17 ≡ 122 (base 3).
Reverse the digits and put a radix in front, i.e.
H(17) = 0.221 (base 3) ' 0.92593
This is generalized to N dimensions by choosing
different b’s in each dimension
This is the blue set of points
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Quasi-random sequences
Accuracy

Convergence in some cases of numerical integration can
reach ∼ 1/N
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Quasi-random sequences

GNU Scientific Library implements:
I Sobol’s sequence
I Halton’s sequence
I Niederreiter’s sequence
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Markov chains
Definition

A set of random variables xi , i = 1, . . . is a Markov chain if:

P(xi+1 = x |x1, . . . , xi) = P(xi+1 = x |xi)
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Markov chains
Examples

I State machine

I White noise: xi+1 = εi , εi ∼ N (µ, σ)

I Random walk: xi+1 = xi + εi , εi ∼ N (µ, σ)

I AR[1] process: xi+1 = ϕ · xi + εi , εi ∼ N (µ, σ),
|ϕ| < 1

I Google’s PageRank
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Markov chains
Properties

I Homogeneity: A Markov chain is homogeneous if
P(xi+1 = x |xi) = P(xj+1 = x |xj), ∀i , j

I Ergodicity: A Markov chain is ergodic if
E(n|xn = xi ,n > i) <∞, ∀i
(Probably only valid when the number of states is
finite)
Ergodicity means that all possible states will be
reached at some point

I Reversibility: A Markov chain is reversible if
there exists a distribution Π(x) such that:
Π(α)P(xi+1 =α|xi =β) = Π(β)P(xi+1 =β|xi =α),
∀i , α, β
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Markov chains
More on reversibility

If a Markov chain is reversible:∫
α

Π(α)P(xi+1 =α|xi =β) =

∫
α

Π(β)P(xi+1 =β|xi =α) =

= Π(β)

∫
α

P(xi+1 =β|xi =α) = Π(β)

This property is also called detailed balance. Π(x) is then
the equilibrium distribution of the Markov chain.
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Markov chains Monte-Carlo
Definition

Can we build a Markov chain that has pretty much any
requested equilibrium distribution? YES!! The answer is
Markov chain Monte-Carlo

I MCMC is one of the ten best algorithms ever!
(along with FFT, QR decomposition, Quicksort, . . . )

I MCMC uses a homogeneous, ergodic and reversible
Markov chain to generate consistent samples drawn
from any given distribution

I No specific knowledge of the distribution, no specific
support function is required

I Construction of the Markov chain Monte-Carlo is
even straightforward
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Markov chains Monte-Carlo
The Metropolis algorithm

Assuming a distribution f (x) that we want to sample:
1. Choose a proposal distribution p(x) and an initial

value x1

2. Select a candidate step using p(x), so that:
x̂ = xi + ε, ε ∼ p(x)

3. If f (x̂) > f (xi) accept xi+1 = x̂ , otherwise accept
xi+1 = x̂ with a probability f (x̂)/f (xi), else reject and
start again at 2.

4. Continue at 2. until you have enough values
5. Discard the early values (burning phase) which are

influenced by the choice of x1
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Random walk MCMC

Random-walk updates, i.e. proposal distribution is
constant, i.e. x̂ = xi + εi , εi ∼ p(x):

I Gaussian update: p(x) = N (0, σ)

I Uniform update: p(x) = U(−υ, υ)

I Student’s t update
I Lévy-flight update: p(x) is heavy-tailed (power law)
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Non random walk MCMC

I Independence sampler: x̂ ∼ Y , i.e. do not use xi !
This is equivalent to the rejection method

I Langevin update: x̂ = xi + εi + σ
2∇ log f (xi). Uses

some information about f (x) to propose a better
move

I Gareth’s diffusion: Gaussian update, but
σ(xi) = (maxx f (x))/f (xi). Makes bigger steps if we
are in an area with small probability

I Gaussian AR[1] update:
x̂ = a + b(xi − a) + εi , εi ∼ N (0, σ), |b| ≤ 1. Not sure
what good this does
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Further notes on implementations

I Check the rejection ratio. Values between 30 and
70% are conventionally accepted

I Discard the burning phase. the autocorrelation
function is a standard way to check if the initial value
has become irrelevant or not

I The width of the proposal distribution (e.g. σ for a
Gaussian update or υ for a uniform update) should
be tuned during the burning phase to set the
rejection fraction in the right bracket

I Reflection can be used when an edge of f (x) is
reached, e.g. set x̂ = |xi + εi | if xi must remain
positive

I Be careful with multimodal distributions. Not all
modes may be sampled
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Limitations of the Metropolis algorithm

I A symmetric proposal distribution might not be
optimal

I Boundary effects: less time is spent close to
boundaries, which might not be well sampled

I A correction factor, the Hastings ratio, is applied to
correct for the bias

I The Hastings ratio usually speeds up convergence
I The choice of the proposal distribution becomes

however more important
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The Hastings ratio

I The proposed update is x̂ ∼ Q(x ; xi)

I The probability to accept the next point, A is modified
so that instead of:

A = min
(

1,
f (x̂)

f (xi)

)
the probability is corrected by the Hastings ratio:

A = min
(

1,
f (x̂)

f (xi)

Q(x̂ ; xi)

Q(xi ; x̂)

)

I If Q(α;β) = Q(β;α), this is the Metropolis algorithm
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When hypotheses are not satisfied

Are these points correlated: N = 45 points, r = 0.42 ?

The null-hypothesis probability that there is no correlation
is 0.005
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When hypotheses are not satisfied

However, some parts of the plane (y < x − 0.5) are not
accessible

The correct probability can be estimated using a
Monte-Carlo simulation
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Using Monte-Carlo simulations

1. Draw N couples (xi , yi) ∼ (U(0,1),U(0,1)), rejecting
those for which yi < xi − 0.5

2. Calculate the correlation coefficient r
3. Repeat 1.–2. many times
4. Study the distribution. In this case the null hypothesis

has a ∼ 10% probability
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Statistical significance
When hypotheses are not satisfied

Is the distribution of these N values Gaussian?

Use a Kolmogorov-Smirnov test QKS, and then use the
null-hypothesis probabilities for this test

OK, but I do not know σ
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When hypotheses are not satisfied

1. Find the parameters σobserved that minimizes QKS,obs,
and the corresponding QKS,obs,min

2. Draw N points from a Gaussian with rms σobserved

3. Find the minimum of QKS,sim as a function of trial σ
4. Repeat 2.–3. many times, and check the distribution

of QKS,sim,min against QKS,obs,min. In this case, 20% of
the QKS,sim,min exceed QKS,obs,min
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The case of the parallax

I One measures the parallax π of a given objects

I Assume that the known uncertainty σ on π is
Gaussian, i.e. the true parallax Π and π are related
by π = Π + ε, ε ∼ N (0, σ)

I In the limit σ � π, we have the error propagation on
the distance D = 1/π
∆D =

∣∣∂D
∂π

∣∣∆π =
∣∣ 1
π2

∣∣∆π = σ
π2

I But higher-order terms in the serial expansion make
the error distribution of D very asymmetrical

I A better solution is to perform the error propagation
with a Monte-Carlo simulation
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The case of the parallax illustrated

Monte-Carlo simulations allow to simulate the distribution
of the distance D of a source in case of a parallax of
15± 1" (Left) and 3± 1" (Right)

Any inference on confidence intervals (for instance) is
bound to be erroneous when σ � π is not satisfied
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Real life example: Black-hole mass I

I MBH = c · τ < v >2 is a non-linearly derived
parameter from two measured parameters with
non-Gaussian uncertainty distributions

I Pick many values τ and < v > from their
distributions and build the distribution of MBH
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Real life example: Black-hole mass II

The resulting distribution can be explored to determine its
moment and confidence intervals

Two independent estimates can be combined using a
maximum-likelihood estimation
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Bootstrap
A simple error estimation problem

Assume if have two sets of random variables
xi , i = 1, . . . ,N and yj , i = 1, . . . ,N, with N = 20 and a
correlation coefficient r = −0.63. Are the two variables
significantly correlated? Alternatively, what is the
uncertainty on r?

In this case we can simulate new sets using Monte-Carlo
under the null hypothesis, and estimate significance and
uncertainty
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Bootstrap
Getting something from nothing

What if we have no idea about the underlying distribution?

Intuition says that would be akin to pulling one’s
bootstraps to lift oneself

But the data contain hidden information about their
distribution!
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General principle

I Generate many pseudo-samples by random,
Monte-carlo, direct extraction of data points from the
original sample

I Each pseudo-sample has the same size as the
original sample

I As a consequence most pseudo-sample contain
some repeated data points and some missing data
points

I The statistics of interest is computed for all
pseudo-samples, and its distribution is sampled,
allowing to infer its statistical properties (uncertainty,
mean, confidence intervals, . . . )
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Bootstrap
A practical example

We generate a similar histogram with the data only:
1. Draw N indices (integers) αi from [1; N]

2. Calculate the correlation coefficient r from the new
sets xαi and yαi , i = 1, . . . ,N

3. Build and study the distribution of r by repeating
1.–2. many times
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Bootstrap
Smoothed bootstrap

If the statistics of interest is discrete (i.e., can have only
few values), the bootstrap distribution will be quite bad

One can add a smoothing random variable ∼ N (0, σ2),
σ = 1/

√
N, to all the picked values of a bootstrap test

Even in the non-smoothed case, the confidence intervals
can be pretty good
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Basic principle

∫
V f dV in M dimensions requires ∼ (1/h)M steps

Given a volume V and a function f (with <w> being the
average of w over V ):∫

V
f dV ' V <f> ±V

√
<f 2> − <f>2

N

This is the basic theorem of Monte-Carlo integration

1. Draw N points at random within V
2. Calculate <f>= 1

N
∑N

i=1 fi (and <f 2>)
3. Multiply <f> by V to obtain the integral
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Volume determination

The volume of V can be determined by
∫

V f dV , with f ≡ 1

If it is not possible or not easy to sample uniformly the
volume, one has to find a volume W containing V , which
can be sampled and whose volume is known

The error is then W
√

<f 2>−<f>2

N , but

f (w) =

{
1, if w ∈ V
0, if not
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How to minimize the error

The error term depend on the variance of f within V :

V

√
< f 2> − < f >2

N

Can we reduce < f 2> − < f >2 ?

If f varies strongly over V (e.g., f (x , y , z) = e5z), one can
perform a change of variable:

s =
1
5

e5z → ds = e5zdz

=⇒
∫

x

∫
y

∫ 1

z=−1
e5zdz =

∫
x

∫
y

∫ e5/5

s=e−5/5
ds

Equivalent to a transformation method, but useless
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Divide and conquer...

If F̂ is the estimator of F = 1
V

∫
V f dV ,

Var(F̂ ) =
Var(f )

N
≡ σ2

N

If one cut V in two equal volumes V1 and V2, the new
estimator of F is:

F̂ ′ =
1
2

(
F̂1 + F̂2

)
=⇒ Var(F̂ ′) =

1
4

(
σ2

1
N1

+
σ2

2
N2

)

The minimum is reached for: Ni/N = σi/(σ1 + σ2)

=⇒ Var(F̂ ′) =
(σ1 + σ2)2

4N

One can therefore cut V into many separate pieces,
estimate the rms in each of them, and draw the points in
each subvolume proportionally to the rms of f
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at work. . .

Sampling is performed in the subvolumes where σ is
large
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The MISER algorithm

When V has many dimensions d , stratified sampling
needs to cut the volume in K d subvolumes

The MISER algorithm uses a recursive stratified
sampling. It cuts the volume in two parts one dimension
at a time:

1. For each dimension i , cut the current volume in two,
V1 and V2, and determine σ1,2

2. Find the most favorable dimension, e.g., by
minimizing σ2

1 + σ2
2

3. Perform additional MC evaluation in V1 and V2
minimizing the error

4. Iterate 1.–3. as long as the number of evaluations
remains not too prohibitive
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Using a sampling distribution

Instead of sampling uniformly, we use a distribution p:∫
V

pdV = 1

=⇒
∫

V
f dV =

∫
V

f
p

pdV =

〈
f
p

〉
±
√
< f 2/p2> − < f/p>2

N

Given N, the square root is minimized if:

p =
|f |∫

V |f |dV

The idea of importance sampling is to find a distribution
p as close as possible to f . Importance sampling requires
some prior knowledge of f
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The VEGAS algorithm

The VEGAS algorithm implements importance sampling
with a separable distribution in d dimensions:

p ∝ g1(x1) · g2(x2) · g3(x3) . . . · gd (xd )

VEGAS uses an adaptive strategy to determine gi(xi)

1. Choose arbitrary gi(xi) (e.g., constant)
2. Cut each axes in K pieces, and determine the

integral and the Kd importance sampling weights
gi(k), k = 1, . . . ,N

3. Iterate 2. a (small) number of times to improve the
weights gi(k) and the integral

VEGAS efficiency depends strongly on the validity of the
separability of f , and will be small if the integrand is
dominated by a subspace of dimension d1 < d
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Stochastic optimization
The problem of local minima

Minimization of complex functions in many dimensions
often shows multiple minima

Random (i.e., Monte-Carlo) approaches can help

In Nature, the problem is often encountered. . . and
solved (or approximated)
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Swarm intelligence
The ant colony optimization

Numerous agents explore the landscape with simple
interactions between them

Ants move at random in the solution space and deposit
pheromones behind them, which attract other ants

Shorter paths are crossed more rapidly by ants, so more
pheromone is deposited, attracting more ants

Try also bees!
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Genetic algorithms
Principle

Use Darwinian evoution of a gene pool to find the fittest
genes

I Each chromosome represents a candidate solution
to the problem at hand, represented as a series of
genes

I A fitness function can be calculated for each
chromosome

I At each generation
1. Genes mutate,
2. Chromosomes reproduce sexually
3. Non-biological mechanisms are also possible
4. Chromosomes are selected according to their fitness

I After the stopping criterion is used, the best
chromosome provides the approximate solution
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Genetic algorithms
Example

You want to build the best possible average spectrum with
a sample of N low-S/N high-redshift galaxies, but you
know the sample contain 50% interlopers (galaxies with
wrongly identified redshifts)

I The chromosomes are a series of N bits, half of
them set to 1, the rest to 0

I The fitness function is the summed equivalent width
of the expected line features

I Mutation are random inclusion or exclusion of
galaxies
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Simulated annealing
Principle

In nature, crystal (e.g., ice) can form over large areas,
thus minimizing internal energy

Annealing is the process of slowly cooling a material to
relieve internal stress

Nature performs an annealing by slowly decreasing
temperature, so that misaligned ice crystals can melt and
freeze in a more favorable direction
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Simulated annealing
Implementation

Simulated annealing requires:

1. A configuration of all possible states S, i.e. the space
of the problem

2. An internal energy E , which we want to minimize
3. “Options” for the next state after the current state,

similar to updates in Metropolis algorithms
4. A temperature T which is related to the probability to

accept an increase in energy:

S0 is accepted if ς ∼ U(0,1) < exp
(
−∆E

kT

)
5. A cooling schedule, which determines how T evolve

with the number of iterations
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I {S} and E are the problem to solve, i.e. we want
Smin | E(Smin) < E(S), ∀S 6= Smin

I The options are a tricky point, as a completely
random move in many dimensions might be very
inefficient in case of narrow valleys. The downhill
simplex (amoeba) algorithm can be tried

I The acceptance condition makes it similar to the
Metropolis algorithm

I There are also several possibilities for the cooling
schedule, for instance T → (1− ε)T at each step
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