« Back to all publications

 
We discuss and illustrate by several examples how the ultrafast excited-state dynamics of a chromophore can be altered when changing its environment from a homogenous solution to a biological molecule such as proteins or nucleic acids.
  
The excited-state dynamics of the DNA intercalator YO-PRO-1 and of three derivatives has been investigated in water and in DNA using ultrafast fluorescence spectroscopy. In the free form, the singly charged dyes exist both as monomers and as H-dimers, while the doubly charged dyes exist predominantly as monomers. Both forms are very weakly fluorescent: the monomers because of ultrafast nonradiative deactivation, with a time constant on the order of 3−4 ps, associated with large amplitude motion around the methine bridge, and the H-dimers because of excitonic interaction. Upon intercalation into DNA, large amplitude motion is inhibited, H-dimers are disrupted, and the molecules become highly fluorescent. The early fluorescence dynamics of these dyes in DNA exhibits substantial differences compared with that measured with their homodimeric YOYO analogues, which are ascribed to dissimilarities in their local environment. Finally, the decay of the fluorescence polarization anisotropy reveals ultrafast hopping of the excitation energy between the intercalated dyes. In one case, a marked change of the depolarization dynamics upon increasing the dye concentration is observed and explained in terms of a different binding mode.
The excited-state dynamics of oligomeric phenyleneethynylenes (OPEs) of various length and substitution has been investigated by femtosecond time-resolved spectroscopy. The fluorescence lifetime of the OPEs decreases with the number of phenyleneethynylene units up to about 9. This effect is due to an increase of the oscillator strength for the S1–S0 transition. Dynamic features occurring within a few tens of picoseconds and ascribed to structural relaxation directly after population of the S1 state can be observed in non-viscous solvents. The effect of torsional disorder on the fluorescence intensity is shown to depend strongly on the nature of the substituent on the phenyl groups. All these effects are qualitatively discussed with a simple exciton model.
 
Design, synthesis and evaluation of advanced rigid-rod π-stack photosystems with asymmetric scaffolds are reported. The influence of push–pull rods on self-organization, photoinduced charge separation and photosynthetic activity is investigated and turns out to be surprisingly small overall.
  
The fluorescence enhancement mechanisms of a series of DNA stains of the oxazole yellow (YO) family have been investigated in detail using steady-state and ultrafast time-resolved fluorescence spectroscopy. The strong increase in the fluorescence quantum yield of these dyes upon DNA binding is shown to originate from the inhibition of two distinct processes: 1) isomerisation through large-amplitude motion that non-radiatively deactivates the excited state within a few picoseconds and 2) formation of weakly emitting H-dimers. As the H-dimers are not totally non-fluorescent, their formation is less efficient than isomerisation as a fluorescent contrast mechanism. The propensity of the dyes to form H-dimers and thus to reduce their fluorescence contrast upon DNA binding is shown to depend on several of their structural parameters, such as their monomeric (YO) or homodimeric (YOYO) nature, their substitution and their electric charge. Moreover, these parameters also have a substantial influence on the affinity of the dyes for DNA and on the ensuing sensitivity for DNA detection. The results give new insight into the development and optimisation of fluorescent DNA probes with the highest contrast.
 
The influence of solute−solvent interactions on the vibrational energy relaxation dynamics of perylene and substituted perylenes in the first singlet excited-state upon excitation with moderate (<0.4 eV) excess energy has been investigated by monitoring the early narrowing of their fluorescence spectrum. This narrowing was found to occur on timescales ranging from a few hundreds of femtoseconds to a few picoseconds. Other processes, such as a partial decay of the fluorescence anisotropy and the damping of a low-frequency oscillation due to the propagation of a vibrational wavepacket, were found to take place on a very similar time scale. No significant relationship between the strength of nonspecific solute−solvent interactions and the vibrational energy relaxation dynamics of the solutes could be evidenced. On the other hand, in alcohols the spectral narrowing is faster with a solute having H-bonding sites, indicating that this specific interaction tends to favor vibrational energy relaxation. No relationship between the dynamics of spectral narrowing and macroscopic solvent properties, such as the thermal diffusivity, could be found. On the other hand, a correlation between this narrowing dynamics and the number of low-frequency modes of the solvent molecules was evidenced. All these observations cannot be discussed with a model where vibrational energy relaxation occurs via two consecutive and dynamically well-separated steps, namely ultrafast intramolecular vibrational redistribution followed by slower vibrational cooling. On the contrary, the results indicate that both intra- and intermolecular vibrational energy redistribution processes are closely entangled and occur, at least partially, on similar timescales.
  
The excited-state dynamics of a series of electron donor−acceptor bridged systems (DABS) consisting of a boron−dipyrromethene chromophore covalently linked to a dinitro-substituted triptycene has been investigated using femtosecond time-resolved spectroscopy. The chromophores differ by the number of bromine atom substituents. The fluorescence lifetime of the DABS without any bromine atom is strongly reduced when going from toluene to polar solvents, this shortening being already present in chloroform. This effect is about 10 times weaker with a single bromine atom and negligible with two bromine atoms on the chromophore. The excited-state lifetime shortening is ascribed to a charge transfer from the excited chromophore to a nitrobenzene moiety, the driving force of this process depending on the number of bromine substituents. The occurrence of this process is further confirmed by the investigation of the excited-state dynamics of the chromophore alone in pure nitrobenzene. Surprisingly, no correlation between the charge separation time constant and the dielectric properties of the solvents could be observed. However, a good correlation between the charge separation time constant and the diffusional reorientation time of the chromophore alone, measured by fluorescence anisotropy, was found. Quantum chemistry calculations suggest that quasi-free rotation about the single bond linking the chromophore to the triptycene moiety permits a sufficient coupling of the donor and the acceptor to ensure efficient charge separation. The charge separation dynamics in these molecules is thus controlled by the reorientational motion of the donor relative to the acceptor.

Google

 

Download this list in a RIS file or a BIB file or a PDF file

Contact:

Eric Vauthey

Physical Chemistry Department - Sciences II - University of Geneva
30, Quai Ernest Ansermet - CH-1211 Geneva 4 (Switzerland)


© All rights reserved by Eric Vauthey and the University of Geneva

Design and code by Guillaume Duvanel