Modular Synthesis, Orthogonal Post-Functionalization, Absorption, and Chiroptical Properties of Cationic [6]Helicenes
F. Torricelli, J. Bosson, C. Besnard, , and J. Lacour Angewandte Chemie International Edition, in press (2013) Keywords: arenes;helical structures;synthetic methods;UV/Vis spectroscopy;vicarious nucleophilic substitution
DOI:10.1002/anie.201208926 | Abstract | Article HTML | Article PDF
Novel cationic diaza-, azaoxo-, and dioxo[6]helicenes are readily prepared and functionalized selectively by orthogonal aromatic electrophilic and vicarious nucleophilic substitutions (see scheme). Reductions, cross-coupling, or condensation reactions introduce additional diversity and allow tuning of the absorption properties up to the near-infrared region. The diaza salts can be resolved into single enantiomers.
The ligand exchange reaction between racemic Au38(2-PET)24 (2-PET: 2-phenylethylthiolate) clusters and enantiopure 1,1’-binapththyl-2,2’-dithiol (BINAS) was monitored in situ using a chiral HPLC approach. In the first exchange step, a clear preference of R-BINAS towards the left-handed enantiomer of Au38(2-PET)24 is observed (about four times faster than reaction with the right-handed enantiomer). The second exchange step is drastically slowed compared to the first step. BINAS substitution deactivates the cluster for further exchange, which is attributed to (stereo)electronic effects. The results constitute the first example of a ligand exchange reaction in a thiolate-protected gold cluster with directed enrichment of a defined species in the product mixture. This may open new possibilities for the design of nanomaterials with tailored properties.
In situ ATR-IR spectroscopy study of adsorbed protein: Visible light denaturation of bovine serum albumin on TiO2
A. Bouhekka and Applied Surface Science, 261 (2012), p369-374 Keywords: in situ spectroscopy; TiO2; visible light; BSA adsorption; denaturation; protein structure
DOI:10.1016/j.apsusc.2012.08.017 | unige:24517 | Abstract | Article PDF
In this work in situ Fourier transform infrared-attenuated total reflection (FTIR-ATR) spectroscopy in a flow-through cell was used to study the effect of visible light irradiation on bovine serum albumin (BSA) adsorbed on porous TiO2 films. The experiments were performed in water at concentrations of 10−6 mol/l at room temperature. The curve fitting method of the second derivative spectra allowed us to explore details of the secondary structure of pure BSA in water and conformation changes upon adsorption as well as during and after illumination by visible light. The results clearly show that visible light influences the conformation of adsorbed BSA. The appearance of a shift of the amide I band, in the original spectra, from 1653 cm−1 to 1648 cm−1, is interpreted by the creation of random coil in the secondary structure of adsorbed BSA. The second derivative analysis of infrared spectra permits direct quantitative analysis of the secondary structural components of BSA, which show that the percentage of α-helix decreases during visible light illumination whereas the percentage of random coil increases.
We predict and analyze density-functional theory (DFT) -based structures for the recently isolated Au40(SR)24 cluster. Combining structural information extracted from ligand-exchange reactions, circular dichroism and transmission electron microscopy leads us to propose two families of low-energy structures that have a chiral Au-S framework on the surface. These families have a common geometrical motif where a non-chiral Au26 bi-icosahedral cluster core is protected by 6 RS-Au-SR and 4 RS-Au-SR-Au-SR oligomeric units, analogously to the “Divide and Protect” motif of known clusters Au25(SR)18-/0, Au38(SR)24 and Au102(SR)44. The strongly prolate shape of the proposed Au26 core is supported by transmission electron microscopy. Density-of-state-analysis shows that the electronic structure of Au40(SR)24 can be interpreted in terms of a dimer of two 8-electron superatoms, where the 8 shell electrons are localized at the two icosahedral halves of the metal core. The calculated optical and chiroptical characteristics of the optimal chiral structure are in a fair agreement with the reported data for Au40(SR)24.
A two-fold active control of the plasmonic resonance of randomly distributed gold nanoparticles (GNPs) has been achieved. GNPs have been immobilized on an Indium Tin Oxide (ITO) coated glass substrate and then covered with a liquid crystalline compound. The system has been investigated by means of atomic force and scanning electron microscopy, revealing the presence of isolated and well distributed GNPs. The application of an external electric field to the sample has a two-fold consequence: the re-orientation of the hybrid-aligned liquid crystal layer and the formation of a carrier accumulation layer in the proximity of the ITO substrate. The refractive indices of both liquid crystal and accumulation layers are influenced by the applied field in a competitive way and produce a “dancing behavior” of the GNP’s plasmonic resonance spectral position.
The strong coupling between planar arrays of gold and silver nanoparticles mediated by a near-field interaction is investigated both theoretically and experimentally to provide an in-depth study of symmetry breaking in complex nanoparticle structures. The asymmetric composition allows to probe for bright and dark eigenmodes, in accordance with plasmon hybridization theory. The strong coupling could only be observed by separating the layers by a nanometric distance with monolayers of suitably chosen polymers. The bottom-up assembly of the nanoparticles as well as the stratified structures themselves gives rise to an extremely flexible system that, moreover, allows the facile variation of a number of important material parameters as well as the preparation of samples on large scales. This flexibility was used to modify the coupling distance between arrays, showing that both the positions and relative intensities of the resonances observed can be tuned with a high degree of precision. Our work renders research in the field of “plasmonic molecules” mature to the extent that it could be incorporated into functional optical devices.
Dye Bonding to TiO2: In Situ Attenuated Total Reflection Infrared Spectroscopy Study, Simulations, and Correlation with Dye-Sensitized Solar Cell Characteristics
B. Völker, F. Wölzl, and D. Lingenfelser Langmuir, 28 (31) (2012), p11354-11363
DOI:10.1021/la302197z | unige:22919 | Abstract | Article HTML | Article PDF
Processing dye-sensitized solar cells gains more and more importance as interest in industrial applications grows daily. For large-scale processing and optimizing manufacturing in terms of environmental acceptability as well as time and material saving, a detailed knowledge of certain process steps is crucial. In this paper we concentrate on the sensitizing step of production, i.e., the anchoring of the dye molecules onto the TiO2 semiconductor. A vacuum-tight attentuated total reflection infrared (ATR-IR) flow-through cell was developed, thus allowing measurements using a vacuum spectrometer to monitor infiltration of dye molecules into the porous TiO2 film in situ at high sensitivity. In particular, the influence of the anchor and backbone of perylene dye molecules as well as the influence of solvents on the adsorption process was investigated. The experiments clearly show that an anhydride group reacts much slower than an acid group. A significantly lower amount of anhydride dye can be adsorbed on the films. Ex situ transmission experiments furthermore indicate that the availability of OH groups on the TiO2 surface may limit dye adsorption. Also the backbone and base frame of the dye can influence the adsorption time drastically. Electrical cell characteristics correlate with the amount of adsorbed dye molecules determined by in situ ATR-IR measurements. The latter is also sensitive toward the diffusion of the dye through the porous layer. To gain a deeper understanding of the interplay between diffusion and adsorption, simulations were performed that allowed us to extract diffusion and adsorption constants. Again it was demonstrated that the anchoring group has a strong effect on the adsorption rate. The influence of the solvent was also studied, and it was found that both adsorption and desorption are affected by the solvent. Protic polar solvents are able to remove bound dye molecules, which is a possible pathway of cell degradation. Most importantly, the analysis shows the potential of this approach for the evaluation of molecules or additives concerning their characteristics important for cell processing.
Thiolate-protected gold nanoparticles and clusters combine size-dependent physical properties with the ability to introduce (bio)chemical functionality within their ligand shell. The engineering of the latter with molecular precision is an important prerequisite for future applications. A key question in this respect concerns the flexibility of the gold – sulfur interface. Here we report the first study on racemization of an intrinsically chiral gold nanocluster, Au38(SCH2CH2Ph)24, which goes along with a drastic rearrangement of its surface involving place exchange of several thiolates. This racemization takes place at modest temperatures (40 – 80 °C) without significant decomposition. The experimentally determined activation energy for the inversion reaction is ca 28 kcal/mol, which is surprisingly low considering the large rearrangement. The activation parameters furthermore indicate that the process occurs without complete Au-S bond breaking.
Chirality unveiled: Thiolate-protected Au40(SR)24 clusters were enantioenriched using an HPLC approach. CD spectra show strong mirror-image responses, indicating the intrinsic chirality of a cluster of unknown structure protected with achiral ligands.
Silver nanoclusters protected by 2-phenylethanethiol (1), 4-fluorothiophenol (2), and l-glutathione (3) ligands were successfully synthesized. The optical properties of the prepared silver nanoclusters were studied. The absorption signal of Ag@SCH2CH2Ph in toluene can be found at 469 nm, and Ag@SPhF in THF shows two absorption bands at 395 and 462 nm. Ag@SG in water absorbs at 478 nm. Mie theory in combination with the Drude model clearly indicates the peaks in the spectra originate from plasmonic transitions. In addition, the damping constant as well as the dielectric constant of the surrounding medium was determined. In addition, the CD spectra of silver nanoclusters protected by the three ligands (1–3) were also studied. As expected, only the clusters of type 3 gave rise to chiroptical activity across the visible and near-ultraviolet regions. The location and strength of the optical activity suggest an electronic structure of the metal that is highly sensitive to the chiral environment imposed by the glutathione ligand. The morphology and size of the prepared nanoclusters were analyzed by using transmission electron microscopy (TEM). TEM analysis showed that the particles of all three types of silver clusters were small than 5 nm, with an average size of around 2 nm. The analysis of the FTIR spectra elucidated the structural properties of the ligands binding to the nanoclusters. By comparing the IR absorption spectra of pure ligands with those of the protected silver nanoclusters, the disappearance of the S–H vibrational band (2535–2564 cm–1) in the protected silver nanoclusters confirmed the anchoring of ligands to the cluster surface through the sulfur atom. By elemental analysis and thermogravimetric analysis, the Ag/S ratio and, hence, the number of ligands surrounding a Ag atom could be determined.
Ligand exchange reactions on size-selected Au38(2-PET)24 and Au40(2-PET)24 clusters (2-PET: 2-phenylethylthiol) with mono- and bidentate chiral thiols was performed. The reactions were monitored with MALDI mass spectrometry and the arising chiroptical properties were compared to the number of incorporated chiral ligands. Only a small fraction of chiral ligands is needed to induce significant optical activity to the clusters. The use of monodentate camphor-10-thiol (CamSH) leads to comparably fast exchange on both clusters. The arising optical activity is weak. In contrast, the use of bidentate 1,1’-binaphthyl-2,2’-dithiol (BINAS) is slow, but the optical activity measured is strong. Moreover, a non-linear behaviour between optical activity and number of chiral ligands is found in the BINAS case for both Au38 and Au40, which may indicate different exchange rates of enantiopure BINAS with the enantiomers of inherently chiral clusters. This is ascribed to effects arising from the bidentate nature of BINAS. This is the first study where chiroptical effects are directly correlated with the composition of the ligand shell.
Bestowing chirality to metals is central in fields such as heterogeneous catalysis and modern optics. Although the bulk phase of metals is symmetric, their surfaces can become chiral through adsorption of molecules. Interestingly, even achiral molecules can lead to locally chiral, though globally racemic, surfaces. A similar situation can be obtained for metal particles or clusters. Here we report the first separation of the enantiomers of a gold cluster protected by achiral thiolates, Au38(SCH2CH2Ph)24, achieved by chiral high-performance liquid chromatography. The chirality of the nanocluster arises from the chiral arrangement of the thiolates on its surface, forming 'staple motifs'. The enantiomers show mirror-image circular dichroism responses and large anisotropy factors of up to 4×10−3. Comparison with reported circular dichroism spectra of other Au38 clusters reveals that the influence of the ligand on the chiroptical properties is minor.
N-Aryl, N-branched alkyl carbamates react with in situ generated chiral Pd-NHC catalysts by coupling a Pd-Ar moiety with an aliphatic C–H bond at high temperature to give enantioenriched 2-substituted and 2,3-disubstituted indolines. Prochiral precursors give single products with very high asymmetric induction. Chiral racemic precursors react in a regiodivergent reaction of a racemic mixture to yield enantioenriched indolines resulting from either methyl C–H activation or asymmetric methylene C–H activation. In favorable cases this can result in a complete separation of an enatiomeric mixture into two different highly enantioenriched indolines.
Ligand dependence of the synthetic approach and chiroptical properties of a magic cluster protected with a bicyclic thiolate
, N. Kothalawala, V. Jupally, A. Dass and ChemComm, 48 (2012), p4630-4632
DOI:10.1039/C2CC00056C | unige:20258 | Abstract | Article HTML | Article PDF
Chiral gold clusters stabilised by enantiopure thiolates were prepared, size-selected and characterised by Circular Dichroism and mass spectrometry. The product distribution is found to be ligand dependent. Au25 clusters protected with camphorthiol show clear resemblance of their chiroptical properties with their glutathionate analogue.
2011
Self-Assembled Plasmonic Core-Shell Clusters with an Isotropic Magnetic Dipole Response in the Visible Range
S. Mühlig, , S. Scheeler, C. Pacholski, , C. Rockstuhl and F. Lederer ACS Nano, 5 (8) (2011), p6586-6592
DOI:10.1021/nn201969h | unige:16819 | Abstract | Article HTML | Article PDF
We theoretically analyze, fabricate, and characterize a three-dimensional plasmonic nanostructure that exhibits a strong and isotropic magnetic response in the visible spectral domain. Using two different bottom-up approaches that rely on self-organization and colloidal nanochemistry, we fabricate clusters consisting of dielectric core spheres, which are smaller than the wavelength of the incident radiation and are decorated by a large number of metallic nanospheres. Hence, despite having a complicated inner geometry, such a core–shell particle is sufficiently small to be perceived as an individual object in the far field. The optical properties of such complex plasmonic core–shell particles are discussed for two different core diameters.
Size Exclusion Chromatography (SEC) on a semi-preparative scale (10 mg and more) was used to size-select ultrasmall gold nanoclusters (< 2 nm) from polydisperse mixtures. In particular, the ubiquitous byproducts of the etching process towards Au38(SR)24 (SR: thiolate) clusters were separated and gained in high monodispersity (based on mass spectrometry). The isolated fractions were characterized by UV/Vis spectroscopy, MALDI mass spectrometry and electron microscopy. Most notably, the separation of Au38(SR)24 and Au40(SR)24 clusters is demonstrated.
Nanofluidshave been proposed to improve the performance of microchannel heatsinks. In this paper, we present a systematic characterization ofaqueous silica nanoparticle suspensions with concentrations up to 31 vol %. Wedetermined the particle morphology by transmission electron microscope imaging andits dispersion status by dynamic light scattering measurements. The thermophysicalproperties of the fluids, namely, their specific heat, density, thermalconductivity, and dynamic viscosity were experimentally measured. We fabricated microchannelheat sinks with three different channel widths and characterized theirthermal performance as a function of volumetric flow rate forsilica nanofluids at concentrations by volume of 0%, 5%, 16%,and 31%. The Nusselt number was extracted from the experimentalresults and compared with the theoretical predictions considering the changeof fluids bulk properties. We demonstrated a deviation of lessthan 10% between the experiments and the predictions. Hence, standardcorrelations can be used to estimate the convective heat transferof nanofluids. In addition, we applied a one-dimensional model ofthe heat sink, validated by the experiments. We predicted thepotential of nanofluids to increase the performance of microchannel heatsinks. To this end, we varied the individual thermophysical propertiesof the coolant and studied their impact on the heatsink performance. We demonstrated that the relative thermal conductivity enhancementmust be larger than the relative viscosity increase in orderto gain a sizeable performance benefit. Furthermore, we showed thatit would be preferable to increase the volumetric heat capacityof the fluid instead of increasing its thermal conductivity.
Using bottom-up and self-assembly processes, large scale layered arrays of strongly coupled gold nanoparticles with controllable dimensions were fabricated. By carefully adjusting the distance between adjacent gold nanoparticle arrays, it is possible to control the coupling of the localized surface plasmon polariton resonance as sustained by individual gold nanoparticles. A greater interaction is observed at smaller separations, leading to a well pronounced shift in the spectral position of resonances that can be adjusted with high precision. Simulations showed good agreement with experimental observations in an in-depth investigation of such structures, suggesting minimal separations of only one nanometer are achieved.
The photocatalytic degradation of l-asparagine and l-glutamic acid over Au/TiO2 and TiO2 catalysts was investigated in situ by attenuated total reflection infrared (ATR-IR) in combination with modulation excitation spectroscopy. Oxalate was detected on the catalyst surface, which has not been reported before for degradation of amino acids by studies focusing on intermediates in solution. The ATR-IR spectra provide valuable information on the fate of the nitrogen. Ammonium was detected, in agreement with previous studies. Most importantly, strong signals of cyanide were observed, and this assignment has been corroborated by 15N labeling experiments. Cyanide was not reported before, to the best of our knowledge, for the photocatalytic degradation of amino acids. Cyanide was formed in the presence and the absence of gold particles on the TiO2 surface. The cyanide leads to leaching of gold via Au(CN)2− species that were detected in solution by mass spectrometry.
Shining Light at Working Interfaces and Chiral Nanoparticles
In this article we present an overview of our recent research in the fields of in situ spectroscopy, nanomaterials and chirality. Our research focuses around the spectroscopic investigation of chemical reactions taking place at solid-liquid interfaces. This research goesh and in hand with the development of experimental techniques that enable us to study interface phenomena in situ. Using such techniques we try to shed light on photocatalytic reactions like the decomposition of organic pollutants in water or the reduction of carbon dioxide. We are moreover interested in chiral surfaces and their ability to discriminate betweenen antiomers. Again this relies on special techniques that highlight the enantiodiscriminating surface-adsorbate interactions. We further more seek to transfer chirality from adsorbates to metal nanoparticles. The latter are probed by chiroptical techniques, particularly also vibrational circular dichroism (VCD). Finally, we aim at preparing metamaterials with tailored optical properties by organizing plasmonic particles in two and three dimensions.
The thiolate-for-thiolate ligand exchange reaction between the stable Au38(2-PET)24 and Au40(2-PET)24 (2-PET: 2-phenylethanethiol) clusters and enantiopure BINAS (BINAS: 1,1′-binaphthyl-2,2′-dithiol) was investigated by circular dichroism (CD) spectroscopy in the UV/vis and MALDI mass spectrometry (MS). The ligand exchange reaction is incomplete, although a strong optical activity is induced to the resulting clusters. The clusters are found to be relatively stable, in contrast to similar reactions on [Au25(2-PET)18]− clusters. Maximum anisotropy factors of 6.6 × 10−4 are found after 150 h of reaction time. During the reaction, a varying ratio between Au38 and Au40 clusters is found, which significantly differs from the starting material. As compared to Au38, Au40 is more favorable to incorporate BINAS into its ligand shell. After 150 h of reaction time, an average of 1.5 and 4.5 BINAS ligands is found for Au38 and Au40 clusters, respectively. This corresponds to exchange of 3 and 9 monodentate 2-PET ligands. To show that the limited exchange with BINAS is due to the bidentate nature of the ligand, exchange with thiophenol was performed. The monodentate thiophenol exchange was found to be faster, and more ligands were exchanged when compared to BINAS.
Dynamic Perspective on the Function of Thermoresponsive Nanopores from in Situ AFM and ATR-IR Investigations
A.M. Popa, S. Angeloni, , J.A. Hubbell, H. Heinzelmann and R. Pugin Langmuir, 26 (19) (2010), p15356-15365
DOI:10.1021/la102611k | unige:14783 | Abstract | Article HTML | Article PDF
This article describes the morphological and chemical characterization of stimuli-responsive functionalized silicon surfaces provided in parallel by atomic force spectroscopy (AFM) and Fourier transform infrared spectroscopy (FT-IR) enhanced by the single-beam sample reference attenuated total reflection method (SBSR-ATR). The stimuli-responsive behavior of the surfaces was obtained by grafting-to in melt carboxyl-terminated poly-N-isopropylacryl amides (PNIPAAM) with different degree of polymerization (DP) on epoxide-functionalized silicon substrates. The unprecedented real time and in situ physicochemical insight into the temperature-triggered response of the densely packed superficial brushes allowed for the selection of a PNIPAAM with a specific DP as a suitable polymer for the fabrication of silicon membranes exhibiting switchable nanopores. The fabrication process combines the manufacture of nanoporous silicon surfaces and their subsequent chemical functionalization by the grafting-to in melt of the selected polymer. Then, relevant information was obtained in what concerns the chemical modifications behind the topographical changes that drive the functioning of PNIPAAM-based hybrid nanovalves as well as the timescale on which the opening and closing of the nanopores occur.
Vibrational circular dichroism (VCD) spectra of small size-selected gold nanoparticles covered by both enantiomers of 1,1′-binaphthyl-2,2′-dithiol (BINAS) were measured. VCD spectra of particles covered by the opposite enantiomers of BINAS show a mirror image relationship. The VCD spectrum of adsorbed BINAS is different from the one of free BINAS and its disulfide form, but it resembles more the dithiol form. Detailed analysis reveals that the angle between the two binaphthyl rings of BINAS is close to 90° for the adsorbed BINAS, similar to what is found for the free molecule. VCD spectra are quite insensitive to the particles size, in contrast to the electronic CD spectra, which change drastically as the particle size increases. This indicates that the vibrational characteristic is a local property. A model of BINAS adsorbed on a Au10 cluster was used to calculate VCD spectra. As for free BINAS and the disulfide the calculated spectrum of the adsorbed BINAS is in very good agreement with the measured one. This shows the potential of VCD spectroscopy to gain insight into the conformation of chiral molecules adsorbed on small metal particles.
Pigments based on silica-coated gold nanorods: Synthesis, colouring strength, functionalisation, extrusion, thermal stability and colour evolution
C. Gautier, , L. Si-Ahmed, G. Robert and Gold Bulletin, 43 (2) (2010), p94-104 Keywords: gold, silica, nanorods, thermal stability, porosity, coloring strength
unige:14683 | Article PDF
The intense plasmon absorption bands of gold nanorods (GNRs) with peak extinction coefficients up to 6.4 x 109 M-1 cm-1 as well as their expected high stability make GNRs promising candidates for the colouration of bulk materials. The comparison of the integrated absorption in the visible region of GNRs with those of commercial organic pigments shows that the colouring strength of GNRs is 4 to 8 times higher. In order to improve their stability, GNRs were encapsulated in a silica shell of around 15 nm thickness using an optimized Stöber method. The silica surface was modified with octadecylsilane to enable their dispersion in non-polar media. Different plastics were successfully coloured with a tiny quantity of bare and functionalised GNRs@SiO2. These rods were homogeneously dispersed using extrusion. The shape of the rods was effectively stabilised by the silica shell at high temperature during the extrusion process. Surprisingly, a slight modification of the rods colour was observed due to a decrease of the refractive index in the mesoporous silica shell. However, this effect is greatly limited after the functionalisation.
The thermal conductivity of concentrated colloids in fluid, glass, and gel states was analyzed. SiO2 colloids at 10−31 vol % and Al2O3 colloids at 4.8 vol % in the fluid, the gel, and the glassy states were studied by dynamic light scattering, rheology, and transmission electron microscopy. Thermal conductivity of the three states was measured as a function of volume fraction. For the fluid and gel states the thermal conductivity increases almost linearly with concentration, reaching roughly 18% enhancement for silica at a volume fraction of 31 vol %. In contrast, in the glass state thermal conductivity strongly decreases with increasing volume fraction.
Nanofluids (colloidal suspensions of nanoparticles) have been reported to display significantly enhanced thermal conductivities relative to those of conventional heat transfer fluids, also at low concentrations well below 1% per volume (Putnam, S. A., et at. J. Appl. Phys.2006, 99, 084308; Liu, M.-S. L., et al. Int. J. Heat Mass Transfer.2006, 49; Patel, H. E., et al. Appl. Phys. Lett.2003, 83, 2931−2933). The purpose of this paper is to evaluate the effect of the particle size, concentration, stabilization method and particle clustering on the thermal conductivity of gold nanofluids. We synthesized spherical gold nanoparticles of different size (from 2 to 45 nm) and prepared stable gold colloids in the range of volume fraction of 0.00025−1%. The colloids were inspected by UV−visible spectroscopy, transmission electron microscope (TEM) and dynamic light scattering (DLS). The thermal conductivity has been measured by the transient hot-wire method (THW) and the steady state parallel plate method (GAP method). Despite a significant search in parameter space no significant anomalous enhancement of thermal conductivity was observed. The highest enhancement in thermal conductivity is 1.4% for 40 nm sized gold particles stabilized by EGMUDE (triethyleneglycolmono-11-mercaptoundecylether) and suspended in water with a particle-concentration of 0.11 vol%.
We have developed a simple method for the preparation of nearly mono-dispersed stable gold colloids with a fairly high concentration using a two step procedure. First we synthesize citrate capped gold nanoparticles and then exchange the citrate ions with triethyleneglycolmono-11-mercaptoundecylether (EGMUDE). This leads to the immediate precipitation and formation of composite assemblies. The gold nanoparticles were successfully self-redispersed after a few days. The prepared gold colloid can be easily concentrated up to 20 times by separation of the flocculated part. UV-visible spectra, transmission electron microscopy (TEM), and dynamic light scattering (DLS) were used to characterize the products thus formed.
Pd(II)-coordinated phosphinous acids catalyzed the formal enantioselective [2+1] cycloaddition of norbornene derivatives with terminal alkynes. The absolute configuration of (+)-3aa was assigned using VCD.
Solid-supported amphiphilic triblock copolymer membranes grafted from gold surface
E. Rakhmatullina, A. Mantion, , V. Malinova and W. Meier Journal of Polymer Science Part A: Polymer Chemistry, 47 (1) (2009), p1-13 Keywords: amphiphiles; amphiphilic brushes; atom transfer radical polymerization (ATRP); biomimetic; biomimetic membrane; block copolymers; membranes; solvent-responsive behavior; surface-initiated ATRP
DOI:10.1002/pola.23116 | unige:14753 | Abstract | Article HTML | Article PDF
Surface-initiated ATRP was applied for the step-by-step growth of the biomimetic amphiphilic block copolymer membrane on a gold support. Different thicknesses of membranes were achieved through the variation of the polymerization conditions. The OH-groups of the hydrophilic polymer blocks can be further functionalized to tune the membrane properties. Synthesis, characterization, and solvent-responsive properties of the amphiphilic triblock copolymer membrane are presented.
Nanoparticle chirality has attracted much attention recently, and the application of chiral nanoparticles to chiral technologies (see figure) is also of interest. This Minireview deals with advances in the preparation and characterization of chiral gold nanoparticles. Origins of the chiroptical properties and potential applications are discussed. Monolayer-protected gold nanoparticles have many appealing physical and chemical properties such as quantum size effects, surface plasmon resonance, and catalytic activity. These hybrid organic–inorganic nanomaterials have promising potential applications as building blocks for nanotechnology, as catalysts, and as sensors. Recently, the chirality of these materials has attracted attention, and application to chiral technologies is an interesting perspective. This minireview deals with the preparation of chiral gold nanoparticles and their chiroptical properties. On the basis of the latter, together with predictions from quantum chemical calculations, we discuss different models that were put forward in the past to rationalize the observed optical activity in metal-based electronic transitions. We furthermore critically discuss these models in view of recent results on the structure determination of some gold clusters as well as ligand-exchange experiments examined by circular dichroism spectroscopy. It is also demonstrated that vibrational circular dichroism can be used to determine the structure of a chiral adsorbate and the way it interacts with the metal. Finally, possible applications of these new chiral materials are discussed.
Ligand exchange on [Au25(SCH2CH2Ph)18−] [TOA+] is studied with two chiral ligands R/S-BINAS and NILC/NIDC in THF with induction of metal-based optical activity. Under the applied condition the ligand exchange is only partial, showing that also within a mixed ligand shell significant optical activity can be induced. The ligand exchange resulted in the change of particle size as observed by UV−vis spectroscopy.
2008
Chiral 1,1'-binaphthyl-2,2'-dithiol-stabilized gold clusters: Size separation and optical activity in the UV-vis
C. Gautier, R. Taras, S. Gladiali and Chirality, 20 (3-4) (2008), p486-493 Keywords: circular dichroism; optical activity; 1,1′-binaphthyl-2,2′-dithiol; nanoparticles; gold; size separation
DOI:10.1002/chir.20488 | unige:14705 | Abstract | Article PDF
Gold particles covered with 1,1′-binaphthyl-2,2′-dithiol (BINAS) were prepared. Using size exclusion chromatography, it was possible for the first time to separate the sample into fractions with different sizes and colors. Transmission electron microscopy shows that the particles are very small, in the order of 1 nm or slightly above. The absorption spectra of the separated samples show rich structure. The particles show size-dependent optical activity in metal-based electronic transitions. The shape of both the absorption and circular dichroism spectra of one of the smallest fractions exhibits similarities with the spectra reported for Au11 covered by 2,2′-bis(diphenylphosphino)-1,1′-biphenyl although the spectra are shifted to shorter wavelengths in the case of the dithiol. The anisotropy factors, Δϵ/ϵ of these particles are as large as 4 × 10−3, which is larger than the values reported for gold particles stabilized by phosphines and water-soluble thiols. This indicates that BINAS is particularly well-suited to impart chirality on to gold particles.
A combination of in situ attenuated total reflection infrared (ATR-IR) spectroscopy, UV−vis spectroscopy and transmission electron microscopy was used to study the adsorption of thiol-protected gold nanoparticles on TiO2 films and the behavior of the resulting composite films upon UV irradiation. The gold nanoparticles were covered by charged thiols N-acetyl-l-cysteine and l-glutathione and had a mean core diameter of about 1 nm. The TiO2 film was prepared by deposition of a slurry of TiO2 nanoparticles with a particles size of 21 nm. The combination of the two spectroscopic techniques showed that the adsorption of the gold nanoparticles onto the TiO2 films is significantly limited by intrafilm diffusion. Upon illumination the IR spectra revealed the removal of the adsorbed thiolates and the appearance of sulfates. These species were also observed when N-acetyl-l-cysteine adsorbed on TiO2 was illuminated, i.e., in the absence of gold. In the latter case oxalate was observed in large quantity on the TiO2 surface, in contrast to the illumination of the N-acetyl-l-cysteine-protected gold particles. This indicates a different pathway for the decomposition of the adsorbed thiol when adsorbed on the gold or directly on the TiO2 surface. In situ UV−vis spectroscopy also shows the formation of larger particles upon illumination, which is confirmed by transmission electron microscopy.
Using simple organic synthetic transformations, a novel diazaoxatricornan derivative, the 12c-methyl-12-phenyl-8-propyl-12,12c-dihydro-8H-4-oxa-8,12-diazadibenzo[cd,mn]pyrene (6a), was prepared. This novel chiral cup-shaped molecule was isolated in racemic form and in excellent yield after the addition of methyl lithium to the BF4 salt of a novel unsymmetrical diazaoxatriangulenium cation. Compound 6a was found to be stable under classical laboratory conditions—something not obvious considering the extreme stability of the carbenium ion precursor, the electron-rich nature of the core, and the strain induced by the pyramidalization of the central carbon. The enantiomers were readily separated by chiral stationary phase chromatography, and the absolute configuration of (−)-(S)-6a was determined by a comparison of the experimental and theoretical vibrational circular dichroism (VCD) spectra. This isolation of (−)-(S)-6a and (+)-(R)-6a constitutes thus the first report of a nonracemic closed-capped chiral bowl molecule for which the chirality is due to the intrinsic dissymmetry of the central core of the structure only.
The thiolate-for-thiolate ligand exchange was performed on well-defined gold nanoparticles under an inert atmosphere without any modification of the core size. This reaction is faster than the well-known core etching. Surprisingly, if a chiral thiol is exchanged for its opposite enantiomer, the optical activity in the metal-based electronic transitions is reversed although the form of the CD spectra remains largely unchanged. The extent of inversion corresponds to the overall ee of the chiral ligand in the system. This shows that the chiral arrangement of metal atoms in the metal particle (surface) can not withstand the driving force imposed by the ligand of opposite absolute configuration. If the incoming thiol has a different structure, the electronic transitions in the metal core are slightly modified whereas the absorption onset remains unchanged. These results emphasize the influence of the thiols on the structure of the gold nanoparticles and give insight on the ligand exchange pathways.
Modulation excitation spectroscopy (MES) allows sensitive and selective detection and monitoring of the dynamic behavior of species directly involved in a reaction. The method, combined with proper in situ spectroscopy, is powerful for elucidating complex systems and noisy data as often encountered in heterogeneous catalytic reactions at solid–liquid and solid–gas interfaces under working conditions. The theoretical principle and actual data processing of MES are explained in detail. Periodic perturbation of the system by an external parameter, such as concentration and temperature, is utilized as stimulation in MES. The influence of stimulation shape upon response analysis is explained. Furthermore, an illustrative example of MES, enantioselective hydrogenation at a solid-liquid interface, is presented.
Liquid-Crystalline Thiol- and Disulfide-Based Dendrimers for the Functionalization of Gold Nanoparticles
S. Frein, J. Boudon, M. Vonlanthen, T. Scharf, J. Barberá, G. Süss-Fink, and R. Deschenaux Helvetica Chimica Acta, 91 (12) (2008), p2321-2337 Keywords: liquid-crystals; dendrimers; gold nanoparticles; nanoparticles
DOI:10.1002/hlca.200890253 | unige:14703 | Abstract | Article PDF
Liquid-crystalline dendrons carrying either a thiol or disulfide function which display nematic, smectic A, columnar, or chiral nematic phases have been synthesized. Their mesomorphic properties are in agreement with the nature of the mesogenic units and structure of the dendrons. The first-generation poly(aryl ester) dendron containing two cyanobiphenyl mesogenic units was used to functionalize gold nanoparticles. For full coverage, a smectic-like supramolecular organization on the nanometer scale is observed, when the gold nanoparticles are spread onto carbon-coated copper grids. This result indicates that the dendritic ligands reported here act as self-organization promoters.
Biological homochirality on earth and its tremendous consequences for pharmaceutical science and technology has led to an ever increasing interest in the selective production, the resolution and the detection of enantiomers of a chiral compound. Chiral surfaces and interfaces that can distinguish between enantiomers play a key role in this respect as enantioselective catalysts as well as for separation purposes. Despite the impressive progress in these areas in the last decade, molecular-level understanding of the interactions that are at the origin of enantiodiscrimination are lagging behind due to the lack of powerful experimental techniques to spot these interactions selectively with high sensitivity. In this article, techniques based on infrared spectroscopy are highlighted that are able to selectively target the chiral properties of interfaces. In particular, these methods are the combination of Attenuated Total Reflection InfraRed (ATR-IR) with Modulation Excitation Spectroscopy (MES) to probe enantiodiscriminating interactions at chiral solid–liquid interfaces and Vibrational Circular Dichroism (VCD), which is used to probe the structure of chirally-modified metal nanoparticles. The former technique aims at suppressing signals arising from non-selective interactions, which may completely hide the signals of interest due to enantiodiscriminating interactions. Recently, this method was successfully applied to investigate enantiodiscrimination at self-assembled monolayers of chiral thiols on gold surfaces. The nanometer size analogues of the latter—gold nanoparticles protected by a monolayer of a chiral thiol—are amenable to VCD spectroscopy. It is shown that this technique yields detailed structural information on the adsorption mode and the conformation of the adsorbed thiol. This may also turn out to be useful to clarify how chirality can be bestowed onto the metal core itself and the nature of the chirality of the latter, which is manifested in the metal-based circular dichroism activity of these nanoparticles.
Probing chiral recognition in liquid chromatography by absolute configuration modulation ATR-IR spectroscopy
R. Wirz, D. Ferri, and A. Baiker Spectroscopy Europe, 19 (1) (2007), p8-16 unige:14678
Attenuated total reflection infrared (ATR-IR) spectroscopy in a flow-through cell was used to study the photocatalytic mineralization of malonic acid and succinic acid over P25 TiO2 in situ. The experiments were performed in water at concentrations of 1.5×10−4 mol/L and pH 3.5 at room temperature. Changes on the catalyst surface were observed within a few minutes. The first step in the mineralization of malonic acid is a photo-Kolbe reaction of adsorbed malonate. Part of the resulting C2 species is converted into oxalate and finally into carbon dioxide, and part desorbs from the surface. The branching ratio for the two pathways is 50:50. The mineralization reaction was also observed in the absence of dissolved oxygen, but at a slower rate. In the presence of dissolved 18O2, labeled oxygen was incorporated into the adsorbed oxalate. A dominant pathway in the mineralization of succinic acid involves the transformation to oxalate via malonate. Thus, it is proposed that a favored pathway for dicarboxylic acid mineralization is a photo-Kolbe reaction, followed by oxidation of the carbon-centered radical to a carboxylate, which corresponds to the overall formal shortening of the alkyl chain by one CH2 unit.
Synthesis and application of gold nanoparticles
Q.-L. Li and Xiandai Huagong (Modern Chemical Industry), 27 Suppl (2007), p378-381 unige:14664
We introduce zipper assembly as a simple and general concept to create complex functional architectures on conducting surfaces. Rigid-rod π-stack architecture composed of p-oligophenyl rods and blue naphthalenediimide (NDI) stacks is selected as an example. First, short p-quaterphenyl initiators with four anionic NDIs are deposited on gold. Then, long p-octiphenyl propagators with eight cationic NDIs are added. The lower half of the propagator π-stacks with the initiator, whereas the upper half of the molecule remains free. These cationic sticky-ends zip up with anionic propagators to produce anionic sticky-ends, and so on. Zipper assembly on gold nanoparticles is demonstrated by the appearance of the absorption of face-to-face NDI π-stacks and the shift of the surface plasmon resonance band with increasing layer thickness. Complete inhibition by zipper capping demonstrates that zipper assembly affords complex architectures that are more ordered than those obtained by conventional layer-by-layer (LBL) approaches. Zipper assembly on gold electrodes produces increasing photocurrents with increasing number of zipped layers. The photocurrents obtained by this method are much higher than those obtained by conventional LBL controls; zipper termination by capping cleanly stops any increase in photocurrent.
Synthesis and self-assembly of gold nanoparticles
Q.-L. Li, and H. Chen Gongneng Cailiao Yu Qijian Xuebao (Journal of Functional Materials and Devices), 13 (6) (2007), p580-587 unige:14663
2006
Enantiodiscrimination between an N-acetyl-L-cysteine SAM and proline: an in situ spectroscopic and computational study
M. Bieri and ChemPhysChem, 7 (2) (2006), p514-523 Keywords: chirality; density functional calculations; enantioselectivity; IR spectroscopy; self-assembly
DOI:10.1002/cphc.200500474 | unige:14692 | Abstract | Article PDF
A combination of attenuated total reflection infrared (ATR-IR) and modulation excitation spectroscopy (MES) is used to study the enantiodiscriminating interactions between proline and a chiral, self-assembled monolayer (SAM) of N-acetyl-L-cysteine on gold. The N-acetyl-L-cysteine SAM consists of a mixture of protonated and deprotonated molecules. Whereas both species are influenced by adsorbed proline, only the deprotonated molecules are involved in enantiodiscrimination. Density functional theory (DFT) calculations reveal that electrostatics dominates the interaction between the two molecules. By modulating the absolute configuration of proline over the chiral SAM, and a subsequent phase-sensitive detection of the periodically varying signals in the ATR-IR spectra, the small spectral differences between the diastereomeric complexes are spotted. The resulting difference spectrum is in qualitative agreement with the spectrum predicted by the DFT calculations.
Ferrocene-containing optically active liquid-crystalline side-chain polysiloxanes with planar chirality
J. Brettar, , B. Donnio, D. Guillon, R. Klappert, T. Scharf and R. Deschenaux Advanced Functional Materials, 16 (2) (2006), p260-267 Keywords: Chiral polymers; Liquid crystals; Optically active materials; Polysiloxanes
DOI:10.1002/adfm.200500223 | unige:14766 | Abstract | Article PDF
Optically active liquid-crystalline side-chain polysiloxanes have been prepared by grafting planar chiral ferrocene-based vinyl monomers onto commercially available polyhydrosiloxane. Two ferrocene monomers have been synthesized: a linear-type monomer, which displays a monotropic chiral smectic C (SC*) phase and enantiotropic smectic A (SA) and chiral N (N*) phases, and a laterally branched monomer, which shows an enantiotropic N* phase. X-ray diffraction analysis indicates a monomolecular organization of the monomeric units within the smectic layers. The polymers retain the liquid-crystalline phases of their corresponding monomers. The UV-vis and circular dichroism (CD) spectra are in agreement with the structure of the monomers and polymers. The molar absorption coefficient (ϵ) and molar circular dichroic absorption coefficient (Δϵ) values of the polymers are proportional to the number of monomeric units grafted onto them. The absolute configuration of the ferrocene carboxylic acid intermediate, used to synthesize the monomers, has been determined on the basis of CD spectra. The helical twisting power (HTP) of the nematogenic monomer and polymer have been determined in E7, and indicate that such materials could be used as chiral dopants. Finally, this study demonstrates that the nature of chiral phases can be controlled by structural engineering of the organic groups only, with ferrocene acting as the source of chirality.
Simultaneous in situ monitoring of surface and gas species and surface properties by modulation excitation polarization-modulation infrared reflection-absorption spectroscopy: CO oxidation over Pt film
A. Urakawa, , H.-P. Schläpfer and A. Baiker Journal of Chemical Physics, 124 (5) (2006), p54717-11
DOI:10.1063/1.2159484 | unige:14673 | Abstract | Article HTML | Article PDF
A method for in situ monitoring of surface and gas species utilizing separately the difference and sum reflectivity of two polarizations, normal and parallel to the surface, measured by polarization-modulation infrared reflection-absorption spectroscopy is presented. Surface and gas-phase spectra were separately but simultaneously obtained from the reflectivities. The technique is combined with modulation excitation spectroscopy to further enhance the sensitivity, and a small-volume cell was designed for this purpose. CO oxidation over a 40 nm Pt film on aluminum was investigated under moderate pressure (atmospheric pressure, 5% CO, and 5%–40% O2) at 373–433 K. The surface species involved in the oxidation process and the gas-phase species, both reactant (CO) and product (CO2), could be simultaneously monitored and analyzed quantitatively. In addition, the reflectivity change of the sample during the reaction was assigned to a near-surface bulk property change, that is, surface reconstruction to the oxide phase. Under an O2-rich atmosphere, two reactive phases, denoted as low- and high-activity phases, were identified. A large amount of atop CO was observed during the low-activity phase, while the adsorbed CO completely disappeared during the high-activity phase. The presence of an infrared-inactive CO2 precursor formed by the reaction between surface oxide and gaseous CO during the high-activity phase was inferred. The desorption of the CO2 precursor is facilitated under a CO-rich atmosphere, most likely, by surface reconstruction to metallic Pt and a competitive adsorption of CO on the surface.
The adsorption of L-glutathione (γ-Glu-Cys-Gly) from ethanol on gold surfaces was studied in situ by both attenuated total reflection infrared (ATR-IR) spectroscopy and using a quartz crystal microbalance (QCM). The molecule is firmly anchored to the gold surface through the thiol group. Different IR signals of adsorbed L-glutathione, notably the amide I and ν(–COOH), show significantly different behavior with time, which reveals that their increase is not related to adsorption (mass uptake) alone. This indicates that structural transformations take place during the formation of the self-assembled monolayer (SAM). In particular, the intensity of the acid signal increases quickly only within the first couple of minutes. The complexity of the self-assembling process is confirmed by QCM measurements, which show fast mass uptake within about 100 s followed by a considerably slower regime. The structural change superimposed on the mass uptake is, based on the in situ time-resolved ATR-IR measurements, assigned to the interaction of the acid group of the Gly moiety with the surface. The latter group is protonated in ethanol but deprotonates upon interaction with the gold surface. The protonation–deprotonation equilibrium is sensitive to external stimuli, such as the presence of dissolved L-glutathione molecules. The interaction of the acid group with the surface and concomitant deprotonation proceeds via two distinguishable steps, the first being a reorientation of the molecule, followed by the deprotonation.
Square-wave stimulation used in modulation excitation spectroscopy [D. Baurecht, U.P. Fringeli, Rev. Sci. Instrum. 72 (2001) 3782] can have significant advantages over a simple sinusoidal-wave due to the high odd-frequency terms contained in square-wave, particularly when a system response is close to linear. Phase-sensitive detection (PSD) affords separating the signals of the different frequency terms with a high signal-to-noise ratio by averaging a number of modulation cycles. A modulation excitation experiment applying square-wave stimulation provides the same information as several experiments applying sinusoidal-wave stimulations at the same frequency as the square-wave stimulation and at higher frequencies. The amplitude and the phase lag of a response obtained by PSD at fundamental and higher frequencies using square-wave stimulation are related to the ones obtained by sinusoidal-wave stimulation using transfer function of a general system. Mixing property of a PM-IRRAS (polarization–modulation infrared reflection–absorption spectroscopy) flow-through cell was studied by a simple mixing tank model using square-wave concentration stimulation. The advantages of square-wave stimulation are shown by the characterization of the mixing property.
Modulation Excitation PM-IRRAS: A New Possibility for Simultaneous Monitoring of Surface and Gas Species and Surface Properties
A. Urakawa, and A. Baiker Chimia, 60 (4) (2006), p231-233 Keywords: co oxidation; fas-solid interface; in situ spectroscopy; modulation excitation spectroscopy; pm-irras
DOI:10.2533/000942906777674949 | unige:14687 | Abstract
Polarization-modulation infrared reflection-absorption spectroscopy (Pm-irras) is a sensitive tool for the analysis of species residing at gas-solid and gas-liquid interfaces. the polarization-modulation allows excellent back-ground compensation and the analysis of surface/interface species under moderate pressure (e.g. atmospheric pressure of ir-absorbing gases) is possible. we demonstrate a new possibility to extract simultaneously information of gas and solid phases in addition to surface species from the Pm-irras experiments, using co oxidation over Pt film as an example. modulation excitation spectroscopy (mes) has been combined with this technique to enhance the sensitivity and to analyze the kinetic behavior of species. the surface species involved in the oxidation process, the state of Pt, and the gas phase species (co and co2) could be simultaneously monitored in situ and analyzed quantitatively. the technique can serve as a valuable tool for investigations of various dynamic phenomena occurring at gas-solid interfaces.
Chromatographic Resolution, Solution and Crystal Phase Conformations, and Absolute Configuration of tert-Butyl(dimethylamino)phenylphosphine-Borane Complex
J.-V. Naubron, L. Giordano, F. Fotiadu, , N. Vanthuyne, C. Roussel and G. Buono Journal of Organic Chemistry, 71 (15) (2006), p5586-5593
DOI:10.1021/jo0605647 | unige:14781 | Abstract | Article HTML | Article PDF
The enantiomers of tert-butyl(dimethylamino)phenylphosphine−borane complex 2 have been separated by HPLC using cellulose tris-p-methylbenzoate as chiral stationary phase. The borane protection could be removed without racemization and the P-configuration of the free aminophosphine 1 has shown to be stable in solution. Infrared (IR) and vibrational circular dichroism (VCD) spectra have been measured in CD2Cl2 solution for both enantiomers. B3LYP/6-31+G(d) DFT calculations allowed a prediction that complex (S)-2 exists as three conformers in equilibrium and computed population-weighted IR and VCD spectra. Predicted and experimental IR and VCD spectra compared very well and indicate that enantiomer (+)-2 has the S absolute configuration. This assignment has been confirmed by an X-ray diffraction study on a single crystal of (+)-2. The crystal structure of enantiomerically pure 2 appears to be very close to the most stable computed conformer which proved to be predominant in solution.
The photoassisted mineralization, i.e., conversion to CO2 and water, of malonic acid over P25 TiO2 was investigated by in situ attenuated total reflection infrared (ATR-IR) spectroscopy in a small volume flow-through cell. Reassignment of the vibrational bands of adsorbed malonic acid, assisted by deuterium labeling, reveals two dissimilar carboxylate groups within the molecule. This indicates adsorption via both carboxylate groups, one in a bridging or bidentate and the other in monodentate coordination. During irradiation the coverage of malonic acid strongly decreases, and oxalate is observed on the surface in at least two different adsorption modes. The major oxalate species observed during irradiation is characterized by monodentate coordination of both carboxylate groups. In the dark, however, part of these species adopts another adsorption mode, possibly interacting only with one carboxylate group. During band gap illumination a large fraction of the surface is not covered by acid. Oxalate is a major intermediate in the mineralization of malonic acid. However, the observed transient kinetics of adsorbed malonic and oxalic acid indicates additional pathways not involving oxalate. The rate constant for oxalate decomposition is slightly larger than the one for oxalate formation from malonic acid. As the oxalate is desorbing slowly from the surface its concentration in the liquid phase is small, despite the fact that it is a major intermediate in the mineralization of malonic acid.
We have prepared gold nanoparticles covered with N-isobutyryl-l-cysteine and N-isobutyryl-d-cysteine, respectively. These particles with a mean particle size smaller than 2 nm are highly soluble in water and are amenable to chiroptical techniques such as vibrational circular dichroism (VCD) and circular dichroism (CD) spectroscopy. Density functional theory shows that the VCD spectra are sensitive toward the conformation of the adsorbed thiol. Based on the comparison between the experimental VCD spectrum and the calculated VCD spectra for different conformers, a preferential conformation of the thiol adsorbed on the gold particles can be proposed. In this conformation the carboxylate group interacts with the gold particle in addition to the sulfur. The particles could furthermore be separated according to their charge and size into well-defined compounds. The optical absorption spectra revealed a well-quantized electronic structure and a systematic red-shift of the absorption onset with increasing gold core size, which was manifested in a color change with particle size. Some compounds showed basically identical absorption spectra as analogous gold particles protected with l-glutathione. This shows that these particles have identical core sizes (10−12, 15 and 18 gold atoms, respectively) and indicates that the number and arrangement of the adsorbed thiol are the same, independent of the two thiols, which have largely different sizes. Some separated compounds show strong optical activity with opposite sign when covered with the d- and l-enantiomer, respectively, of N-isobutyryl-cysteine. The origin of the optical activity in the metal-based transitions is discussed. The observations are consistent with a mechanism based on a chiral footprint on the metal core imparted by the adsorbed thiol.
The adsorption of penicillamine from ethanol on gold was studied in situ by attenuated total reflection infrared (ATR-IR) and quartz crystal microbalance (QCM) experiments. Both ATR-IR and QCM reveal a fast mass uptake. In ethanol, the molecule adopts a zwitterionic form. Upon adsorption, part of the molecules deprotonate at the amine group, which is a relatively slow process that goes along with a strong shift of the νas(COO-) mode. Both ATR-IR and QCM confirm a physisorbed layer. ATR-IR furthermore shows that the latter consists of zwitterionic molecules only, whereas both zwitterionic and anionic species are found in the chemisorbed layer. The infrared spectra of the physisorbed and chemisorbed layers are rather different, and the molecules within both layers seem to be oriented with respect to the surface. The ATR-IR spectra furthermore indicate that all three functional groups of penicillamine (i.e., thiol, carboxylate, and amine) interact with the surface, and density functional theory calculations support this finding. QCM also shows that the molecule uses considerably more space on the surface than molecules of similar size, which supports a three-point interaction. The latter leads to a strong anchoring of the molecule to the metal, which may explain the exceptional capability of penicillamine to bind metals.
Probing Chiral Nanoparticles and Surfaces by Infrared Spectroscopy
C. Gautier, M. Bieri, , S. Angeloni, J. Boudon and Chimia, 60 (11) (2006), p777-782 Keywords: chiral surfaces; enantiodiscrimination; nanoparticles; sams; vibrational circular dichroism
DOI:10.2533/chimia.2006.777 | unige:14749
Chiral metal surfaces and nanoparticles have the potential to be used for the selective production, the resolution and the detection of enantiomers of a chiral compound, which renders them highly attractive in view of the tremendous consequences of homochirality on earth. Their capability to distinguish between enantiomers of a chemical compound relies on their structure and the ability to form intermolecular interactions. However, molecular-level understanding of the interactions that are at the origin of enantiodiscrimination is lagging behind due to the lack of powerful experimental techniques that are able to spot these interactions selectively with high sensitivity. In this article two techniques based on infrared spectroscopy are presented that are able to selectively target the chiral properties of nanoparticles and interfaces. These are the combination of attenuated total reflection infrared (ATR-IR) with modulation excitation spectroscopy (MES) to probe enantiodiscriminating interactions at chiral solid-liquid interfaces and vibrational circular dichroism (VCD), which is used to probe the structure of chirally modified metal nanoparticles.
Attenuated Total Reflection Infrared Spectroscopy of Solid Catalysts Functioning in the Presence of Liquid-Phase Reactants
and A. Baiker
in "Advances in Catalysis"
Ed. by H. Knüpffer, Academic Press,
50 (2006), p227-283
DOI:10.1016/S0360-0564%2806%2950005-7 | unige:14641 | Article HTML | Article PDF
Attenuated total reflection (ATR) infrared (IR) spectroscopy is a powerful tool for investigation of solid catalysts, allowing the detection of liquid-phase products (for on-line reaction monitoring) and the investigation of species adsorbed on the catalyst, during reaction and in the presence of strongly absorbing solvents. Flat model catalysts such as metal films as well as powder catalysts can be investigated. In favorable situations, even changes of the catalyst structure can be followed. In this review, some fundamental concepts of ATR spectroscopy are summarized, and practical aspects, such as cell design and sample preparation, are discussed. The potential and limitations of the method are illustrated with examples. Furthermore, powerful techniques aimed at enhancing signal-to-noise ratios and long-term stability are described, which make use of phase-sensitive detection of periodically varying signals and accurate reference measurements. Until now, only a rather limited number of investigations have been reported that use the ATR technique to study heterogeneous catalytic reactions at solid–liquid interfaces, but the method holds good promise because it is comparatively inexpensive and versatile and can provide a large amount of information.
Tetrakis(trimethylsiloxy)titanium (TTMST, Ti(OSiMe3)4) possesses an isolated Ti center and is a highly active homogeneous catalyst in epoxidation of various olefins. The structure of TTMST resembles that of the active sites in some heterogeneous Ti−Si epoxidation catalysts, especially silylated titania−silica mixed oxides. Water cleaves the Ti−O−Si bond and deactivates the catalyst. An alkyl hydroperoxide, TBHP (tert-butyl hydroperoxide), does not cleave the Ti−O−Si bond, but interacts via weak hydrogen-bonding as supported by NMR, DOSY, IR, and computational studies. ATR−IR spectroscopy combined with computational investigations shows that more than one, that is, up to four, TBHP can undergo hydrogen-bonding with TTMST, leading to the activation of the O−O bond of TBHP. The greater the number of TBHP molecules that form hydrogen bonds to TTMST, the more electrophilic the O−O bond becomes, and the more active the complex is for epoxidation. An allylic alcohol, 2-cyclohexen-1-ol, does not interact strongly with TTMST, but the interaction is prominent when it interacts with the TTMST−TBHP complex. On the basis of the experimental and theoretical findings, a hydrogen-bond-assisted epoxidation mechanism of TTMST is suggested.
Combined in situ attenuated total reflection infrared and UV-vis spectroscopic study of alcohol oxidation over Pd/Al2O3
In situ attenuated total reflection (ATR) infrared and UV–vis spectroscopy are combined to yield simultaneous time-resolved information on dissolved reaction products, adsorbed species, and the catalyst during the oxidation of ethanol and 2-propanol on a 5% Pd/Al2O3 catalyst. The oxidation is initiated by change from hydrogen- to oxygen-saturated solvent flow. 2-Propanol oxidation is observed only in the transient period, whereas ethanol oxidation is also observed in the steady state. This may be ascribed to overoxidation of the catalyst in the former case. In a mixture of the two alcohols the same thing is observed. Competitive adsorption in the steady state may explain this behavior. For ethanol oxidation ethyl acetate is also observed during the transient period. The UV–vis spectra reveal a fast reversible change of the catalyst with switching between hydrogen and oxygen and a slow irreversible change during ethanol oxidation. The latter is ascribed to the change in Pd particle structure, which hardly affects, however, catalyst activity on the time scale of about 1 h.
Adsorption of the tripeptide l-glutathione (γ-glu-cys-gly) on gold surfaces was investigated by polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) and attenuated total reflection (ATR) infrared spectroscopy. PM-IRRAS was used to study ex situ the adsorbate layer prepared from aqueous solutions at different pH, whereas ATR-IR was applied to study in situ adsorption from ethanol in the presence and absence of acid and base. ATR-IR was furthermore combined with modulation spectroscopy in order to investigate the reversible changes within the adsorbate layer induced by acid and base stimuli, respectively. The molecule is firmly anchored on the gold surface via the thiol group of the cys part. However, the ATR-IR spectra in ethanol indicate a further interaction with the gold surface via the carboxylic acid group of the gly part of the molecule, which deprotonates upon adsorption. Hydrochloric acid readily protonates the two acid groups of the adsorbed molecule. During subsequent ethanol flow the acid groups deprotonate again, a process which proceeds in two distinct steps: a fast step associated with the deprotonation of the acid in the glu part of the molecule and a considerably slower step associated with deprotonation of the acid in the gly moiety. The latter process is assisted by the interaction of the corresponding acid group with the surface. The spectra furthermore indicate a rearrangement of the hydrogen bonding network within the adsorbate layer upon deprotonation. Depending on the protonation state during adsorption of l-glutathione, the response toward identical protonation−deprotonation stimuli is significantly different. This is explained by the ionic state-dependent shape of the molecule, as supported by density functional theory calculations. The different shapes of the individual molecules during layer formation thus influence the structure of the adsorbate layer.
The scope of the asymmetric hydrogenation of functionalized ketones over cinchona-modified platinum was extended to achiral α-hydroxyketones. Cinchonidine showed by far the best catalytic performance affording an enantiomeric excess between 57 and 82% depending on the substrate. O-methoxy-cinchonidine showed poor enantioselection. O-phenoxy-cinchonidine favoured the opposite enantiomer compared to cinchonidine. Solvents with empirical solvent parameters ET N – ranging from 0.10 to 0.65 were tested. Tert-butylmethylether proved to be the most suitable. The highest ratio of substrate/cinchonidine where no loss in e.e. was observed was at around 540, independent of the structure of the α-hydroxyketone. The oxygen in α-position to the ketone seems to play an important role in the enantioselection as well as a phenyl ring or a rigid cis-conformation. The dependence of the enantiomeric excess on the modifier structure and the inversion of the sense of enantiodifferentiation is interpreted in terms of repulsive interactions, which become more evident as the steric demand of the functional group (OH, O-Me, O-Ph) of the modifier increases. The findings indicate that a hydrogen bond in the modifier reactant complex involving the hydroxyl functionality of cinchonidine is not crucial in order to achieve high enantioselectivity.
Alumina-supported rhodium modified with cinchonidine has been investigated with regard to its applicability in the enantioselective hydrogenation of various aromatic ketones possessing an α-hydroxy or α-methoxy group. The study revealed that depending on the substrate, rhodium can outperform the catalytic behavior of platinum. With one of the substrates, 2-hydroxy-1-(4-methoxy-phenyl)-ethanone (4), an enantiomeric excess (ee) of 80% at 89% conversion was reached, which is the highest ee reported so far for chirally modified rhodium. However, completely different conditions are required to achieve optimal catalytic performance with rhodium, compared with platinum. Rhodium requires a much higher modifier concentration, and high hydrogen pressure is favorable. The higher modifier concentration required is traced to the much higher activity of rhodium for the hydrogenation of the quinoline ring, which is assumed to be the anchoring moiety of the cinchona modifiers on the platinum group metals. Changing the modifier from cinchonidine to O-phenoxy-cinchonidine resulted in a switch of the major enantiomer of the product, as exemplified for 2-hydroxyacetophenone (1), which showed a switch from 73% ee in favor of the (R)-product to 68% ee for the (S)-product when the modifier was changed from cinchonidine to O-phenoxy-cinchonidine.
The interaction of proline with self-assembled monolayers (SAMs) of l-glutathione (γ-glu-cys-gly) on gold was investigated by a combination of attenuated total reflection (ATR-IR) infrared and modulation excitation spectroscopy (MES). The latter technique makes use of phase-sensitive detection of periodically varying signals and allows discrimination between species with different kinetics such as dissolved proline and adsorbed molecules. By applying a convection−diffusion model coupled to adsorption and desorption, it was possible to extract relative adsorption and desorption rates from the experimental data for the two enantiomers of proline, fully accounting for mass transport within the flow-through cell. The results show that, in particular, the desorption kinetics is different for the two enantiomers. Therefore, the l-glutathione SAM can discriminate between enantiomers, d-proline being stronger bound. The IR spectra reveal that upon interaction with proline the adsorbed l-glutathione is protonated at the gly part of the molecule, which, in the absence of proline, is bound to the gold surface as carboxylate. The observed protonation of adsorbed l-glutathione upon interaction with proline goes along with a structural change of the former, which seems to play an important role for enantiodiscrimination.
Conformational rigidity: a necessary prerequisite of chiral modifiers used in heterogeneous enantioselective catalysis?
E. Orglmeister, , T. Mallat and A. Baiker Journal of Catalysis, 232 (1) (2005), p137-142 Keywords: Acid effect; Asymmetric heterogeneous catalysis; Pt/Al2O3; Ketopantolactone; Hydrogenation; Ab initio calculation; NOE; Modifier conformation
DOI:10.1016/j.jcat.2005.03.005 | unige:14782 | Article HTML | Article PDF
In the hydrogenation of ketopantolactone, the (R,R) and (R,S) diastereomers of a new chiral modifier, pantoyl-naphthylethylamine, afforded 74 and 40% ee, respectively, to (R)-pantolactone. On the basis of NOE studies and theoretical calculations, the different properties of the diastereomers and in particular the effect of acid on the modifier structure are deduced from differences in conformational rigidity and steric constraint. In case of the (R,R)-diastereomer, a loose, extended structure in apolar solvent changes to a compact conformation via an additional intramolecular hydrogen bond, resulting in a more defined “chiral pocket” available for the reactant on the Pt surface.
O-Phenylcinchonidine (PhOCD) is known to efficiently induce inversion of enantioselectivity with respect to cinchonidine (CD) in the enantioselective hydrogenation of various activated ketones on Pt/Al2O3. To understand the origin of the switch of enantioselective properties of the catalyst, the adsorption of PhOCD has been studied by in situ ATR-IR spectroscopy, in the presence of organic solvent and dissolved hydrogen, i.e., under conditions used for catalytic hydrogenation. The adsorption structures and energies of the anchoring group of CD and PhOCD were calculated on a Pt 38 cluster, using relativistically corrected density functional theory (DFT). Both approaches indicate that both modifiers are adsorbed via the quinoline ring and that the spatial arrangement of the quinuclidine skeleton is critical for the chiral recognition. New molecular level information on the conformation of CD relative to PhOCD adsorbed on a surface is extracted from the ATR spectra and supported by DFT calculations. The result is a clearer picture of the role played by the phenyl group in defining the chiral space created by the modifiers on Pt. Moreover, when CD was added to a pre-equilibrated adsorbed layer of PhOCD, a chiral adsorbed layer was formed with CD as the dominant modifier, indicating that CD adsorbs more strongly than PhOCD. Conversely, when PhOCD was added to preadsorbed CD, no significant substitution occurred. The process leading to nonlinear effects in heterogeneous asymmetric catalysis has been characterized by in situ spectroscopy, and new insight into a heterogeneous catalytic R−S switch system is provided.
The adsorption of N-acetyl-l-cysteine from ethanol solution on gold has been studied by in situ attenuated total reflection infrared (ATR-IR) spectroscopy, polarization modulation infrared reflection absorption spectroscopy, and a quartz crystal microbalance. After an initial fast adsorption, in situ ATR-IR revealed two considerably slower processes, besides further adsorption. The appearance of carboxylate bands and the partial disappearance of the carboxylic acid bands demonstrated that part of the molecules on the surface underwent deprotonation. In addition, the C=O stretching vibration of the carboxylic acid group shifted to lower and the amide II band to higher wavenumbers, indicating hydrogen-bonding interactions within the adsorbate layer. Based on the initial ATR-IR spectrum, which did not reveal deprotonation, the orientation of the molecule within the adsorbate layer was determined. For this, density functional theory was used to calculate the transition dipole moment vectors of the vibrational modes of N-acetyl-l-cysteine. The projections of the latter onto the z-axis of the fixed surface coordinate system were used to determine relative band intensities for different orientations of the molecule. The analysis revealed that the amide group is tilted with respect to and points away from the surface, whereas the carboxylic acid is in proximity to the surface, which is also supported by a shift of the C−O−H bending mode. This position of the acid group favors its deprotonation assisted by the gold surface and easily enables intermolecular interactions. Periodic acid stimuli revealed reversible protonation/deprotonation of part of the adsorbed molecules. However, only non-hydrogen-bonded carboxylic acid groups showed a response toward the acid stimuli.
Synthesis and Characterization of Tetrahedral Ru3O Clusters with Intrinsic Framework Chirality: A Chiral Probe of the Intact Cluster Catalysis Concept
L. Vieille-Petit, G. Süss-Fink, B. Therrien, T.R. Ward, H. Stœckli-Evans, G. Labat, L. Karmazin-Brelot, A. Neels, , R.G. Finke and C.M. Hagen Organometallics, 24 (25) (2005), p6104-6119
DOI:10.1021/om050643t | unige:14737 | Abstract | Article HTML | Article PDF
To bring evidence for or against the hypothesis of catalytic hydrogenation by intact trinuclear arene ruthenium clusters containing an oxo cap, cationic Ru3O clusters with three different arene ligands (intrinsically chiral tetrahedra) have been synthesized as racemic mixtures. By introduction of a chiral auxiliary substituent at one of the three different arene ligands, the separation of the two diastereomers was possible. The chiral Ru3O framework was evidenced by X-ray crystallography, by circular dichroism in the UV and IR regions, and by chiral shift reagents in the NMR spectra. The catalytic hydrogenation of the prochiral substrate methyl 2-acetamidoacrylate using a chiral Ru3O cluster showed no asymmetric induction, suggesting that the catalytically active species is not the intact Ru3O cluster.
Vibrational circular dichroism of N-acetyl-L-cysteine protected gold nanoparticles
C. Gautier and ChemComm, (43) (2005), p5393-5395
DOI:10.1039/b509346e | Abstract
Vibrational circular dichroism is used to determine the conformation of a thiol adsorbed on gold nanoparticles.
Vibrational and electronic circular dichroism of Δ-TRISPHAT [tris(tetrachlorobenzenediolato)phosphate(V)] anion
D. Bas, , J. Lacour, J. Vachon and Chirality, 17 (S1) (2005), p143-148
DOI:10.1002/chir.20131 | unige:3628 | Abstract | Article PDF
Herein is reported an experimental and theoretical study of the circular dichroism properties of TRISPHAT (1) anion. ECD analysis of the [tetramethylammonium][Δ-1] salt confirms the absolute configuration assignment obtained through X-ray crystallographic analysis of the parent cinchonidium salt. The structure, infrared, and vibrational circular dichroism (VCD) spectra derived from density functional theory (DFT) calculations are compared with experimental data.
2004
Inversion of enantioselectivity in the platinum-catalyzed hydrogenation of substituted acetophenones
R. Hess, A. Vargas, T. Mallat, and A. Baiker Journal of Catalysis, 222 (1) (2004), p117-128 Keywords: Asymmetric hydrogenation; Ring-substituted acetophenones; Ethers of cinchonidine; Inversion of enantioselectivity; 3,5-Di(trifluoromethyl)acetophenone
DOI:10.1016/j.jcat.2003.10.021 | unige:14708 | Article HTML | Article PDF
The enantioselective hydrogenation of ring-substituted acetophenones that possess no functional group in the α-position to the keto group represents the latest extension of the application range of the Pt–cinchona system. The influence of the type of solvent, pressure, temperature, and modifier/substrate/Pt molar ratios was investigated in the hydrogenation of 3,5-di(trifluoromethyl)acetophenone. Modification of a 5 wt% Pt/Al2O3 catalyst by cinchonidine (CD) afforded the corresponding (S)-1-phenylethanol (69.5% ee). Working in strongly polar solvents, addition of trifluoroacetic acid in a weakly polar solvent, and replacing CD by its ether derivatives resulted in the inversion of enantioselectivity. Addition of CD or any of its derivatives always led to a lower reaction rate, contrary to the generally observed rate acceleration in the hydrogenation of α-functionalized activated ketones over the same catalyst system. Another fundamental difference to the hydrogenation of α-functionalized activated ketones is that both the quinuclidine N and the OH functions of CD influence the stereochemical outcome of the reaction, as clarified by using O- and N-substituted derivatives of CD. Ab initio calculations confirmed these remarkable mechanistic differences. Inversion of enantioselectivity in the presence of strongly polar and acidic solvents is attributed to special interactions with the OH function of CD, and to the formation of a CD–acid ion pair, respectively. A possible explanation for the moderate ee's in the hydrogenation of ring-substituted acetophenones is that a reaction pathway without involvement of the OH function of CD is also feasible. This competing pathway is even faster and provides low ee to the opposite enantiomer.
The comparison between experimental and calculated VCD spectra allowed the unequivocal assignment of the absolute configuration of heptahelicene C30H18 as P(+).
The adsorption of several ketones interesting for the enantioselective hydrogenation on cinchona-modified platinum has been modeled using relativistically corrected density functional theory. Two metal clusters, containing 19 and 31 Pt atoms, respectively, have been used to model a Pt(111) surface. The two adsorption modes η1 and η2 have been described, and their importance for the mechanism of hydrogenation has been pointed out. The effect of an ester group in α position and of α-fluorination of a ketone on its adsorption has been studied, and an explanation for the reactivity enhancement due to the ketone substitution has been proposed.
Epoxidation of cyclohex-2-en-1-ol and cyclooct-2-en-1-ol on titania–silica aerogel catalysts using t-butylhydroperoxide (TBHP) as oxidant was studied by in situ attenuated total reflection (ATR) Fourier transform infrared spectroscopy. Probing of the catalytic liquid–solid interface revealed different adsorption behaviors for the two allylic alcohols on the aerogel. Cyclohexenol was found to adsorb stronger and less reversible on the catalyst surface and Ti sites than cyclooctenol. The spectroscopic measurements under working conditions support the previously proposed hydroxy-assisted mechanism for the formation of cyclohexenol oxide and the silanol-assisted mechanism for cyclooctenol epoxidation. The evidence of the former is traced to the occurrence of a framework vibration upon adsorption of cyclohexenol, whereas the latter is supported by large negative bands of the silanol groups at 3700 and 980 cm−1 in the case of cyclooctenol epoxidation.
Identification of catalyst surface species during asymmetric platinum-catalyzed hydrogenation in a "supercritical" solvent
M.S. Schneider, A. Urakawa, J.-D. Grunwaldt, and A. Baiker ChemComm, 6 (2004), p744-745
DOI:10.1039/b315591a | unige:14722 | Abstract | Article HTML | Article PDF
The enantioselective hydrogenation of several isatine derivatives over cinchonidine modified Pt/Al2O3 was investigated. A maximum enantiomeric excess (e.e.) of 45% was found for (R)-5,7-dimethylisatin. The enantiomeric excess was limited by racemization catalyzed by the basic cinchonidine in solution, leading to low enantiomeric excess at high cinchonidine concentration. The modifier in solution also catalyzed the formation of the corresponding isatide. High cinchonidine concentration favored isatide formation, whereas low cinchonidine concentration and high hydrogen pressure favored alcohol formation. The isatide, formed from the isatin reactant and the alcohol, underwent disproportionation. Though both hydrogenation and isatide formation are fast reactions, isatide formation was considerably faster at least at the beginning of the reaction. Substitution of the isatin reactant had relatively little effect on enantiomeric excess but affected considerably the rate of racemization.
The behavior of ethyl pyruvate during adsorption on vapor deposited alumina-supported platinum films and on a commercial 5 wt % Pt/Al2O3 catalyst has been studied in the absence and presence of coadsorbed cinchonidine, which is usually applied as a chiral modifier in the platinum-catalyzed enantioselective hydrogenation of α-ketoesters. The in situ ATR−IR measurements, performed at room temperature using hydrogen-saturated CH2Cl2 as solvent, revealed that upon adsorption on the platinum some of the ethyl pyruvate decomposes leading to strongly adsorbed CO and other fragmentation products. The CO originating from decomposition of ethyl pyruvate reached approximately 14% of the amount of adsorbable CO on the free platinum surface and is proposed to be adsorbed preferentially on energetically favored sites such as edges and corners. The presence of cinchonidine (10-4 M) lead to a drastic decrease of the decomposition rate of ethyl pyruvate by a factor of about 60 under the conditions used. Competitive adsorption experiments of CO and cinchonidine in the presence of hydrogen indicated that cinchonidine can displace the adsorbed CO, confirming the strong anchoring of cinchonidine on the platinum surface, which is a prerequisite for its action as a chiral modifier. The findings of the adsorption studies provide a plausible explanation for the earlier made observation that the sequence of admission of α-ketoester, chiral modifier, and hydrogen affects the catalytic performance of platinum-catalyzed enantioselective hydrogenation. The decomposition is likely to occur also with other α-ketoesters and may have a bearing on the initial transient period, typically observed during hydrogenation of such compounds on cinchona-modified platinum catalysts.
Adsorption of cinchonidine on platinum: a DFT insight in the mechanism of enantioselective hydrogenation of activated ketones
A. Vargas, and A. Baiker Journal of Catalysis, 226 (1) (2004), p69-82 Keywords: Cinchonidine; Adsorption; DFT; Platinum; Enantioselective hydrogenation; DFT; Activated ketones; Mechanism
DOI:10.1016/j.jcat.2004.05.011 | unige:14736 | Article HTML | Article PDF
The adsorption of cinchonidine on platinum has been calculated with relativistically corrected density-functional theory, by first studying the interaction of the 1(S)-(4-quinolinyl)ethanol with a platinum cluster of 31 metal atoms, and by successive addition and separate optimization of the quinuclidine moiety. The conformations of the alkaloid on the surface were analyzed and their possible interactions with a surface chemisorbed methylpyruvate and acetophenone are discussed. A chiral space that is able to selectively accommodate surface enantiomers and to promote their rapid hydrogenation in a ligand-accelerated fashion has been determined. The role of the O-alkylation of the alkaloid in the modulation of enantioselectivity has been rationalized within the new interaction model.
FTIR and NMR spectroscopy and ab initio calculations were applied to understand the nature of enantioselection in the hydrogenation of the heteroaromatic ring in furan- and benzofurancarboxylic acids over cinchonidine-modified Pd. Most probably, cinchonidine adsorbs on Pd, via its quinoline moiety, approximately parallel to the surface, and the protonated quinuclidine N atom and the OH function of the alkaloid form a cyclic complex with the deprotonated acid dimer (2:1 acid:cinchonidine). The acid dimer adsorbs via the electron-rich furan ring and the carboxylate groups close to parallel to the Pd surface; the furan O atom points toward the OH function of cinchonidine. In this position, hydrogen uptake from the Pd surface results in the (S)-enantiomer as the major product. Another cyclic complex (1:1) involving cinchonidine and only one acid molecule is also feasible in solution, but this rigid structure is thermodynamically less favored, and it may be difficult to fulfill the geometric constraints imposed by adsorption on the metal surface.
A method to selectively probe the different adsorption of enantiomers at chiral solid−liquid interfaces is applied, which combines attenuated total reflection infrared spectroscopy and modulation spectroscopy. The spectral changes on the surface are followed while the absolute configuration of the adsorbate is changed periodically. Demodulated spectra are calculated by performing a subsequent digital phase-sensitive data analysis. The method is sensitive solely to the difference of the interaction of the two enantiomers with the chiral surface, and the small spectral changes are amplified by the phase-sensitive data analysis. Its potential is demonstrated by investigating an already well-studied system in liquid chromatography, namely, the enantiomer separation of N-3,5-dinitrobenzoyl-(R,S)-leucine (DNB-(R,S)-Leu) using tert-butylcarbamoyl quinine (tBuCQN) as the chiral selector immobilized on the surface of porous silica particles. The performed experiments and density functional theory calculations confirm an interaction model that was proposed earlier based on solution NMR and XRD in the solid state. It emerges that the ionic interaction is the strongest one, but the main reason for the potential for enantioseparation of the chiral stationary phase (CSP) is the distinct formation of a hydrogen bond of the (S)-enantiomer with the chiral selector. This H-bond is established between the amide N−H of DNB-(S)-Leu with the carbamate C=O of the CSP. The (R)-enantiomer instead shows no specific hydrogen bonds. Only the unspecific ionic bonding between the protonated quinine part of the tBuCQN and the carboxylate of the DNB-(R)-Leu (holds also for DNB-(S)-Leu) is observed.
In situ attenuated total reflection infrared spectroscopy in a flow-through cell combined with online UV−vis spectroscopy was used to investigate the oxidation of 2-propanol over Pd/Al2O3 catalyst. The state of the catalyst was driven fast between reduced and oxidized by admitting alternately dissolved hydrogen and oxygen, and the response of the catalytic solid−liquid interface was followed in time. Besides the oxidation product acetone and the water that forms, when hydrogen and oxygen are simultaneously adsorbed on the catalyst surface, an additional species was observed with a characteristic band at ~1065 cm-1. On the basis of the transient character of the adsorbate and density functional theory calculations, we assign this species to adsorbed 2-propoxide. Its observation indicates that the second dehydrogenation step is rate limiting in an oxidative dehydrogenation mechanism. The results furthermore show that adsorbed hydrogen and oxygen limit the dissociative adsorption of 2-propanol and that 2-propoxide can be hydrogenated back to the reactant in the presence of adsorbed hydrogen.
Modification of a metal surface by a strongly adsorbed chiral organic molecule has proven to be an interesting strategy for heterogeneous chiral catalysis. Platinum chirally modified by cinchona alkaloids, successfully applied for the enantioselective hydrogenation of α-ketoesters, is probably the most prominent catalyst based on this concept. Despite considerable research efforts toward understanding of this complex catalytic system, the proposed mechanistic models are still debated. Here we discuss how enantiodifferentiation can be induced on a catalytically active surface and validate the models proposed for the platinum−cinchona system in the light of the existing molecular knowledge.
2003
Book Review: In Situ Spectroscopy in Heterogeneous Catalysis. Edited by James F. Haw
The asymmetric hydrogenation of cyclohexane-1,2-dione over cinchonidine-modified platinum was investigated. Despite the fact that the first hydrogenation step is close to nonenantioselective, a high enantiomeric excess is obtained for the (R)-α-hydroxyketone due to kinetic resolution. In the second hydrogenation step one out of the four reactions of the network is substantially accelerated with respect to the others and with respect to the reaction in the absence of modifier, leading to an enantiomeric excess of (1R,2R)-trans-cyclohexane-1,2-diol of over 80%. Comparison with recently reported asymmetric hydrogenation of α-hydroxyethers indicates striking similarities, which hint at similar reactant–modifier interaction in both cases. The importance of cis versus trans conformation of the reactant for the reactant–modifier interaction emerges from a comparison of suggested reaction intermediates for cyclohexane-1,2-dione and butane-2,3-dione hydrogenation, respectively.
A method to selectively probe the different adsorption of enantiomers at chiral solid−liquid interfaces is presented, which combines attenuated total reflection infrared spectroscopy and modulation spectroscopy. The weak spectral changes upon adsorption of enantiomers at a chiral interface are followed in time, while periodically changing the absolute configuration of the admitted chiral molecule. A subsequent digital phase-sensitive data analysis reveals spectral differences arising due to the different diastereomeric interactions of the two enantiomers with the chiral interface. The main advantage of the method compared to conventional difference spectroscopy is the enhanced signal-to-noise ratio. The method is selective for differences in diastereomeric interactions of the enantiomers. Its potential is demonstrated by studying the adsorption of ethyl lactate on a chiral stationary phase, which is amylose tris[(S)-α-methylbenzylcarbamate] coated onto silica gel. d-Ethyl lactate interacts stronger with the chiral stationary phase. In particular the spectral shifts reveal a stronger N−H···O=C hydrogen bonding interaction between amide group of the chiral stationary phase and the ester group of the ethyl lactate. The spectra also indicate that one of the three (S)-α-methylbenzylcarbamate side chains of the amylose derivative is predominantly involved in the interaction with the ethyl lactate. Furthermore, the experimental observations indicate that more than one interaction mode is populated at room temperature and that interaction with the ethyl lactate may induce a conformational change of the amide group of the chiral stationary phase.
The epoxidation of cyclohexene over titania–silica aerogel catalysts using t-butylhydroperoxide (TBHP) was investigated by in situ attenuated total reflection (ATR) infrared spectroscopy. In order to distinguish between relevant and spectator species and to increase sensitivity, ATR was combined with modulation spectroscopy. In the latter technique the catalyst system is periodically perturbed by a forced concentration change. The interaction of cyclohexene with the aerogels is found to be weak. In contrast, TBHP adsorbs strongly on the catalysts on two different sites. Modulation experiments reveal that TBHP adsorbed on Si-OH groups is a spectator, whereas the one adsorbed on the Ti-sites is involved in the catalytic cycle. The latter species is stronger adsorbed and the associated signals increase with the Ti content of the catalyst. Adsorption of the TBHP on the Ti sites results in a strong shift of the C-O stretching vibration and changes in the Ti-O-Si modes of the catalyst. The study furthermore reveals vastly different pore diffusion for cyclohexene and TBHP due to their different interaction with the polar catalyst surface. In the modulation experiments the reaction product appears retarded with respect to the admittance of the reactants, which indicates that pore diffusion and kinetics of adsorption and desorption are important factors for the catalysis. Methylation of the aerogel has a beneficial effect on the catalysis, which can be traced to the different pore size distribution and polarity with respect to the unmodified catalyst. When the flow-through ATR cell is slowly heated, a change in the framework vibrations of the catalyst occurs simultaneously with the onset of reaction, indicating reaction induced structural changes.
Prominent nonlinear effects in enantioselectivity were observed with a transient technique when ethyl pyruvate was hydrogenated over Pt/Al2O3 in the presence of two cinchona alkaloids, which alone afford the opposite enantiomers of ethyl lactate in excess. The changes in reaction rate and ee, detected after injection of the second alkaloid, varied strongly with type and amount of the alkaloid, and with the order of their addition to the reaction mixture. For example, under ambient conditions in acetic acid cinchonidine (CD) afforded 90% ee to (R)-ethyl lactate and addition of equimolar amount of quinidine (QD) reduced the ee to (R)-ethyl lactate only to 88%, though QD alone provided 94% ee to (S)-lactate in a slightly faster reaction. The stronger adsorption of CD on Pt in the presence of hydrogen and acetic acid was proved by UV–vis spectroscopy. The different adsorption strengths result in an enrichment of CD on the Pt surface and also in a crucial difference in the dominant adsorption geometries. CD is assumed to adsorb preferentially via the quinoline rings laying approximately parallel to the Pt surface. In this position it can interact with ethyl pyruvate during hydrogen uptake and control the enantioselectivity. The weaker adsorbing QD adopts mainly a position with the quinoline plane being tilted relative to the Pt surface and these species are not involved in the enantioselective reaction. Competing hydrogenation of the alkaloid, and steric and electronic interactions among the adsorbed species, can also influence the alkaloid efficiency and the product distribution. Hydrogenation of the quinoline rings at low alkaloid concentration resulted in unprecedented swings in the enantiomeric excess.
Palladium-catalyzed enantioselective hydrogenation of 2-pyrones: evidence for competing reaction mechanisms
W.-R. Huck, , T. Mallat and A. Baiker Journal of Catalysis, 219 (1) (2003), p41-51 Keywords: Asymmetric; Hydrogenation; Cinchonidine; Cinchonine; Palladium; 2-Pyrone
DOI:10.1016/S0021-9517%2803%2900166-0 | unige:14712 | Article HTML | Article PDF
The enantioselective hydrogenation of 4-hydroxy-6-methyl-2-pyrone (1a), 3,6-dimethyl-4-hydroxy-2-pyrone (2a), 4-methoxy-6-methyl-2-pyrone (3a), and 4,6-dimethyl-2-pyrone (4a) was studied over a 5 wt% Pd/TiO2 catalyst. Various cinchona alkaloids and their O- and N-methyl derivatives were applied as chiral modifiers. The catalytic experiments combined with FTIR, NMR, and NOESY-NMR spectroscopic analysis and ab initio calculations revealed an interesting feature of the reactions: the ee is determined by competing reactant–modifier interactions. These interactions may involve the OH function and the quinuclidine N of the alkaloid modifier. When the reactant possesses an acidic OH group (1a and 2a), the reaction via the energetically most stable bidentate complex controls the enantioselectivity. Protic or basic solvents diminish the ee in these reactions by stabilizing a single-bonded (acid–base type) interaction. Different mechanisms are proposed for the hydrogenation of the nonacidic pyrones 3a and 4a. These models can well interpret the catalytic results but require further confirmation. Besides, the studies provided the first experimental evidence for an intrinsic rate acceleration coupled with the enantiodifferentiating process over chirally modified Pd.
Alternative exposure of Pd thin films and Pd/TiO2 catalysts to dissolved hydrogen and oxygen leads to significant changes in the reflectivity of infrared radiation as observed in attenuated total reflection spectroscopy. The reflectivity decreases and the absorbance increases upon changing from oxygen- to hydrogen-saturated solvent. Reflectivity calculations based on the Drude model for the Pd thin film show that a slight change in the concentration of the free electrons of the metal could be at the origin of the observed effect. Alternatively, the reversible formation of a surface oxide layer can lead to a similar observation. The reflectivity changes can be used to follow the changes of the metal catalyst, similar to potential measurements, however without the need to work in conducting media. They can be correlated with the observation of adsorbed species and the formation of reaction products. The potential of the method for in situ studies of catalytic solid−liquid interfaces is demonstrated for the oxidation of 2-propanol and ethanol. Upon changing from reducing to oxidizing conditions, the observation of reaction products is slightly offset with respect to the observed reflectivity change in both cases, whereas the frequency of the CO vibration shifts at the same time as the reflectivity increases.
A new type of high pressure spectroscopy view-cell for investigation of multiphase reactions is presented. It allows visual observation of the reaction mixture at conditions up to 200 °C and 200 bar. Measurements of the reactor cell’s upper part by transmission spectroscopy with variable path length and of the cell’s bottom part by attenuated total reflection (ATR) spectroscopy can be performed quasi-simultaneously. By coating the internal reflection element with a catalyst film, in situ investigations of heterogeneous catalysts can be performed. The potential of this new experimental setup is demonstrated using examples of heterogeneous and homogeneous catalytic reactions. For the heterogeneously catalyzed hydrogenation of ethyl pyruvate over Pt/Al2O3 in “supercritical” ethane the reaction progress could be monitored by spectroscopic investigation of the fluid phase. Quantitative evaluation of the spectra combined with digital imaging of the reaction mixture allowed simultaneous determination of phase behavior and reaction kinetics. ATR-IR spectra of the catalyst film could be measured at the same time. In the homogeneously catalyzed formylation of morpholine with “supercritical” carbon dioxide and hydrogen, not only number and nature, but also the composition of the different phases could be determined. The catalyst was found to be confined to the liquid phase. Although the aim of these preliminary studies was to test the functionality of the new cell, already significant new insight on the investigated catalytic reactions could be gained.
The interaction of 2-methoxypropene, a vinyl ether, with heterogeneous acid catalysts containing sulfonic acid groups covalently bound to SiO2 (Deloxan ASP, Degussa) and sulfuric acid adsorbed on TiO2-modified amorphous SiO2 (Degussa), respectively, was investigated by in situ attenuated total reflection infrared spectroscopy. Rapid hydrolysis is observed, which does not, however, require the acid sites. The resulting acetone is adsorbed predominantly on SiOH groups. Promoted by the acid sites a further transformation is observed on the catalysts. Based on the time behavior of the ATR signals of acetone and the product the further reaction likely involves the condensation of 2-methoxypropene and acetone. During the buildup of the reaction product hydronium ions disappear from the catalyst surface. Upon desorption of the reaction product the hydronium ions become prominent again on the catalyst containing adsorbed sulfuric acid. This behavior is less pronounced on the catalyst, which contains sulfonic acid groups. The two investigated catalysts contain vastly different relative concentrations of Brønsted and Lewis acid sites, which can explain the difference in the relative concentration of intermediate and product at the interface in the observed consecutive reaction.
The combination of ATR−IR and modulation spectroscopy allowed for the study of the interaction of ketopantolactone with Pt/Al2O3 films chirally modified by cinchonidine under hydrogenation conditions. The spectra reveal a significant influence of ketopantolactone on the adsorption of the modifier and indicate a N−H−O hydrogen bond between modifier and reactant. The latter was corroborated by a comparative study with N-methyl cinchonidine chloride modified Pt/Al2O3.
A new ATR-IR cell was designed, and its performance was characterized by modulation excitation spectroscopy (MES). The new cell allows concentration modulation at relatively high frequency without unnecessary phase delay in the response. The response delay due to convection and diffusion was studied at different flow rates and modulation frequencies by experiments and simulations. The diffusion behavior of a small relatively fast-diffusing molecule, acetonitrile, was compared with that of a large slow-diffusing molecule, hemoglobin, in water. Experimentally, significant differences in their diffusion behavior were observed. The flow and diffusion behavior of the probe molecules was described using two different models, the diffusion layer model and the convection−diffusion model, and the theoretical results were compared with the experiments. The diffusion layer model allows estimating an effective diffusion layer thickness near the surface of the internal reflection element. However, the simulated response is significantly different from the experimental one. On the other hand, the convection−diffusion model describes the flow and diffusion behavior of the solute molecules with high accuracy. This work forms the basis for the investigation of chemical and physical kinetics such as surface reaction and diffusion by MES. It also suggests criteria for appropriate experimental conditions in ATR-IR MES experiments.
In situ spectroscopy of catalytic solid-liquid interfaces and chiral surfaces
This contribution gives an overview of our recent effort to probe catalytic solid-liquid interfaces in situ and to investigate recognition processes at chiral surfaces. Attenuated total reflection infrared spectroscopy in a dedicated low volume flow-through cell is used to investigate the working catalytic interface. The latter technique is combined with modulation spectroscopy, which relies on the perturbation of the system under investigation by a periodically varying external parameter. A digital phase-sensitive detection results in high quality spectra. The method furthermore yields kinetic information and helps disentangle complex spectra. The described tool is therefore ideally suited for the investigation of complex systems. Applications in the fields of heterogeneous catalysis and recognition at chiral solid-liquid interfaces are presented. Our aim is a better molecular level understanding of these processes and, based on this knowledge, a rational design of better catalyst materials.
A [4](hetero)helicenium cation was resolved using the hexacoordinated phosphorus-containing binphat anion (see picture: N, blue; O, red; C, gray). Its absolute configuration was determined by vibrational circular dichroism spectroscopy. The barrier of interconversion of its enantiomers is higher than that of [6]helicene.
The enantioselective hydrogenation of 4-hydroxy-6-methyl-2-pyrone in the presence of acetic acid and trifluoroacetic acid has been studied on cinchonidine-modified Pd/TiO2. Catalytic experiments and theoretical calculations indicate the formation of a cinchonidine–trifluoroacetic acid cyclic ion pair. We propose that this is the actual modifier, which interacts with 4-hydroxy-6-methyl-2-pyrone in the enantiodifferentiating step. The new mechanistic model is assumed to be valid also for other reactions over cinchona-modified Pt or Pd, in the presence of trifluoroacetic acid.
Cyclic cinchonidine ∶ acid complexes (1 ∶ 1 and 1 ∶ 2) of the chiral modifier cinchonidine (CD) and an alkenoic acid, tiglic acid, in dichloromethane solvent have been observed by FTIR spectroscopy. Both the OH and the quinuclidine N atom of CD are involved in the hydrogen bond with the acid molecule(s). Such dual-site modifier–reactant interactions play an important role in the enantioselective hydrogenation of alkenoic acids over CD-modified Pd catalysts. The stability of these 1 ∶ 1 and 1 ∶ 2 complexes has been probed by addition of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), a stronger base than CD. DBU builds ion pairs with the acid (with 1 ∶ 1 and 1 ∶ 2 stoichiometry) and a hydrogen bond with the OH of CD. However, despite the large difference in basicity between CD and DBU, 1 ∶ 2 CD ∶ acid complexes can still be detected when more than 0.5 equivalent DBU was added with respect to the acid, at which ratio the enantiomeric excess (ee) drops dramatically. Hence, the molecular structure of CD favours formation of cyclic complexes via a dual-site interaction, which is not possible for DBU ∶ acid complexes, and stabilises 1 ∶ 2 CD ∶ acid species, which are proposed to be responsible for enantiodifferentiation.
The catalytic properties of mesoporous iron oxide–silica aerogels prepared by a sol–gel process combined with ensuing supercritical extraction with CO2 was investigated in the selective oxidation (SCO) of ammonia and the selective reduction (SCR) of NO by ammonia. The main parameters changed in the aerogel preparation were the type of base used as gelation agent, the iron content, and the calcination temperature. The aerogels differed significantly in acidity and iron dispersion. Diffuse reflectance infrared Fourier transform spectroscopy studies of ammonia adsorption at different temperatures revealed that ammonia was bound to Brønsted- and Lewis-type sites, the latter being dominant at 300°C. A fraction of low coordinated Fe2+ sites were probed by NO adsorption measurements. Lewis-type sites were found to be associated with low-coordinated iron sites. Catalytic tests were performed in a continuous fixed-bed reactor in the temperature 210–550°C range and at ambient pressure. The catalytic activity of the aerogels in SCO correlated with the abundance of more strongly bound ammonia adsorbed on Lewis sites (low coordinated iron). High selectivity to nitrogen (97%) could be reached up to 500°C, whereas at higher temperature the formation of N2O and NO became significant. The apparent activation energy of N2 formation ranged from 69 to 94 kJ/mol, whereby catalysts with higher selectivity and activity showed lower activation energy. In SCR, selectivity to nitrogen was for all aerogels >98% at T<460°C, and activation energies varied from 38 to 53 kJ/mol. The catalytic activity for SCR did not correlate with the population density of Lewis sites. We propose that SCO predominantly occurs on Lewis sites consisting of highly dispersed iron atoms of low coordination, whereas in SCR these sites do not play an important role.
Reactions of gas phase H atoms with ethylene, acetylene and ethane adsorbed on Ni(111)
, T.R. Trautman, M. Gostein, D.L. Lahr, K.L. Haug and S.T. Ceyer Surface Science, 501 (1-2) (2002), p49-73 Keywords: Electron energy loss spectroscopy (EELS); Chemisorption; Physical adsorption; Surface chemical reaction; Nickel; Alkanes; Alkenes; Alkynes
DOI:10.1016/S0039-6028%2801%2901755-1 | unige:14879 | Article HTML | Article PDF
The products of the reaction of the most energetic form of hydrogen, gas phase H atoms, with ethylene, acetylene and ethane adsorbed on a Ni(1 1 1) surface at 60 K are probed. Adsorbed ethylidyne (CCH3) is identified by high resolution electron energy loss spectroscopy to be the major product (30% yield) in all three cases. Adsorbed acetylene is a minor product (3% yield) and arises as a consequence of a dynamic equilibrium between CCH3 and C2H2 in the presence of gas phase H atoms. The observation of the same product for the reaction of H atoms with all three hydrocarbons implies that CCH3 is the most stable C2 species in the presence of coadsorbed hydrogen. The rates of CCH3 production are measured as a function of the time of exposure of H atoms to each hydrocarbon. A simple kinetic model treating each reaction as a pseudo-first order reaction in the hydrocarbon coverage is fit to these data. A mechanism for the formation of CCH3 via a CHCH2 intermediate common to all three reactants is proposed to describe this model. The observed instability of the CH2CH3 species relative to C2H4 plays a role in the formulation of this mechanism as does the observed stability of CHCH2 species in the presence of coadsorbed hydrogen. The CH2CH3 and the CHCH2 species are produced by the translational activation of ethane and the dissociative ionization of ethane and ethylene, respectively. In addition, the binding energy and the vibrational spectrum of ethane adsorbed on Ni(1 1 1) are determined and exceptionally high resolution vibrational spectra of adsorbed ethylene and acetylene are presented.
Iron oxide aerogels were synthesized from tetramethoxysilicon(IV) (TMOS) or tetraethoxysilicon(IV) (TEOS) and iron nitrate using an acid-catalyzed solution–sol–gel method combined with subsequent extraction of the alcoholic solvent with supercritical CO2. The main parameters varied in the sol–gel synthesis were: the type of N-base used as the gelation agent (N,N-diethylaniline, trihexylamine, ammonium carbonate, ammonia), the concentration of the iron precursor, and the water content. The silicon precursor was prehydrolyzed to improve its reactivity. After calcination at 600 °C, the structural and chemical properties of the aerogels containing 0–20wt% nominal Fe2O3 were characterized by means of nitrogen adsorption, X-ray diffraction (XRD), transmission and scanning electron microscopy, temperature programmed reduction, X-ray photoelectron spectroscopy (XPS), UV-Vis, DRIFT and EPR spectroscopy. XRD and electron microscopy indicated that all aerogels were amorphous, irrespective of the sol–gel conditions used. The aerogels were predominantly mesoporous, with pore size maxima ranging between 20–50 nm, but also exhibited some microporosity. For the 10 wt% iron oxide samples, the specific pore volumes ranged from 0.7 to 2 cm3 g−1 and BET-surface areas from 150 to 636 m2 g−1, depending on conditions. With increasing iron content, the BET surface area decreased from 740 to 340 m2 g−1, accompanied by increasing microporosity. XPS revealed significant silicon enrichment on the surface. Spectroscopic investigations (UV-Vis, EPR) uncovered different iron-containing species, ranging from tetrahedrally coordinated iron atoms incorporated in the silica matrix to iron oxide nanoclusters. Formation of isolated iron atoms was favored with low iron content samples. The N-base used to force gelation had a significant effect on the morphology and population density of Fe(OH)Si in the aerogels.
The influence of acetic acid (AcOH) and trifluoroacetic acid (TFA) on the hydrogenation of ethyl-4,4,4-trifluoroacetoacetate has been investigated by using Pt/Al2O3 modified by cinchonidine and O-methylcinchonidine. We have shown that the sometimes dramatic changes in enantioselectivity and rate cannot simply be interpreted by protonation of the alkaloid modifier. We propose a new three-step reaction pathway, involving interaction of the carboxylic acid with the reactant and the chiral modifier. The mechanism is supported by IR spectroscopic identification of cyclic TFA–modifier ion pairs. This new approach can rationalise the poorly understood role of acids in the enantioselective hydrogenation of activated ketones over cinchona-modified platinum metals.
Manganese oxide–silica mixed oxide aerogels with different morphological and chemical properties were prepared using the sol–gel method and ensuing extraction of the solvent with supercritical CO2. Two types of manganese precursor, varying hydrolysis conditions of the silica and manganese precursors, influence of base addition for gelation, and calcination temperatures were investigated. Base addition had a strong effect on textural properties, producing high-surface-area, mesoporous aerogels, whereas these properties were only marginally affected by kind of manganese precursor used. The presence of different manganese oxide species was evidenced by X-ray diffraction, Raman and diffuse reflectance infrared Fourier transform spectroscopy, and temperature-programmed reduction. Mn4+, Mn3+, and Mn2+ oxide species were found after calcination at 600°C in air. Sol–gel processing with manganese(II) nitrate resulted in highly dispersed mixed oxides. Basic gelation of these sols strongly influenced the state of the manganese, leading to crystallites of hausmannite and to amorphous Mn5O8 in the calcined samples. Aerogels derived from the less reactive Mn(III) (acac)3 did not contain any manganese oxide crystallites when prepared under the same basic conditions. The catalytic performance of the aerogels in the selective oxidation of ammonia strongly depended on the state of the manganese. Samples containing crystalline Mn3O4 were more active than amorphous aerogels with dispersed manganese oxide species and afforded high selectivity to N2O. The presence of amorphous Mn5O8 further increased the activity and the selectivity to nitrous oxide, reaching 74% at 360°C. Nitrogen formation was found to be related to the amount of strongly Lewis-bound ammonia. The amorphous aerogels showing more Lewis-bound ammonia produced mainly nitrogen below 480°C, affording a selectivity of 78% at 360°C.
The origin of the rate acceleration in enantioselective hydrogenation of α-functionalised ketones over cinchona alkaloid modified platinum has been studied using a combined experimental and theoretical approach, and the rate acceleration is traced to a lowering of the energy of the carbonyl π orbitals in the diastereomeric complex formed between reactant and modifier.
Relation between electronic structure of a-substituted ketones and their reactivity in racemic and enantioselective platinum-catalyzed hydrogenation
A. Vargas, , M. Von Arx, R. Hess and A. Baiker Journal of Catalysis, 209 (2) (2002), p489-500
DOI:10.1006/jcat.2002.3653 | unige:14734 | Article HTML | Article PDF
The relation between the electronic structure of α-substituted ketones and their reactivity in the racemic and enantioselective platinum-catalyzed hydrogenation has been investigated using a combined theoretical and experimental approach. A correlation between the keto carbonyl orbital energy and the hydrogenation rate has been found, which rationalizes the effect of the substituent on the rate of hydrogenation. The uncovered relationship between the keto carbonyl orbital energy and the hydrogenation rate provides a rational explanation for the often observed rate acceleration that occurs when cinchona-modified platinum is used as a enantioselective hydrogenation catalyst. The previously suggested model for enantiodiscrimination based on the different stability of the diastereomeric complexes formed between the reactant and the cinchona modifier is discussed in the light of the new kinetic findings.
Vibrational circular dichroism (VCD) spectra of the chiral modifiers cinchonidine, an alkaloid, and (R)-2-(pyrrolidin-1-yl)-1-(1-naphthyl)ethanol (PNE) were measured and simulated. For cinchonidine independent information from NMR investigations on the distribution of conformers was used to simulate VCD spectra from calculated spectra of the individual conformers. Agreement with experiment is reasonably good. For the structurally similar synthetic modifier PNE VCD spectra show that an open conformer predominates in solution. The difference between the most stable conformers of cinchonidine and PNE in solution is the intramolecular hydrogen bond found in the latter, which forms due to the enhanced flexibility of the pyrrolidinyl moiety in PNE as compared to the quinuclidine moiety in cinchonidine. The similar enantiodifferentiating power of cinchonidine and PNE as chiral modifiers in the heterogeneous enantioselective hydrogenation of ethyl pyruvate indicates that the rigidity of this part of the molecule is not a prerequisite for enantioselection. It is furthermore shown that binding of a non-chiral carboxylic acid to the alkaloid induces VCD in vibrations associated with the acid. Observation of this induced VCD allows probing of the chiral binding site.
Pd/Al2O3 model catalysts have been prepared by physical vapour deposition and characterised by means of XPS, STM, and in situ ATR–IR spectroscopy. Morphological changes in the Pd film induced by dissolved hydrogen leads to enhanced infrared absorption and could be followed with both STM measurements and IR spectroscopy. Adsorption of CO, pyridine, quinoline, 2-methylquinoline, and the chiral auxiliary cinchonidine has been studied in situ at 283 K in CH2Cl2 solvent. Two different species have been observed for cinchonidine on Pd. One is oriented with the quinoline moiety nearly parallel to the Pd surface, likely through the π-system, whereas in the second the σ-bonding through the N lone pair prevails and induces a tilting of the ring with respect to Pd. No indication of the presence of α-quinolyl species has been found, in contrast to adsorption on Pt/Al2O3 catalysts. Compared to adsorption on Pt, cinchonidine is more weakly bound on Pd under hydrogenation conditions. Also, the relative stability of the π- and N lone pair-bonded species is different for the two metals, with the π-bonded species being relatively more stable on Pt. Similarities and differences found in the adsorption of the chiral modifier on the two metals are discussed and traced mainly to the different d-orbital diffuseness of Pd and Pt.
The mechanism of alcohol oxidation was investigated using the conversion of cinnamyl alcohol (1) over Pd-based catalysts as a sensitive test reaction. Studies in a slurry reactor revealed that dehydrogenation and oxidative dehydrogenation of 1 follow the same reaction pathways independent of the presence or absence of oxygen and reaction conditions. Hydrogenation and hydrogenolysis side reactions indicated the presence of hydrogen on the metal surface during reactions. Catalyst deactivation in Ar is attributed to decarbonylation reactions and site blocking by CO. Introduction of molecular oxygen induced a dramatic enhancement of alcohol conversion rate by a factor of up to 285 due to oxidative removal of CO. Strong adsorption of CO on Pd/Al2O3 and its rapid removal by oxygen were corroborated by in situ ATR-IR spectroscopy. All these observations conform to a model according to which oxidation of 1 follows the classical dehydrogenation mechanism, and the key role of oxygen is the continuous oxidative removal of CO and other degradation products from the active sites. This oxidative cleaning of the metal surface allows a high rate of alcohol dehydrogenation even when the oxidation of the co-product hydrogen is slow and incomplete. It is likely that the observed effects are not limited to the oxidation of 1 on Pd, and regeneration of the active sites by oxygen generally plays an important role during aerobic oxidation of alcohols on platinum metals.
The potential of modulation excitation spectroscopy and phase-sensitive detection in combination with attenuated total reflection (ATR) for in situ infrared spectroscopy of catalytic solid−liquid interfaces is demonstrated. The method is based on the periodic variation of an external parameter such as reactant concentration. The periodically varying signals are subsequently demodulated using a phase-sensitive detection scheme. In this way, the small periodically varying signals are separated from the large static ones, yielding high quality difference spectra. Species, which have different response to the excitation, i.e., species with different kinetics, can easily be separated in the spectra. The method is applied to the enantioselective hydrogenation of 4-methoxy-6-methyl-2-pyrone over a 5 wt % Pd/TiO2 powder catalyst modified by cinchonidine. Upon modulation of the reactant concentration, the ATR spectra exhibit varying signals from dissolved reactant, product as well as from adsorbed species. Part of the signals are associated with carboxylates adsorbed on the TiO2. The kinetics of these species are distinctly different from the one of the primary hydrogenation product. The carboxylates are formed from alcoholysis of the lactone, which is obtained by a second hydrogenation step. The enantiomeric excess was also measured phase sensitive. Its time dependence indicates a negative influence of the carboxylates on enantioselection.
The adsorption of carboxylic acids (formic, acetic, and pyruvic acid) from corresponding solutions in CH2Cl2 solvent on Al2O3 and TiO2 thin films has been studied by attenuated total reflection infrared spectroscopy. The metal-oxide films were vapor-deposited on a Ge internal reflection element, which was mounted into a specially designed flow cell. The system allowed in situ monitoring of the processes occurring at the solid-liquid interface. The metal-oxide films were characterized by X-ray photoelectron spectroscopy, ellipsometry, and atomic force microscopy. Formic acid and acetic acid adsorbed predominantly as bridging species on alumina surfaces. Adsorbed free acids were not observed under a flow of neat solvent. Based on the position of the νAS(COO) and of the keto-group stretching vibration of the pyruvate ion, pyruvic acid is proposed to coordinate to the Al2O3 surface in a monodentate fashion, whereas, on TiO2, a bidentate species is preferred. Comparison of the adsorption behavior on the vapor-deposited alumina film and on an α-Al2O3 layer deposited from a water suspension of the corresponding metal-oxide powder indicated that pyruvic acid adsorbs in a similar mode, irrespective of the metal-oxide deposition technique.
2001
ATR spectroscopy of thin films
U.P. Fringeli, D. Baurecht, M. Siam, G. Reiter, M. Schwarzott, and P. Brüesch
in "Handbook of thin film materials, Volume 2: Characterization and spectroscopy of thin films"
H. S. Nalwa, Academic Press, London,
(2001) Article HTML
Model of reactant-modifier interaction in enantioselective hydrogenation of ethyl pyruvate on platinum-cinchona catalyst: Extension to synthetic chiral modifiers
A. Vargas, and A. Baiker Journal of Catalysis, 197 (2) (2001), p378-384
DOI:10.1006/jcat.2000.3109 | unige:14733 | Abstract | Article PDF
The previously proposed model for reactant–modifier interaction in the enantioselective hydrogenation of activated carbonyl compounds over platinum chirally modified by cinchona alkaloids has been extended to platinum modified by synthetic pyrrolidinyl–naphthyl–ethanol modifiers. As in the case of cinchonidine, the most used modifier, the model predicts enantiomeric excess in nearly quantitative agreement with experiment. Excellent agreement is achieved despite the fact that structural assumptions had to be made and the platinum surface was not explicitly taken into account. The one-to-one interaction between modifier and reactant was calculated at the ab initio level. A comparison of the results for different modifiers leads to the conclusion that steric repulsion caused by the anchoring group plays an important role in the enantiodifferentiating interaction. The favoured formation of the (R)-product is traced to the fact that the pro-(S) complex leading to the (S)-product upon hydrogenation is more destabilised due to repulsive interaction than the pro-(R) complex. The model calculations are a useful tool for designing effective modifiers and for gaining insight into the mechanism of enantiodifferentiation.
The sulfidation behavior of alumina-supported W catalysts was investigated by means of temperature-programmed sulfidation, quick extended X-ray adsorption fine structure measurements, and X-ray photoelectron spectroscopy of two series of tungsten catalysts, one made from ammonium metatungstate and the other from ammonium tetrathiotungstate. The effect of the fluorination of the alumina support on the sulfidation behavior of W on these two series of catalysts was also studied. The sulfidation of catalysts prepared with ammonium metatungstate passes through intermediates of W oxysulfides; the sulfided catalysts are mixtures of W oxysulfides and WS2. After sulfidation at 400°C and atmospheric pressure for 4 h, the degree of sulfidation is only about 50%. Fluorination slightly increases the degree of sulfidation. When ammonium tetrathiotungstate is used as the precursor, fully sulfided catalysts can be obtained. Fluorination accelerates the transformation of WS3 sulfide to WS2.
Platinum particles supported on graphite have been investigated by scanning tunneling microscopy (STM). For one monolayer thick Pt particles the individual Pt atoms form a characteristic intensity pattern due to a mismatch between the Pt and graphite lattice. Based on density functional theory calculations and model structures of Pt on graphite it is argued that the observed STM imaging contrast has its origin in the tip induced elastic deformation of the graphite underneath the Pt particle. The Pt–graphite potential is much stiffer than the graphite–graphite potential. The calculations furthermore indicate that Pt adsorption is favored over top rather than hole sites and that the barrier for diffusion is very low.
Nondestructive immobilization of cobalt and copper Schiff base complexes in silica aero- and xerogels was achieved via the sol−gel method using a precursor N,N‘-ethylenebis(salicylidenaminato) (salen) ligand modified with pendant silyl ethoxy groups. Aerogels were obtained by semicontinuous extraction of the wet gels with supercritical CO2 and xerogels by conventional drying. Cobalt and copper(salen) containing silica gels were characterized by FTIR, UV−vis, and XPS spectroscopy, laser ablation-ICP-MS, and EPR studies. Aero- and xerogel incorporated salen compounds exhibited similar spectroscopic properties to cobalt/copper(salen) precursors and known metal(salen) compounds. BET measurements confirmed the importance of supercritical CO2 drying in maintaining the mesoporous structure of the aerogel. Laser ablation-ICP-MS and EPR studies of the aerogels showed that a uniform distribution of the isolated metal(salen) complex was achieved via molecular mixing using the sol−gel method. Stability of these materials was demonstrated by thermogravimetric analyses in air and leaching studies conducted under typical liquid-phase oxidation conditions. XPS analyses showed surface relative atomic concentrations in the modified gels to be similar before and following leaching studies.
Enantioselective hydrogenation of the pseudo-aromatic 4-hydroxy-6-methyl-2-pyrone to the corresponding 5,6-dihydropyrone has been studied over cinchonidine-modified Pd/Al2O3 and Pd/TiO2 catalysts. A mechanistic model for enantiodifferentiation is proposed, involving two H-bond interactions (N–H···O and O–H···O) between the deprotonated reactant and the protonated chiral modifier. The model can rationalize (i) the sense of enantiodifferentiation, i.e., the formation of (S)-product in the presence of cinchonidine as modifier; (ii) the complete loss of enantioselectivity when the acidic OH group of the reactant is deprotonated by a base stronger than the quinuclidine N of the alkaloid; and (iii) the poor enantiomeric excesses obtained in good H-bond donor or acceptor solvents. NMR and FTIR investigations, and ab initio calculations, of reactant–modifier interactions support the suggested model. Several factors, such as catalyst prereduction conditions, trace amounts of water, presence of strong bases and acids, and competing hydrogenation of acetonitrile to ethylamines, were found to affect the efficiency of this catalytic system.
Model platinum catalysts have been designed to study the platinum−solvent interface in situ using attenuated total reflection (ATR) infrared spectroscopy. Pt and Pt/Al2O3 thin films were evaporated on a Ge internal reflection element (IRE) and characterized by XRD, XPS, AFM, STM, and IR spectroscopy. Changes within the adsorbate layer of the Pt catalyst during cleaning with O2 and H2 were followed. After cleaning, the catalyst surface was probed by CO adsorption from CH2Cl2. For the Pt/Al2O3 film the spectrum of adsorbed CO showed a band at 2000 cm-1, which is typical for Pt/Al2O3 catalysts. The stretching vibration of linearly bonded CO exhibited a coverage-dependent frequency shift due to vibrational coupling, thus showing the existence of large clean domains on the reactive catalyst surface even in the presence of an organic solvent. CO adsorption from CH2Cl2 was slow before the cleaning process. However, subsequent admission of H2 resulted in an instantaneous and drastic increase of the CO absorption signal. The origin of this effect is a structural change of the Pt particles induced by dissolved hydrogen, which was directly monitored by ATR spectroscopy using CO as probe molecule. STM investigations showed sintering of the Pt particles upon hydrogen treatment in CH2Cl2 at room temperature, which leads to a surface-enhanced infrared absorption (SEIRA).
The sulfidation behavior of alumina-supported Ni–W catalysts was investigated by means of temperature-programmed sulfidation (TPS), X-ray photoelectron spectroscopy (XPS), quick extended X-ray absorption fine structure (QEXAFS), and X-ray absorption near-edge structure spectroscopy (XANES). Either ammonium tetrathiotungstate or ammonium metatungstate was used as the precursor of tungsten, and nickel nitrate was the source of nickel. The effect of fluorination of the alumina support on the sulfidation behavior of tungsten and nickel on these two series of catalysts was studied as well. The sulfidation of the catalysts prepared from ammonium metatungstate passes through W(VI) oxysulfide intermediates. Fluorination of the alumina support aids the sulfidation of tungsten and nickel at low temperature and promotes the transformation of the W(VI) oxysulfide intermediates to WS2. After sulfidation at 400°C and atmospheric pressure for 4 h, about 50% of tungsten and 60% of nickel in the catalysts prepared from ammonium metatungstate were sulfided. EXAFS showed that ammonium tetrathiotungstate supported on alumina decomposes to oxidic tungsten during the second impregnation with nickel nitrate. Nevertherless, sulfidation of the catalysts prepared from ammonium tetrathiotungstate is much easier. It also passes through W(VI) oxysulfide intermediates, and fluorination aids the formation WS2. In the sulfided catalysts prepared from ammonium tetrathiotungstate and nickel nitrate, 100% of tungsten and nickel is in the sulfided state, but a small amount of tungsten is in a {WS3} state, with fully sulfided W(VI), rather than in the WS2 state. The fluorine-containing catalyst contains a larger fraction of WS2 than the fluorine-free catalyst.
ATR-IR spectroscopy at the metal-liquid interface: Influence of film properties on anomalous band-shape
Attenuated total reflection (ATR) spectra of adsorbates and solvent on thin metal films were investigated with emphasis on the band-shape of absorption bands. Distorted band-shapes are found even far from the critical angle. Strong absorption bands are more distorted. The band-shape strongly depends on the optical constants of the metal film and its thickness. The distortion increases with increasing thickness and increasing refractive index of the thin metal film. For a 10 nm thick Pt film the measured band-shapes for liquid water and ethanol are in good agreement with theoretical predictions using the bulk optical constants for Pt. For CO adsorbed on a 1 nm Pt film a distorted band-shape is observed whereas calculations assuming bulk optical constants predict band-shape distortion only for considerably thicker Pt films. The effective optical constants for very thin metal films deviate considerably from the bulk values, due to the island structure of the film and non-adiabatic effects can lead to distorted band-shapes. Structural changes within a Pt film, induced by hydrogen treatment, leads to a change in the band-shape for adsorbed CO. The results show that band-shape analysis is a valuable tool for in situ ATR IR spectroscopy of metal films.
Chiral modification of platinum catalysts by cinchonidine adsorption studied by in situ ATR-IR spectroscopy
D. Ferri, and A. Baiker ChemComm, (2001), p1172-1173
DOI:10.1039/b102884g | Abstract | Article HTML | Article PDF
Adsorption of cinchonidine on a platinum model catalyst studied by in situ ATR-IR spectroscopy revealed that the adsorption mode depends on surface coverage and is affected by concomitant adsorption and fragmentation of solvent molecules.
Base-catalyzed H/D-exchange for α- and β-isophorone (1 and 2, resp.) was monitored by NMR spectroscopy to identify the number and nature of reactive sites. Results show that α-isophorone (1) undergoes H/D exchange at up to four different sites depending on reaction conditions. β-Isophorone (2), on the other hand, exhibits activity at two sites, predominantly at the α-position, under comparable conditions. Quantum-chemical calculations indicate that the thermodynamically more-stable anions formed upon proton abstraction from isophorone are not favored kinetically in all cases. Thermodynamically unfavorable H/D-exchange at the α-position in 1, which is observed experimentally, is explained via intermediate formation of γ-isophorone (3) with subsequent conjugation to the α-isomer. Differences observed in the reactivities of the two isomers and differences in reactivity of 1 under various conditions in reactions involving proton abstraction as an initial step may be partly explained on the basis of these results.
The reactions of hydrogen atoms adsorbed on a Ni(111) surface (surface-bound H) and hydrogen atoms just below the surface (bulk H) with coadsorbed acetylene are probed under ultrahigh vacuum conditions. Bulk H is observed to react with acetylene upon emerging onto the surface at 180 K. Gas-phase hydrogenation products, ethylene and ethane, are produced as well as an adsorbed species, ethylidyne. Ethylidyne is identified by high-resolution electron energy loss spectroscopy. Surface-bound H reacts with adsorbed acetylene above 250 K to produce a single product, adsorbed ethylidyne. No gas-phase hydrogenation products, such as ethylene or ethane, are observed. The reaction of surface-bound H is extremely slow, with a rate constant determined from measurements of the initial reaction rate to be in the range of 10-5−10-3 (ML s)-1 for a temperature range of 250−280 K. The activation energy for the rate-determining step, which is shown to be the addition of the first surface-bound H to acetylene to form an adsorbed vinyl species, increases from 9 to 17 kcal/mol as the total coverage decreases from 0.92 to 0.74 ML. The reaction rate cannot be described by a simple first-order dependence on the coverage of either reactant, indicating the presence of strong interactions between reactants. Measurements of the equilibrium constant reveal strong interactions between the reactant surface H and the product ethylidyne, possibly resulting in island formation. Mechanisms for the formation of ethylidyne by the reactions of both surface-bound and bulk H are proposed, as well as mechanisms for the formation of ethylene and ethane by bulk H. The different product distributions resulting from the reaction of acetylene with the two forms of hydrogen are discussed in terms of the large energy difference between bulk and surface-bound H.
An in situ attenuated total reflection study of the chiral solid−liquid interface created by cinchonidine adsorption on a Pt/Al2O3 model catalyst is presented. Experiments were performed in the presence of dissolved hydrogen, that is under conditions used for the heterogeneous enantioselective hydrogenation of α-functionalized ketones. Cinchonidine adsorbs via the quinoline moiety. The adsorption mode is coverage dependent and several species coexist on the surface. At low concentration (10-6M) a predominantly flat adsorption mode prevails. At increasing coverage two different tilted species, α-H abstracted and N lone pair bonded cinchonidine, are observed. The latter is only weakly bound and in a fast dynamic equilibrium with dissolved cinchonidine. At high concentration (10-4−10-3 M) all three species coexist on the Pt surface. A slow transition from an adsorbate layer with a high fraction of α-H abstracted cinchonidine to one with a high fraction of N lone pair bonded cinchonidine is observed with the cinchonidine concentration being the driving force for the process. The reverse transition in the absence of dissolved cinchonidine is fast. Cinchonidine competes with solvent decomposition products for adsorption sites on the Pt, which may contribute to the observed solvent dependence of the heterogeneous enantioselective hydrogenation of ketones by cinchonidine-modified Pt.
A series of titania–silica aerogels with 0–100 wt% TiO2 content were synthesized and characterized by N2 physisorption, DRIFT, UV-Vis, XPS, and 29Si CP/MAS NMR analysis. It is shown that kinetic analysis of the epoxidation of 2-cyclohexene-1-ol (1) with TBHP is an informative test reaction providing insight in the nature of active sites. The surface area, pore volume, hydrophobicity, and relative abundance of Ti–O–Si linkages in the aerogels decreased with increasing Ti/Si ratio. Parallel to these changes, the initial rate of epoxide formation per Ti site (TOF) and the epoxide selectivity decreased but the productivity of the catalysts went through a maximum at 10 wt% TiO2. We propose that due to kinetic effects in the sol–gel synthesis the whole range of active Ti sites may be present in the mixed oxides, spanning from tetrahedral Ti isolated by four SiO groups to octahedral Ti surrounded by six TiO groups in titania nanodomains. Ether formation from 1 was catalyzed by Brønsted sites present only on high titania-containing aerogels. Oligomerization was a major side reaction on all catalysts including Ti-free silica. Si-free titania was the most active in allylic oxidation of 1 to cyclohexenone. Silylation, or amine (Me2BuN) addition to the reaction mixture, eliminated ether formation and suppressed oligomerization.
Ternary V2O5–WO3/TiO2 catalysts were prepared by sequential or simultaneous grafting steps of vanadia and tungsta onto titania and were compared with similarly prepared binary catalysts. Different grafting sequences including alternating grafting of vanadia and tungsta were compared.
During the grafting process the metal oxide precursor reacted with hydroxyl groups of the other grafted metal oxide. The interaction of vanadia with tungsta species resulted in a different reduction behavior of both metal oxides compared to the binary catalysts as indicated by temperature-programmed reduction with hydrogen. The strength of interaction of the grafted species depended on preparation sequence and metal loading.
At low coverage (‹monolayer) catalyst properties were found to depend strongly on loading, but relatively little on the grafting mode, as indicated by vibrational spectroscopy. Laser Raman experiments at different laser power revealed reversible effects due to temperature induced structural changes of surface vanadia species. For all catalysts, even at a loading of more than one and a half monolayers, no evidence of crystalline vanadia or tungsta could be found. After calcination of WO3/TiO2 catalyst at 1023 K instead of 573 K and subsequent grafting with vanadia, new species with hydroxyl groups showing a vibrational frequency below 3600 cm−1 were formed. The increase of the calcination temperature had no significant influence on the reduction of vanadia by hydrogen.
The conformational behaviour of several α-ketoesters was investigated using solution FTIR in combination with ab initio calculations. The α-ketoesters show marked differences in the O=C–C=O torsional potential energy surface depending on the substituent at the α-keto group. In general the torsional potential is characterised by broad minima corresponding to s-cis and s-trans conformations and low interconversion barriers. The s-trans conformation is more stable but the fraction of s-cis is considerable at room temperature and increases with solvent polarity due to the higher dipole moment of the latter. Hydrogen bonding with alcoholic solvents also leads to a stabilisation of the s-cis conformer. The interaction of ethyl pyruvate with R3N+–H is much stronger when ethyl pyruvate adopts an s-cis conformation due to strong ion–dipole interaction. This type of interaction between ethyl pyruvate and protonated cinchonidine is considered to be crucial for the enantio-differentiation in the heterogeneous enantioselective hydrogenation of ethyl pyruvate over cinchonidine modified platinum in acidic media.
Enhanced enantioselectivity in ethyl pyruvate hydrogenation due to competing enantioselective aldol reaction catalyzed by cinchonidine
D. Ferri, , K. Borszeky, T. Mallat and A. Baiker Journal of Catalysis, 193 (1) (2000), p139-144
DOI:10.1006/jcat.2000.2870 | unige:14698 | Abstract | Article PDF
IR and NMR experiments revealed that the enantioselective hydrogenation of ethyl pyruvate in nonacidic solvents is complicated by the simultaneously occurring self-condensation (aldol reaction) of the reactant. Both enantioselective reactions are catalyzed by the chiral base cinchona alkaloid, but the hydrogenation is faster by several orders of magnitude than the aldol reaction. Catalytic experiments proved that the aldol products are not spectator species. The enol form of the major aldol product protonates the quinuclidine N of cinchonidine and enhances the enantiomeric excess of the hydrogenation reaction. The significance of this observation with respect to kinetic and mechanistic studies is discussed.
Adsorption mode of ethyl pyruvate on platinum: An in situ XANES study
, F. Atamny, A. Knop-Gericke, M. Hävecker, T. Schedel-Niedrig, R. Schlögl and A. Baiker Catalysis Letters, 66 (3) (2000), p109-112 Keywords: ethyl pyruvate; in situ XANES; enantioselective hydrogenation; platinum
DOI:10.1023/A:1019047622959 | unige:14638 | Abstract | Article HTML | Article PDF
The adsorption of ethyl pyruvate on Pt(111) has been studied by in situ XANES measurements in the presence and absence of hydrogen. Depending on the hydrogen and ethyl pyruvate pressure, the C and O K‐edge spectra exhibit distinctly different angular dependence. Without hydrogen ethyl pyruvate is oriented preferentially perpendicular to the surface, indicating bonding via the O lone pairs. In the presence of hydrogen the mean orientation is more tilted towards the surface. Likely, ethyl pyruvate also interacts with Pt via its π system under these conditions. The observed angle‐dependent shift of the energy of the π* and σ* resonances indicates the coexistence of differently adsorbed ethyl pyruvate species. The experimental findings demonstrate the importance of the in situ approach for unraveling the adsorption mode of ethyl pyruvate in the enantioselective hydrogenation over cinchona‐alkaloid‐modified Pt.
The adsorption of ethyl pyruvate on Pt(111) at low temperature was investigated by XP and UP spectroscopy. The assignment of the photoelectron spectra was assisted by calculation of correlated ionization potentials. Comparison of the XP and UP spectra of the condensed and chemisorbed layer indicates a strong ethyl pyruvate adsorption bond in the latter. Upon chemisorption, the HOMO of ethyl pyruvate, which is a lone-pair orbital delocalized over both C=O groups, is stabilized by about 0.7 eV with respect to the other orbitals, which is characteristic for a lone-pair bonding mechanism. The same bonding mechanism was found for coverages far below saturation. The XP spectra further indicate that the ketone C=O is more strongly involved in the chemisorption bond than the carboxyl C=O of ethyl pyruvate. The packing density of the saturated chemisorbed ethyl pyruvate layer, as determined by XPS, is high. This points toward an upright or tilted orientation of ethyl pyruvate in this layer, in line with the observed bonding mechanism.
Interaction complexes between cinchonidine modifier and methyl pyruvate reactant proposed for the enantioselective hydrogenation over platinum catalysts have been calculated using ab initio methods. For s-trans-methyl pyruvate it was found that the complex yielding (R)-methyl lactate upon hydrogenation was more stable than the corresponding pro-(S) complex. The calculated energy difference of 1.8 kcal/mol corresponds to an enantiomeric excess of 92%, in good agreement with experiment. For the analogous complexes of s-cis-methyl pyruvate the energy difference is only 0.2 kcal/mol in favour of pro-(R), corresponding to 17% enantiomeric excess. Due to the larger dipole moment of the s-cis conformer of methyl pyruvate its hydrogen-bonded complexes with cinchonidine are considerably more stable than the corresponding s-trans complexes. However, the predicted low enantiomeric excess for the s-cis conformer is in contrast with experiment. Possible reasons for this behaviour are discussed.
1999
Cobalt-catalyzed amination of 1,3-propanediol. Effects of catalyst promotion and use of supercritical ammonia as solvent and reactant
A. Fischer, M. Maciejewski, , T. Mallat and A. Baiker Journal of Catalysis, 183 (2) (1999), p373-383
DOI:10.1006/jcat.1999.2408 | unige:14702 | Article PDF
The catalytic synthesis of 1,3-diaminopropane from 1,3-propanediol and ammonia was studied in a continuous fixed-bed reactor in the pressure range 50 to 150 bar. The unsupported Co-based catalysts applied were characterized by N2physisorption, XRD, XPS, TPR, and ammonia adsorption using pulse thermal analysis and DRIFT spectroscopy. The latter investigations revealed that the best catalyst, 95 wt% Co–5 wt% Fe, contained only very weak acidic sites, unable to chemisorb ammonia. The absence of strong acidic and basic sites was crucial to suppress the various acid/base-catalyzed side reactions (retro-aldol reaction, hydrogenolysis, alkylation, disproportionation, dimerization, oligomerization). Other important requirements for improved diaminopropane formation were the use of excess ammonia (molar ratio NH3/diol>20) and the presence of the metastable β-Co phase. A small amount of Fe additive could efficiently hinder the transformation of this phase into the thermodynamically stable α-Co phase and thus prevent catalyst deactivation up to 10 days on stream. Application of supercritical ammonia almost doubled the selectivity to amino alcohol and diamine. The selectivity enhancement in the near-critical region is attributed to elimination of the interphase mass transport limitations and to the resulting higher surface ammonia concentration.
A new modifier, 2-phenyl-9-deoxy-10,11-dihydrocinchonidine, has been synthesized for the enantioselective hydrogenation of ketopantolactone and α-ketoesters over chirally modified Pt/alumina. The results indicate flat adsorption of cinchonidine with the quinoline ring oriented parallel to the surface and, furthermore, give some insight into the conformation of the modifier within the transition state complex. Comparison of the structures and catalytic behaviors of 9-deoxycinchonidine and the new modifier allows to exclude the previously proposed perpendicular or tilted adsorption of the quinoline ring via the N atom.
Cinchona alkaloids play a major role as chiral auxiliaries in asymmetric catalysis. Acetic acid is known to be an excellent solvent in the enantioselective hydrogenation over chirally modified platinum metals. The crucial interaction between the chiral auxiliary and the solvent has been investigated using the cinchonidine–acetic acid pair. Solutions containing cinchonidine and acetic acid were studied by means of NMR and IR spectroscopy as well as by ab initio Hartree–Fock calculations. In the presence of the acid cinchonidine is protonated at the quinuclidine N and adopts an open conformation where the quinuclidine N points away from the quinoline moiety. In the most stable 1∶1 and 2∶1 acetic acid–cinchonidine complexes both the N–H+ and O–H groups of cinchonidine are involved in hydrogen bonding. The most stable 1∶1 complex is found to be cyclic. The relative arrangement of the N–H+ and O–H groups of protonated cinchonidine is ideally suited to bind an acetate anion, and the interaction hardly affects the cinchonidine conformation. Several 2∶1 acid–base complexes coexist in solution. The IR spectra give evidence for the existence of a 2∶1 cyclic complex. Calculated structures, relative energies and vibrational frequencies are in good agreement with the experiment. The findings rationalise the importance of the O–H group of cinchonidine for the enantiodifferentiation in the enantioselective hydrogenation of α,β-unsaturated carboxylic acids over cinchonidine-modified Pd.
Enantioselective hydrogenation of a,b-unsaturated carboxylic acid over cinchonidine modified palladium: Nature of modifier - reactant interaction
K. Borszeky, , Z. Zhaohui, T. Mallat and A. Baiker Journal of Catalysis, 187 (1) (1999), p160-166
DOI:10.1006/jcat.1999.2584 | unige:14693 | Abstract | Article PDF
The mechanism of enantiodifferentiation in the hydrogenation of alkenoic acids over cinchona-modified Pd has been investigated using the tiglic acid → 2-methyl-butanoic acid transformation as test reaction. Application of simple derivatives of cinchonidine, modified at the (C-9)–OH and/or the quinuclidine nitrogen, proved that both functional groups are involved in the enantiodiscriminating step. Addition of a strong base (1,8-diazabicyclo[5.4.0]undec-7-ene, DBU) to tiglic acid prior to hydrogenation revealed that one cinchonidine molecule interacts with a dimer of tiglic acid on the metal surface. Ab initio calculations corroborate the existence of an energetically favored acid dimer–cinchonidine intermediate stabilized by hydrogen bonding, involving both the OH and the quinuclidine nitrogen of cinchonidine.
The interaction of ethylene adsorbed on Ni(111) with gas-phase H atoms has been investigated. The major adsorbed reaction product is identified by high-resolution electron energy loss spectroscopy to be ethylidyne (C−CH3). This study is the first direct spectroscopic observation of a C−CH3 species adsorbed on Ni in an ultrahigh-vacuum environment. Spectra of four isotopomers, C−CH3, 13C−13CH3, C−CD3, and 13C−13CD3, are reported, and a complete and consistent vibrational assignment of their fundamental modes is presented. Based on this assignment, a force field is derived from the measured vibrational frequencies using a normal-modes analysis and is found to be in good agreement with that deduced from IR spectra of an ethylidyne species in an organometallic complex. Inspection of the eigenvectors of the normal-mode displacements reveals that substantial mixing of harmonic bond motions is the origin of the unusual upshift in frequency of the C−C stretching mode upon deuteration. A quantitative determination of the relative dynamic bond dipole moments demonstrates that the changes in intensity and dipole activity of the C−C stretching and symmetric CH3 deformation modes upon deuteration, phenomena common to all C−CD3 spectra, also arise from extensive mixing of bond motions. A detailed analysis of the spectra strongly suggests a C3v or C3 local environment for ethylidyne and a 3-fold hollow adsorption site.
We report that both surface-bound H atoms and bulk H atoms, upon moving out from the bulk of a Ni single crystal to its surface of a (111) orientation, are reactive with adsorbed C2H2, but the two kinds of H atoms have unique product distributions. Both bulk H and surface-bound H react with C2H2 to produce adsorbed ethylidyne, CCH3, while only bulk H hydrogenates C2H2 to gas-phase ethylene and ethane, the products of interest in acetylene hydrogenation catalysis for the purification of ethylene streams. Their distinct reactivities arise from both their different directions of approach to the π orbitals of the unsaturated hydrocarbon and their substantially different energetics. These observations demonstrate that H embedded in the metal catalyst is a reactant in alkyne hydrogenation and is not solely a source of surface-bound H which then reacts with acetylene, as proposed from correlations between the hydrogenation activity of Raney Ni and Pd catalysts and the amount of H absorbed in these catalysts. The reactivities of these two kinds of H atoms are clearly distinguished in this experiment because of the capability to synthesize either bulk H or surface-bound H cleanly in an ultrahigh vacuum environment.
The conformation of cinchonidine in solution has been investigated by NMR techniques as well as theoretically. Three conformers of cinchonidine are shown to be substantially populated at room temperature, Closed(1), Closed(2), and Open(3), with the latter being the most stable in apolar solvents. The stability of the closed conformers relative to that of Open(3), however, increases with solvent polarity. In polar solvents the three conformers have similar energy. The relationship between relative energies and the dielectric constant of the solvent is not linear but resembles the form of an Onsager function. Ab initio and density functional reaction field calculations using cavity shapes determined by an isodensity surface are in good agreement with experiment for solvents which do not show strong specific interaction with cinchonidine. The role of the conformational behavior of cinchonidine is illustrated using the example of the platinum-catalyzed enantioselective hydrogenation of ketopantolactone in different solvents.
Accurate dissociation energies were determined for gas-phase complexes between 1-naphthol and benzene, d6-benzene and cyclohexane, using the stimulated emission pumping resonant two-photon ionization spectroscopy technique in supersonic jets. The dissociation energies obtained for the electronic ground state are surprisingly large being D0 = 5.07±0.07 kcal/mol for 1-naphthol · benzene, 5.08±0.06 kcal/mol for 1-naphthol · d6-benzene, and 6.92±0.03 kcal/mol for 1-naphthol · cyclohexane, respectively. The dissociation energies scale well with the parallel molecular polarizabilities.
1995
Jet spectra of aromatic molecules in hydrogen-bonded microsolvent clusters
A.G. Taylor, and S. Leutwyler
in "Jet Spectroscopy and Molecular Dynamics"
J. M. Hollas and D. Phillips, Blackie academic & professional, London,
(1995) Abstract
An intermolecular potential energy surface was derived for the hydrogen‐bonded water trimer as a function of the three torsional angles ω1, ω2, ω3, for energies up to 1300 cm−1 (3.7 kcal/mol) above the global minimum. The O...O distances and the intramolecular geometry of the H2O molecules are held fixed. This surface is based on the abinitio calculations presented in a companion paper [W. Klopper etal., J. Chem. Phys. 103, 1085 (1995)], which involve very large basis sets and the most extensive treatment of correlation energy for calculations of (H2O)3 so far. The 70 abinitio interaction energies, multiplied by six due to the S6 symmetry of the surface, were fitted using an analytical potential function, with an average error of ≊11 cm−1. This potential provides a rapidly computable analytical expression for use in calculations of torsional eigenfunctions and ‐values and other properties of this cluster. Also given is a classification of the low‐lying torsional wave functions according to nodal properties.
We report a combined spectroscopic and theoretical investigation of the intermolecular vibrations of supersonic jet‐cooled phenol⋅(H2O)3 and d1‐phenol⋅(D2O)3 in the S0 and S1 electronic states. Two‐color resonant two‐photon ionization combined with time‐of‐flight mass spectrometry and dispersed fluorescence emission spectroscopy provided mass‐selective vibronic spectra of both isotopomers in both electronic states. In the S0 state, eleven low‐frequency intermolecular modes were observed for phenol⋅(H2O)3, and seven for the D isotopomer. For the S1 state, several intermolecular vibrational excitations were observed in addition to those previously reported. Abinitio calculations of the cyclic homodromic isomer of phenol⋅(H2O)3 were performed at the Hartree–Fock level. Calculations for the eight possible conformers differing in the position of the ‘‘free’’ O–H bonds with respect to the almost planar H‐bonded ring predict that the ‘‘up–down–up–down’’ conformer is differentially most stable. The calculated structure, rotational constants, normal‐mode eigenvectors, and harmonic frequencies are reported. Combination of theory and experiment allowed an analysis and interpretation of the experimental S0 state vibrational frequencies and isotope shifts.
Mass‐selective ground‐state vibrational spectra of jet‐cooled carbazole⋅R (R=Ne, Ar, Kr, and Xe) van der Waals complexes were obtained by populating ground‐state intra‐ and intermolecular levels via stimulated emission pumping, followed by time delayed resonant two‐photon ionization of the vibrationally hot complex. By tuning the dump laser frequency, S0 state vibrational modes were accessed from ≊200 cm−1 up to the dissociation energy D0. Upon dumping to ground‐state levels above D0, efficient vibrational predissociation of the complexes occurred, allowing us to determine the S0 state van der Waals binding energies very accurately. The D0(S0) values are <214.5±0.5 cm−1 (R=Ne), 530.4±1.5 cm−1 (R=Ar), 687.9±4.0 cm−1 (R=Kr), and 890.8±1.6 cm−1 (R=Xe). In the S1 state, the corresponding binding energies are larger by 9% to 12%, being <222.9±1.0 cm−1, 576.3±1.6 cm−1, 756.4±4.5 cm−1, and 995.8±2.5 cm−1, respectively.
Mass‐selective ground‐state vibronic spectra of molecular van der Waals complexes carbazole⋅S, S=N2, CO, and CH4, were measured by stimulated emission pumping followed by resonant two‐photon ionization of the vibrationally hot complexes. S0‐state vibrational modes were accessed from ≊200 cm−1 up to the ground‐state dissociation limit D0(S0) of the van der Waals bond. Above D0, efficient vibrational predissociation of the complexes occurs, allowing accurate determination of the van der Waals dissociation energies as 627.2±7.9 cm−1 for N2, 716.5±29.8 cm−1 for CO, and 668.6±15.1 cm−1 for CH4. In the S1 excited state, the van der Waals binding energies increase to 678.5±8.0, 879.2±29.9, and 753.8±15.2 cm−1, respectively. The relative increases upon electronic excitation are about 8% and 13% for N2 and CH4, similar to the analogous rare gases Ar and Kr. For CO, the relative increase of van der Waals binding energy is 23%. The differences are primarily due to electrostatic interactions.
Accurate hydrogen-bond dissociation energies were determined for gas-phase hydrogen-bonded complexes between 1-naphthol or 1-naphthol-d3 and H2O, CH3OH, NH3 and ND3, using the stimulated emission pumping-resonant two-photon ionization spectroscopy technique in supersonic jets. The hydrogen-bond dissociation energies obtained for the electronic ground state are D0 = 2035 ± 69 cm−1 for 1-naphthol · H2O, 2645 ± 136 cm−1 for 1-naphthol · CH3OH, 2680 ± 5cm −1 for 1-naphthol · NH3 and 2801 ± 14 cm−1 for 1-naphthol-d3 · ND3, respectively. Upon electronic excitation to the S1 state the binding energies increase by approximately 8%.
A coupled three-dimensional model calculation of the low-frequency large-amplitude intermolecular torsional states in (H2O)3 and (D2O)3 is presented, based on the analytical modEPEN intermolecular potential surface and a three-dimensional discrete variable representation approach. The lowest torsional levels of both (H2O)3 and (D2O)3 lie above the sixfold (upd) torsional barrier. The first eight (eleven) torsions of (H2O)3 ((D2O)3) are pseudorotational states. The ‘radial’ and ‘polar’ torsional fundamental frequencies are predicted at 151 and 160 cm−1 for (D2O)3, and for (H2O)3 at 185.0 and 185.3 cm−1, respectively. Each of these in turn support a ladder of pseudorotational levels.
A spectroscopic study of supersonic jet‐cooled catechol (1,2‐dihydroxybenzene) and its d1‐ and d2‐isotopomers, deuterated at the hydroxy groups, was performed by resonant two‐photon ionization (R2PI) and fluorescence emission techniques, and supplemented by molecular‐beam hole‐burning experiments. The latter prove that one single rotamer of catechol is dominant under molecular beam conditions. The complicated vibrational structure in the S0→S1 spectrum from the 000 band to 400 cm−1 above is not due to three different rotamers, as previously thought, but is due to the excitation of a vibrational progression associated mainly with the torsion of the hydroxy groups. The torsional bands are very prominent in the R2PI spectra, but are weak in the emission spectra. Detailed analysis of the torsional bands was based on a fit to the S1 and S0 state frequencies and the Franck–Condon factors in absorption and emission, using a double‐minimum potential for the S1 state and a harmonic potential for the S0 state. In the S1 state one of the two –O–H torsional mode frequencies is lowered from τ2≊250 to ≊50 cm−1, and the molecule is only quasiplanar with respect to the –O–H torsional coordinates.
Mass-selective ground state vibrational spectroscopy of the jet-cooled carbazole·Ar complex was performed by populating ground-state levels via a pump/dump laser pulse sequence, followed by selective resonant two-photon ionization of the vibrationally relaxed complexes. Intra- and inter-molecular van der Waals modes in the S0 state are measurable with good signal/noise. The ground-state binding energy can be determined by detecting the negative signals resulting from loss of ground-state population via vibrational predissociation of the complex.
The cyclic water trimer shows a fascinating complexity of its intermolecular potential-energy surface as a function of the three intermolecular torsional coordinates: there are six isometric but permutationally distinct minimum-energy structures of C1 symmetry, which can interconvert by torsional motions via six isometric transition states, also of C1 symmetry. A second type of interconversion can occur through different torsional motions via two C3 symmetric transition structures, and a third interconversion type via a planar C3h symmetric transition structure. The equivalence of the six minima is broken if the ‘free’ H atom of one H2O molecule in the cluster is chemically substituted, yielding three distinct conformers, which occur in enantiomeric pairs. Not all three conformers are necessarily locally stable minima; this depends on the substituent. The phenol–(H2O)2, p-cyanophenol–(H2O)2, 1-naphthol–(H2O)2 and 2-naphthol–(H2O)2 clusters, which are the phenyl, p-cyanophenyl and naphthyl derivatives of (H2O)3, were examined by resonant two-photon ionization spectroscopy in supersonic beams. These clusters exhibit S0→ S1 vibronic spectra with very different characteristics. These reflect the number of cluster structures formed, their low-frequency intermolecular vibrations and indirectly give information about the cluster fluxionality.
Extensive abinitio calculations of the phenol⋅H2O complex were performed at the Hartree–Fock level, using the 6‐31G(d,p) and 6‐311++G(d,p) basis sets. Fully energy‐minimized geometries were obtained for (a) the equilibrium structure, which has a translinear H bond and the H2O plane orthogonal to the phenol plane, similar to (H2O)2; (b) the lowest‐energy transition state structure, which is nonplanar (C1 symmetry) and has the H2O moiety rotated by ±90°. The calculated MP2/6‐311G++(d,p) binding energy including basis set superposition error corrections is 6.08 kcal/mol; the barrier for internal rotation around the H bond is only 0.4 kcal/mol. Intra‐ and intermolecular harmonic vibrational frequencies were calculated for a number of different isotopomers of phenol⋅H2O. Anharmonic intermolecular vibrational frequencies were computed for several intermolecular vibrations; anharmonic corrections are very large for the β2 intermolecular wag. Furthermore, the H2O torsion τ around the H‐bond axis, and the β2 mode are strongly anharmonically coupled, and a two‐dimensional τ/β2 potential energy surface was explored. The role of tunneling splitting due to the torsional mode is discussed and tunnel splittings are estimated for the calculated range of barriers. The theoretical studies were complemented by a detailed spectroscopic study of h‐phenol⋅H2O and d‐phenol⋅D2O employing two‐color resonance‐two‐photon ionization and dispersed fluorescence emission techniques, which extends earlier spectroscopic studies of this system. The β1 and β2 wags of both isotopomers in the S0 and S1 electronic states are newly assigned, as well as several other weaker transitions. Tunneling splittings due to the torsional mode may be important in the S0 state in conjunction with the excitation of the intermolecular σ and β2 modes.
A combined experimental and theoretical study of the 2‐naphthol⋅H2O/D2O system was performed. Two different rotamers of 2‐naphthol (2‐hydroxynaphthalene, 2HN) exist with the O–H bond in cis‐ and trans‐position relative to the naphthalene frame. Using Hartree–Fock (HF) calculations with the 6‐31G(d,p) basis set, fully energy‐minimized geometries were computed for both cis‐ and trans‐2HN⋅H2O of (a) the equilibrium structures with trans‐linear H‐bond arrangement and Cs symmetry and (b) the lowest‐energy transition states for H atom exchange on the H2O subunit, which have a nonplanar C1 symmetry. Both equilibrium and transition state structures are similar to the corresponding phenol⋅H2O geometries. The H‐bond stabilization energies with zero point energy corrections included are ≊5.7 kcal/mol for both rotamers, ≊2.3 kcal/mol stronger than for the water dimer, and correspond closely to the binding energy calculated for phenol⋅H2O at the same level of theory. Extension of the aromatic π‐system therefore hardly affects the H‐bonding conditions. The barrier height to internal rotation around the H‐bond only amounts to 0.5 kcal/mol. Harmonic vibrational analysis was carried out at these stationary points on the HF/6‐31G(d,p) potential energy surface with focus on the six intermolecular modes. The potential energy distributions and M‐matrices reflect considerable modescrambling for the deuterated isotopomers. For the a′ intermolecular modes anharmonic corrections to the harmonic frequencies were evaluated. The β2 wag mode shows the largest anharmonic contributions. For the torsional mode τ (H2O H‐atom exchange coordinate) the vibrational level structure in an appropriate periodic potential was calculated. On the experimental side resonant‐two‐photon ionization and dispersed fluorescence emission spectra of 2HN⋅H2O and d‐2HN⋅D2O were measured. A detailed assignment of the bands in the intermolecular frequency range is given, based on the calculations. The predicted and measured vibrational frequencies are compared and differences discussed.
The minimum energy structure of the cyclic water trimer, its stationary points, and rearrangement processes at energies <1 kcal/mol above the global minimum are examined by abinitio molecular orbital theory. Structures corresponding to stationary points are fully optimized at the Hartree–Fock and second‐order Møller–Plesset levels, using the 6‐311++G(d,p) basis; each stationary point is characterized by harmonic vibrational analyses. The lowest energy conformation has two free O–H bonds on one and the third O–H bond on the other side of an approximately equilateral hydrogen‐bonded O...O...O (O3) triangle. The lowest energy rearrangement pathway corresponds to the flipping of one of the two free O–H bonds which are on the same side of the plane across this plane via a transition structure with this O–H bond almost within the O3 plane. Six distinguishable, but isometric transition structures of this type connect six isometric minimum energy structures along a cyclic vibrational‐tunneling path; neighboring minima correspond to enantiomers. The potential energy along this path has C6 symmetry and a very low barrier V6=0.1±0.1 kcal/mol. This implies nearly free pseudorotational interconversion of the six equilibrium structures. The corresponding anharmonic level structure was modeled using an internal rotation Hamiltonian. Two further low‐energy saddle points on the surface are of second and third order; they correspond to crown‐type and planar geometries with C3 and C3h symmetries, respectively. Interconversion tunneling vibrations via these stationary points are also important for the water trimer dynamics. A unified and symmetry‐adapted description of the intermolecular potential energy surface is given in terms of the three flipping coordinates of the O–H bonds. Implications of these results for the interpretation of spectroscopic data are discussed.
Ab initio electronic structure calculations for phenol and the hydrogen-bonded complexes phenol · H2O and d-phenol · D2O were performed at the Hartree-Fock 4-31G and 6-31G** levels. Both phenol and phenol · H2O were fully structure optimized. Based on the minimumenergy structures so obtained, full normal coordinate analyses were carried out. The resulting harmonic frequencies were scaled and compared to available experimental data. The agreement is satisfactory and allows for an assignment of a majority of the bands observed in the experimental spectra. Comparison with previous calculations on (H2O)2 reveals a considerable increase in the strength of the hydrogen bond on going from (H2O)2 to phenol · H2O.