TY - JOUR AU - Lawson Daku, Latévi M. AU - Pécaut, Jacques AU - Lenormand-Foucaut, Alix AU - Vieux-Melchior, Béatrice AU - Iveson, Peter AU - Jordanov, Jeanne TI - Investigation of the Reduced High-Potential Iron-Sulfur Protein from Chromatium vinosum and Relevant Model Compounds: A Unified Picture of the Electronic Structure of [Fe4S4]2+ Systems through Magnetic and Optical Studies PY - 2003 JF - Inorganic Chemistry JA - Inorg. Chem. SN - 0020-1669 VL - 42 IS - 21 SP - 6824 EP - 6850 L1 - http://pubs.acs.org/cgi-bin/article.cgi/inocaj/2003/42/i21/pdf/ic034494n.pdf L2 - http://pubs.acs.org/cgi-bin/article.cgi/inocaj/2003/42/i21/html/ic034494n.html L3 - http://pubs.acs.org/cgi-bin/abstract.cgi/inocaj/2003/42/i21/abs/ic034494n.html M3 - 10.1021/ic034494n UR - http://dx.doi.org/10.1021/ic034494n N2 - Magnetization measurements and variable temperature optical spectroscopy have been used to investigate, within the 4−300 K temperature range, the electronic structure of the reduced high-potential iron protein (HiPIP) from Chromatium vinosum and the model compounds (Cat)2[Fe4S4(SR)4], where RS- = 2,4,6-triisopropylphenylthiolate (1), 2,6-diphenylphenylthiolate (2), diphenylmethylthiolate (3), 2,4,6-triisopropylbenzylthiolate (4, 4‘), 2,4,6-triphenylbenzylthiolate (5, 5‘), 2,4,6-tri-tert-butylbenzylthiolate (6), and Cat+ = +NEt4 (1, 2, 3, 4‘, 5‘, 6), +PPh4 (4, 5). The newly synthesized 22-, 32-, 52-, and 62- complexes are, as 12- and 42-, excellent models of the reduced HiPIPs: they exhibit the [Fe4S4]3+/2+ redox couple, because of the presence of bulky ligands which stabilize the [Fe4S4]3+ oxidized core. Moreover, the presence of SCH2 groups in 42-, 52-, and 62-, as in the [Fe4S4] protein cores, makes them good biomimetic models of the HiPIPs. The X-ray structure of 2 is reported: it crystallizes in the orthorhombic space group Pcca with no imposed symmetry and a D2d-distorted geometry of the [Fe4S4]2+ core. Fit of the magnetization data of the reduced HiPIP and of the 1, 2, 3, 4, 5, and 6 compounds within the exchange and double exchange theoretical framework leads to exchange coupling parameters J = 261−397 cm-1. A firm determination of the double exchange parameters B or, equivalently, the transfer integrals β = 5B could not be achieved that way. The obtained |B| values remain however high, attesting thus to the strength of the spin-dependent electronic delocalization which is responsible for lowest lying electronic states being characterized by delocalized mixed-valence pairs of maximum spin 9/2. Electronic properties of these systems are then accounted for by the population of a diamagnetic ground level and excited paramagnetic triplet and quintet levels, which are respectively J and 3J above the ground level. Optical studies of 1, 2, 4‘, 5‘, and 6 but also of (NEt4)2[Fe4S4(SCH2C6H5)4] and the isomorph (NEt4)2[Fe4S4(S-t-Bu)4] and (NEt4)2[Fe4Se4(S-t-Bu)4] compounds reveal two absorption bands in the near infrared region, at 705−760 nm and 1270−1430 nm, which appear to be characteristic of valence-delocalized and ferromagnetically coupled [Fe2X2]+ (X = S, Se) units. The |B| and |β| values can be directly determined from the location at 10|B| of the low-energy band, and are respectively of 699−787 and 3497−3937 cm-1. Both absorption bands are also present in the 77 K spectrum of the reduced HiPIP, at 700 and 1040 nm (Cerdonio, M.; Wang, R.-H.; Rawlings, J.; Gray, H. B. J. Am. Chem. Soc. 1974, 96, 6534−6535). The blue shift of the low-energy band is attributed to the inequivalent environments of the Fe sites in the protein, rather than to an increase of |β| when going from the models to the HiPIP. The small differences observed in known geometries of [Fe4S4]2+ clusters, especially in the Fe−Fe distances, cannot probably lead to drastic changes in the direct Fe−Fe interactions (parameter β) responsible for the delocalization phenomenon. These differences are however magnetostructurally significant as shown by the 261−397 cm-1 range spanned by J. The cluster\'s geometry, hence the efficiency of the Fe−μ3-S−Fe superexchange pathways, is proposed to be controlled by the more or less tight fit of the cluster within the cavity provided by its environment. ID - 628 ER -