2013

52.
Ligand exchange Reaction on Au38(SR)24, Separation of Au38(SR)23(SR')1 Regioisomers and Migration of Thiolates
L. Beqa, D. Dechamps, S. Perrio, A.-C. Gaumont, S. Knoppe and
The Journal of Physical Chemistry C, in press , 2013
DOI:10.1021/jp408455x | Abstract | Article PDF
 
The ligand exchange reaction between Au38(2-PET)24 (2-PET: 2-phenylethanethiolate) clusters and enantiopure planar chiral [2.2]paracyclophane-4-thiol 1 (PCP-4-SH) was studied using High Performance Liquid Chromatography (HPLC) and mass spectrometry. It is shown that even at the initial stage of the reaction at least three out of the four symmetry-unique sites are exchanged leading to different regioisomers of composition Au38(2-PET)23(PCP-4-S)1. Using HPLC it was possible to isolate one specific regioisomer. The latter is stable at room temperature and at slightly elevated temperatures. However, at 80° C the adsorbed thiolate (PCP-4-S) moves between different symmetry-unique sites. These observations have implications for the preparation of mixed ligand shell clusters with specific ligand patterns.
51.
Molecular Dynamics Simulations of Liquid Phase Interfaces: Understanding the Structure of the Glycerol/Water–Dodecane System
F.R. Beierlein, A.M. Krause, C.M. Jäger, P. Fita, and T. Clark
Langmuir, 29 (38) , 2013, p11898-11907
DOI:10.1021/la4021355 | Abstract | Article HTML | Article PDF
Modern spectroscopic techniques such as time-resolved second-harmonic-generation spectroscopy allow molecules to be examined selectively directly at phase interfaces. Two-phase systems formed by glycerol/water and alkane layers have previously been studied by time-resolved second-harmonic-generation spectroscopic measurements. In this molecular dynamics study, a triphenylmethane dye was inserted at the glycerol/water–alkane interface and was used as a probe for local properties such as viscosity. We now show how extensive simulations over a wide range of concentrations can be used to obtain a detailed view of the molecular structure at the glycerol/water–alkane interface. Glycerol is accumulated in a double layer adjacent to the alkane interface, which results in increased viscosity of the glycerol/water phase in the direct vicinity of the interface. We also show that conformational ensembles created by classical molecular-dynamics simulations can serve as input for QM/MM calculations, yielding further information such as transition dipoles, which can be compared with spectroscopic measurements.
  
50.
Structures and Chiroptical Properties of the BINAS-monosubstituted Au38(SCH3)24 cluster
A. Tlahuice, B. Molina, A. Sánchez-Castillo, I.L Garzon, and S. Knoppe
Nanoscale, in press , 2013
DOI:10.1039/c3nr03403h | Abstract | Article PDF
The structure and optical properties of a set of R-1,1´-binaphthyl-2,2´-dithiol (R-BINAS) monosubstituted A-Au38(SCH3)24 clusters are studied by means of time dependent density functional theory (TD-DFT). While it was proposed earlier that BINAS selectively binds to monomer motifs (SR-Au-SR) covering the Au23 core, our calculations suggest a binding mode that bridges two dimer (SR-Au-SR-Au-RS) motifs. The more stable isomers show a negligible distortion induced by BINAS adsorption on the Au38(SCH3)24 cluster which is reflected by similar optical and Circular Dichroism (CD) spectra to those found for the parent cluster. The results furthermore show that BINAS adsorption does not enhance the CD signals of the Au38(SCH3)24 cluster.
49.
Electronic Structure and Optical Properties of the Thiolate-Protected Au28(SMe)20 Cluster
S. Knoppe, S. Malola, L. Lehtovaara, and H. Häkkinen
Journal of Physical Chemistry A, in press , 2013
DOI:10.1021/jp407494v | Abstract | Article PDF
The recently reported crystal structure of the Au28(TBBT)20 cluster (TBBT: para-tert-butylbenzenethiolate) is analyzed with (Time-Dependent-) Density Functional Theory (TD-DFT). Bader charge analysis reveals a novel trimeric Au3(SR)4 binding motif. The cluster can be formulated as Au14(Au2(SR)3)4(Au3(SR)4)2. The electronic structure of the Au146+ core and the ligand-protected cluster were analyzed and their stability can be explained by formation of distorted eight-electron superatoms. Optical absorption and Circular Dichroism (CD) spectra were calculated and compared to the experiment. Assignment of handedness of the intrinsically chiral cluster is possible.
48.
Experimental Evidence of Ultrafast Quenching of the 3MLCT Luminescence in Ruthenium(II) Tris-bipyridyl Complexes via a 3dd State
, , , L. Guénée, H.A. Goodwin, and
Journal of the American Chemical Society, 135 (37) , 2013, p13660-13663
DOI:10.1021/ja407225t | unige:29641 | Abstract | Article HTML | Article PDF
 
Ultrafast transient absorption spectroscopy serves to identify the 3dd state as intermediate quencher state of the 3MLCT luminescence in the non-luminescent ruthenium complexes [Ru(m-bpy)3]2+ (m-bpy = 6-methyl-2,2′-bipyridine) and [Ru(tm-bpy)3]2+ (tm-bpy = 4,4′,6,6′-tetramethyl-2′,2′-bipyridine). For [Ru(m-bpy)3]2+, the population of the 3dd state from the 3MLCT state occurs within 1.6 ps, while the return to the ground state takes 450 ps. For [Ru(tm-bpy)3]2+, the corresponding values are 0.16 and 7.5 ps, respectively. According to DFT calculations, methyl groups added in the 6 and 6′ positions of bipyridine stabilize the 3dd state by ∼4000 cm–1 each, compared to [Ru(bpy)3]2+.
  
47.
Hydrogen-fluorine exchange in NaBH4-NaBF4
L. Rude, U. Filso, , A. Spyratou Stratmann, B. Richter, S. Hino, O. Zavorotynska, M. Baricco, M.H. Sørby, B.C. Hauback, , F. Besenbacher, J. Skibsted and T.R. Jensen
Physical Chemistry Chemical Physics, 15 , 2013, p18185-18194
DOI:10.1039/c3cp52815d | Abstract | Article PDF
Hydrogen-fluorine exchange in the NaBH4–NaBF4 system is investigated with a range of experimental methods combined with DFT calculations and a possible mechanism for the reactions is proposed. Fluorine substitution is observed by in-situ synchrotron radiation powder X-ray diffraction (SR-PXD) as a new Rock salt type compound with idealized composition NaBF2H2 in the temperature range T = 200 to 215 °C. Combined use of solid-state 19F MAS NMR, FT-IR and DFT calculations supports the formation of a BF2H2 complex ion, reproducing the observation of a 19F chemical shift at 144.2 ppm, which is different from that of NaBF4 at 159.2 ppm, along with the new absorption bands observed in the IR spectra. After further heating, the fluorine substituted compound becomes X-ray amorphous and decomposes to NaF at ~310 ºC. This work shows that fluorine-substituted borohydrides tend to decompose to more stable compounds, e.g. NaF, BF3 or amorphous products such as closo-boranes, e.g. Na2B12H12. The NaBH4-NaBF4 composite decomposes at lower temperatures (300 °C) compared to NaBH4 (476 °C), as observed by thermogravimetric analysis. NaBH4-NaBF4 (1:0.5) preserves 30 % of the hydrogen storage capacity after three hydrogen release and uptake cycles compared to 8 % for NaBH4 measured by the Sievert’s method under identical conditions, but more than 50 % using prolonged hydrogen absorption time. The reversible hydrogen storage capacity tends to decrease possibly due to the formation of NaF and Na2B12H12. On the other hand, the additive sodium fluoride appears to facilitate hydrogen uptake, prevent foaming, phase segregation and loss of material from the sample container for samples of NaBH4-NaF.
46.
Experimental Evidence of the Relevance of Orientational Correlations in Photoinduced Bimolecular Reactions in Solution
G. Angulo, A. Cuetos, and
The Journal of Physical Chemistry A, 117 (36) , 2013, p8814-8825
DOI:10.1021/jp407203r | unige:29642 | Abstract | Article HTML | Article PDF
 
A major problem in the extraction of the reaction probability in bimolecular processes is the disentanglement from the influence of molecular diffusion. One of the strategies to overcome it makes use of reactive solvents in which the reactants do not need to diffuse to encounter each other. However, most of our quantitative understanding of chemical reactions in solution between free partners is based on the assumption that they can be approximated by spheres because rotation averages their mutual orientations. This condition may not be fulfilled when the reaction takes place on time scales faster than that of molecular reorientation. In this work, the fluorescence quenching of two very similar polyaromatic hydrocarbons with different electric dipole moments is measured. The concentration of a liquid electron-donating quencher is varied from very dilute solutions to pure quencher solutions. In both cases, the thermodynamics of the reactions are very similar and, according to the Marcus expression, the kinetics are expected to proceed at similar rates. However, one of them is 10 times faster in the pure quencher solution. This difference starts at relatively low quencher concentrations. An explanation based on the fluorophore–solvent dipole–dipole interaction and the consequent orientational solvent structure is provided. The orientational correlation between fluorophore and quencher is calculated by means of computer simulations. Important differences depending on the fluorophore dipole moment are found. The kinetics can be explained quantitatively with a reaction–diffusion model that incorporates the effects of the presence of the dipole moment and the rotational diffusion, only in the highest quencher concentration case, but not in dilute solutions, most likely due to fundamental limitations of the kinetic theory.
45.
The fate of Au25(SR)18 clusters upon ligand exchange with binapthyl-dithiol: interstaple binding vs. decomposition
S. Knoppe and
Physical Chemistry Chemical Physics, 15 (38) , 2013, p15816-15820
DOI:10.1039/C3CP52634H | unige:29643 | Abstract | Article HTML | Article PDF
The ligand exchange reaction between monodisperse Au25(2-PET)18 (2-PET: 2-phenylethylthiolate) clusters and 1,1′-binaphthyl-2,2′-dithiol (BINAS) was long thought to induce decomposition of the cluster (Si et al., J. Phys. Chem. C, 2009). We repeated the experiment and analyzed the reaction products using MALDI-TOF mass spectrometry. The spectra clearly indicate successful ligand exchange, bidentate binding of the BINAS ligand and intact Au25 clusters. The reaction products are identified as Au25(2-PET)18−2x(BINAS)x (x = 1–4) for a 24 h reaction with a 50-fold molar excess of BINAS. Two likely binding motifs are discussed. Analysis of atomic distances in both the cluster and the free ligand indicates interstaple binding connecting the central sulfur atom of the protecting (SRAu)2SR with the outer sulfur atom of a second unit. The results presented have implications on the binding position of BINAS in Au38(SR)24−2x(BINAS)x clusters.
44.
Book review: Spin-Crossover Materials. Properties and Applications. Edited by Malcolm A. Halcrow.

Angewandte Chemie International Edition, 52 (2) , 2013
DOI:10.1002/anie.201306160 | unige:29521 | Abstract | Article HTML | Article PDF
  
43.
On the flexibility of the gold-thiolate interface: Racemization of the Au40(SR)24 cluster
, , S. Knoppe and
Nanoscale, in press , 2013
DOI:10.1039/c3nr03389a | Abstract | Article PDF
The two enantiomers of the Au40(2-PET)24 cluster were collected using HPLC and analyzed by MALDI-TOF mass spectrometry, UV-vis- and CD-spectroscopy. The flexibility of the cluster surface allows racemization of the intrinsically chiral cluster at elevated temperatures (80 – 130 °C) which was monitored following the optical activity. The determined activation energy (25 kcal/mol) lies in the range of previously reported values for Au38 nanoclusters whereas the activation entropy deviates significantly from the one in Au38. The latter may indicate that the racemization can take place via different mechanisms.
42.
SplitGAS Method for Strong Correlation and the Challenging Case of Cr2
G. Li Manni, D. Ma, , J. Olsen and L. Gagliardi
Journal of Chemical Theory and Computation, 9 (8) , 2013, p3375-3384
DOI:10.1021/ct400046n | unige:29522 | Abstract | Article HTML | Article PDF
A new multiconfigurational quantum chemical method, SplitGAS, is presented. The configuration interaction expansion, generated from a generalized active space, GAS, wave function is split in two parts, a principal part containing the most relevant configurations and an extended part containing less relevant, but not negligible, configurations. The partition is based on an orbital criterion. The SplitGAS method has been employed to study the HF, N2, and Cr2 molecules. The results on these systems, especially on the challenging, multiconfigurational Cr2 molecule, are satisfactory. While SplitGAS is comparable with the GASSCF method in terms of memory requirements, it performs better than the complete active space method followed by second-order perturbation theory, CASPT2, in terms of equilibrium bond length, dissociation energy, and vibrational properties.
41.
Broadband ultraviolet-visible transient absorption spectroscopy in the nanosecond to microsecond time domain with sub-nanosecond time resolution
, , , P. Sherin, V. Markovic and
Review of Scientific Instruments, 84 (7) , 2013, p73107
Keywords: delayshigh-speed optical techniquesmeasurement by laser beamneodymiumoptical sensorsphotodetectorsphotoexcitationphotolysisprobesQ-switchingsolid laserstime-domain analysistiming jitterultraviolet spectroscopyvisible spectroscopy
DOI:10.1063/1.4812705 | unige:28965 | Abstract | Article HTML | Article PDF
 
A combination of sub-nanosecond photoexcitation and femtosecond supercontinuum probing is used to extend femtosecond transient absorption spectroscopy into the nanosecond to microsecond time domain. Employing a passively Q-switched frequency tripled Nd:YAG laser and determining the jitter of the time delay between excitation and probe pulses with a high resolution time delay counter on a single-shot basis leads to a time resolution of 350 ps in picosecond excitation mode. The time overlap of almost an order of magnitude between fs and sub-ns excitation mode permits to extend ultrafast transient absorption (TA) experiments seamlessly into time ranges traditionally covered by laser flash photolysis. The broadband detection scheme eases the identification of intermediate reaction products which may remain undetected in single-wavelength detection flash photolysis arrangements. Single-shot referencing of the supercontinuum probe with two identical spectrometer/CCD arrangements yields an excellent signal-to-noise ratio for the so far investigated chromophores in short to moderate accumulation times.
  
40.
Complexes with Redox-Active Ligands: Synthesis, Structure, and Electrochemical and Photophysical Behavior of the Ru(II) Complex with TTF-Annulated Phenanthroline
L.K. Keniley, N. Dupont, L. Ray, J. Ding, K. Kovnir, J.M. Hoyt, and M. Shatruk
Inorganic Chemistry, 52 (14) , 2013, p8040-8052
DOI:10.1021/ic4006949 | unige:28963 | Abstract | Article HTML | Article PDF
Ru(II) complexes with chelating ligands, 4′,5′-ethylenedithiotetrathiafulvenyl[4,5-f][1,10]phenanthroline (L1), 1,3-dithiole-2-thiono[4,5-f][1,10]phenanthroline (L2), and 1,3-dithiole-2-ono[4,5-f][1,10]phenanthroline (L3), have been prepared and their structural, electrochemical, and photophysical properties investigated. Density functional theory (DFT) calculations indicate that the highest occupied molecular orbital of [Ru(bpy)2(L1)](PF6)2 (1) is located on the tetrathiafulvalene (TTF) subunit and appears ≈0.6 eV above the three Ru-centered d orbitals. In agreement with this finding, 1 exhibits three reversible oxidations: the two at lower potentials take place on the TTF subunit, and the one at higher potential is due to the Ru3+/Ru2+ redox couple. Complexes [Ru(bpy)2(L2)](PF6)2 (2) and [Ru(bpy)2(L3)](PF6)2 (3) exhibit only the Ru3+/Ru2+-related oxidation. The optical absorption spectra of all complexes reveal a characteristic metal-to-ligand charge transfer (MLCT) band centered around 450 nm. In addition, in the spectrum of 1 the MLCT band is augmented by a low-energy tail that extends beyond 500 nm and is attributed to the intraligand charge transfer (ILCT) transition of L1, according to time-dependent DFT calculations. The substantial decrease in the luminescence quantum yield of 1 compared to those of 2 and 3 is attributed to the reductive quenching of the emissive state via electron transfer from the TTF subunit to the Ru3+ center, thus allowing nonradiative relaxation to the ground state through the lower-lying ILCT state. In the presence of O2, complex 1 undergoes a photoinduced oxidative cleavage of the central C═C bond of the TTF fragment, resulting in complete transformation to 3. This photodegradation process was studied with 13C NMR and optical absorption spectroscopy.
39.
Light Induced Bistability in the 2D Coordination Network {[Fe(bbtr)3](BF4)2}: Wavelength-Selective Addressing of Molecular Spin States
P. Chakraborty, S. Pillet, E.-E. Bendeif, C. Enachescu, R. Bronisz and
Chemistry - A European Journal, 19 (34) , 2013, p11418-11428
Keywords: cooperative effectsironphotoinduced bistabilityphotoswitchingspin crossover
DOI:10.1002/chem.201301257 | unige:29524 | Abstract | Article PDF
 
Whereas the neat polymeric Fe(II) compound {[Fe(bbtr)3](ClO4)2} (bbtr=1,4-di(1,2,3-triazol-1-yl)butane) shows an abrupt spin transition centered at 107 K facilitated by a crystallographic symmetry breaking, in the covalently linked 2D coordination network of {[Fe(bbtr)3](BF4)2}, Fe(II) stays in the high-spin state down to 10 K. However, strong cooperative effects of elastic origin result in reversible, persistent and wavelength-selective photoswitching between the low-spin and high-spin manifolds. This compound thus shows true light-induced bistability below 100 K. The persistent bidirectional optical switching behavior is discussed as a function of temperature, irradiation time and intensity. Crystallographic studies reveal a photo-induced symmetry breaking and serve to establish the correlation between structure and cooperative effects. The static and kinetic behavior is explicated within the framework of the mean-field approximation.
38.
Stabilization of Thiolate-Protected Gold Clusters against Thermal Inversion: Diastereomeric Au38(SCH2CH2Ph)24-2x(R-BINAS)x
S. Knoppe, S. Michalet and
Journal of Physical Chemistry C, 117 (29) , 2013, p15354-15361
DOI:10.1021/jp4040908 | unige:29224 | Abstract | Article PDF
Intrinsically chiral thiolate-protected gold clusters were recently separated into their enantiomers and their circular dichroism (CD) spectra were measured. Introduction of the chiral R-1,1’-binaphthyl-2,2’-dithiol (BINAS) into the ligand layer of rac-Au38(2-PET)24 clusters (2-PET: 2-phenylethylthiolate, SCH2CH2Ph) was shown to be diastereoselective. In this contribution, we isolated and characterized the diastereomeric reaction products of the first exchange step, A-Au38(2-PET)22(R-BINAS)1 and C-Au38(2-PET)22(R-BINAS)1 (A/C, anti-clockwise/clockwise) and the second exchange product, A-Au38(2-PET)20(R-BINAS)2. The absorption spectra show minor, but significant influence of the BINAS ligand. Overall, the spectra are less defined compared to Au38(2-PET)24, which is ascribed to symmetry breaking. The CD spectra are similar to those of the parent Au38(2-PET)24 enantiomers, readily allowing the assignment of handedness of the ligand layer. Nevertheless, some characteristic differences are found between the diastereomers. The anisotropy factors are slightly lower after ligand exchange. The second exchange step seems to confirm the trend. Inversion experiments were performed and compared to the racemization of Au38(2-PET)24. It was found that the introduction of the BINAS ligand effectively stabilizes the cluster against inversion, which involves a rearrangement of the thiolates on the cluster surface. It therefore seems that introduction of the di-thiol reduces the flexibility of the gold-sulfur interface.
37.
Determination of the molecular structure of the short-lived light-induced high-spin state in the spin-crossover compound [Fe(6-mepy)3tren](PF6)2
P. Chakraborty, , L. Peterhans, L. Guénée, C. Besnard, P. Pattison and
Physical Review B, 87 (21) , 2013, p214306
DOI:10.1103/PhysRevB.87.214306 | unige:28964 | Abstract | Article PDF
In the spin-crossover compound [Fe(6-mepy)3tren](PF6)2, (6-mepy)3tren = tris{4-[(6-methyl)-2-pyridyl]-3-aza-butenyl}amine, the high-spin state can be populated as metastable state below the thermal transition temperature via irradiation into the metal to ligand charge transfer absorption band of the low-spin species. At 10 K, the lifetime of this metastable state is only 1 s. Despite this, it is possible to determine an accurate excited state structure by following the evolution of relevant structural parameters by synchrotron X-ray diffraction under continuous irradiation with increasing intensity. The difference in metal-ligand bond length between the high-spin and the low-spin state is found to be 0.192 Å obtained from an analysis of the experimental data using the mean-field approximation to model cooperative effects.
  
36.
Real-Time Observation of the Formation of Excited Radical Ions in Bimolecular Photoinduced Charge Separation: Absence of the Marcus Inverted Region Explained
, , K. Adamczyk, , J. Dreyer, E.T.J. Nibbering and
Journal of the American Chemical Society, 135 (26) , 2013, p9843-9848
DOI:10.1021/ja403481v | unige:28966 | Abstract | Article HTML | Article PDF
Unambiguous evidence for the formation of excited ions upon ultrafast bimolecular photoinduced charge separation is found using a combination of femtosecond time-resolved fluorescence up-conversion, infrared and visible transient absorption spectroscopy. The reaction pathways are tracked by monitoring the vibrational energy redistribution in the product after charge separation and subsequent charge recombination. For moderately exergonic reactions, both donor and acceptor are found to be vibrationally hot, pointing to an even redistribution of the energy dissipated upon charge separation and recombination in both reaction partners. For highly exergonic reactions, the donor is very hot, whereas the acceptor is mostly cold. The asymmetric energy redistribution is due to the formation of the donor cation in an electronic excited state upon charge separation, confirming one of the hypotheses for the absence of the Marcus inverted region in photoinduced bimolecular charge separation processes
35.
Comments on the article 'Direct conflict of Marcus theory with the law of conservation of energy' by X.-Q. Zhu and J.-D. Yang

Journal of Physical Organic Chemistry, 26 (6) , 2013, p523-523
DOI:10.1002/poc.3122 | unige:28967 | Abstract | Article HTML | Article PDF
34.
A modified cyclen azaxanthone ligand as a new fluorescent probe for Zn2+
H. Nouri, C. Cadiou, , , S. Chevreux, I. Déchamps-Olivier, F. Lachaud, R. Ternane, M. Trabelsi-Ayadi, F. Chuburu and G. Lemercier
Dalton Transactions, 42 , 2013, p12157-12164
DOI:10.1039/c3dt51216a | unige:29225 | Abstract | Article PDF
A new cyclen derivative L, bearing a methyl-chromeno-pyridinylidene hydrazone moiety, was synthesized and studied in MeOH, as potential fluorescent “OFF-on-ON” sensors for Zn(II). Photocphysical properties of this ligand being PET regulated, L was only weakly emissive in the absence of metal ions (OFF). L fluorescence was increased modestly upon addition of one equivalent of Zn(II), and further increased upon addition of a second equivalent. Therefore, Zn:L behaved as a highly sensitive ON sensor for zinc. This efficiency was correlated to Zn(II) coordination via the hydrazone moiety of the fluorophore, producing an efficient CHelation-Enhanced Fluorescence (CHEF) effect. A complementary theoretical study carried out with DFT calculations further elucidated of the optical properties.
33.
Photoinduced Relaxation Dynamics in Iron(II) Spin-Crossover Nanoparticles: The Significance of Crystallinity
P. Chakraborty, M.-L. Boillot, and
Angewandte Chemie International Edition, 52 (28) , 2013, p7139-7142
Keywords: crystallinitynanoparticlesoptical spectroscopyspin crossoverspin relaxation
DOI:10.1002/anie.201301562 | unige:29226 | Abstract | Article HTML | Article PDF
A switch in time: A fast precipitation technique was used to prepare 75 nm FeII spin-crossover nanocrystals. Their photoswitching dynamics, based on the light-induced excited spin-state trapping effect, has been investigated by means of optical spectroscopy. A significant variation of the switching proprieties is observed compared to similar but amorphous nanoparticles.
32.
Stimuli Responsive Hybrid Magnets: Tuning the Photoinduced Spin-Crossover in Fe(III) Complexes Inserted into Layered Magnets
M. Clemente-León, E. Coronado, M. López-Jordà, J.C. Waerenborgh, C. Desplanches, H. Wang, J.-F. Létard, and
Journal of the American Chemical Society, 135 (23) , 2013, p8655-8667
DOI:10.1021/ja402674x | unige:28703 | Abstract | Article HTML | Article PDF
 
The insertion of a [Fe(sal2-trien)]+ complex cation into a 2D oxalate network in the presence of different solvents results in a family of hybrid magnets with coexistence of magnetic ordering and photoinduced spin-crossover (LIESST effect) in compounds [FeIII(sal2-trien)][MnIICrIII(ox)3]·CHCl3 (1·CHCl3), [FeIII(sal2-trien)][MnIICrIII(ox)3]·CHBr3 (1·CHBr3), and [FeIII(sal2-trien)][MnIICrIII(ox)3]·CH2Br2 (1·CH2Br2). The three compounds crystallize in a 2D honeycomb anionic layer formed by MnII and CrIII ions linked through oxalate ligands and a layer of [Fe(sal2-trien)]+ complexes and solvent molecules (CHCl3, CHBr3, or CH2Br2) intercalated between the 2D oxalate network. The magnetic properties and Mössbauer spectroscopy indicate that they undergo long-range ferromagnetic ordering at 5.6 K and a spin crossover of the intercalated [Fe(sal2-trien)]+ complexes at different temperatures T1/2. The three compounds present a LIESST effect with a relaxation temperature TLIESST inversely proportional to T1/2. The isostructural paramagnetic compound, [FeIII(sal2-trien)][ZnIICrIII(ox)3]·CH2Cl2 (2·CH2Cl2) was also prepared. This compound presents a partial spin crossover of the inserted FeIII complex as well as a LIESST effect. Finally, spectroscopic characterization of the FeIII doped compound [Ga0.99Fe0.01(sal2trien)][MnIICrIII(ox)3]·CH2Cl2 (3·CH2Cl2) shows a gradual and complete thermal spin crossover and a LIESST effect on the isolated FeIII complexes. This result confirms that cooperativity is not a necessary condition to observe the LIESST effect in an FeIII compound.
  
31.
Extracting Information about Chemical Bonding from Molecular Electron Densities via Single Exponential Decay Detector (SEDD)
, J. Korchowiec, N.J.S. Ram and
Chimia, 67 (4) , 2013, p253-256
Keywords: aromaticitybondingconceptual DFTelectron densityelectron localization
DOI:10.2533/chimia.2013.253 | unige:28399 | Abstract | Article PDF
The recently introduced molecular descriptor (Single Exponential Decay Detector - SEDD) [P. de Silva, J. Korchowiec, T. A. Wesolowski, ChemPhysChem 201213, 3462] is used to visualize bonding patterns in molecules. In each point of space SEDD is simply related to the electron density:

SEDD(r) = ln[1/ρ2(∇(∇ρ/ρ)2)2}.

Either experimental or computed densities ρ(r) can be used to evaluate SEDD. Here, maps of SEDD are obtained from theoretical densities and reveal such features as core electrons, chemical bonds, lone pairs and delocalization in aromatic systems. It is shown that SEDD provides fingerprints of aromaticity, which can be separated into geometric and electronic effects.

30.
Non-additive kinetic energy and potential in analytically solvable systems and their approximated counterparts
and A. Savin
in "Recent Progress in Orbital-free Density Functional Theory (Recent Advances in Computational Chemistry Vol. 6)" T.A. Wesolowski and Y.A. Wang Eds., World Scientific, 6 , 2013, p275-295
DOI:10.1142/9789814436731_0009 | unige:28400 | Abstract | Article PDF
The one-electron equation for orbitals embedded in frozen electron density (Eqs. 20-21 in [Wesolowski and Warshel, J. Phys. Chem, 97 (1993) 8050]) in its exact and approximated version is solved for an analytically solvable model system. The system is used to discuss the role of the embedding potential in preventing the collapse of a variationally obtained electron density onto the nucleus in the case when the frozen density is chosen to be that of the innermost shell. The approximated potential obtained from the second-order gradient expansion for the kinetic energy prevents such a collapse almost perfectly but this results from partial compensation of flaws of its components. It is also shown that that the quality of a semi-local approximation to the kinetic-energy functional, a quantity needed in orbital-free methods, is not related to the quality of the non-additive kinetic energy potential - a key component of the effective embedding potential in one-electron equations for embedded orbitals.
29.
Semilocal approximations for the kinetic energy
F. Tran and
in "Recent Progress in Orbital-free Density Functional Theory (Recent Advances in Computational Chemistry Vol. 6)" T.A. Wesolowski and Y.A. Wang Eds., World Scientific, 6 , 2013, p429-442
DOI:10.1142/9789814436731_0016 | unige:28401 | Abstract | Article PDF
Approximations to the non-interacting kinetic energy Ts[ρ], which take the form of semilocal analytic expressions are collected. They are grouped according to the quantities on which they explicitly depend. Additionally, the approximations for quantities related to Ts[ρ] (kinetic potential and non-additive kinetic energy), for which the analytic expressions for the “parent” approximation for the functional Ts[ρ] are unknown, are also given.
28.
Unusual molecular material formed through irreversible transformation and revealed by 4D electron microscopy
R.M. Van der Veen, , and A.H. Zewail
Physical Chemistry Chemical Physics, 15 (20) , 2013, p7831
DOI:10.1039/c3cp51011e | unige:27866 | Abstract | Article HTML | Article PDF | Video 1 | Video 2
 
Four-dimensional (4D) electron microscopy (EM) uniquely combines the high spatial resolution to pinpoint individual nano-objects, with the high temporal resolution necessary to address the dynamics of their laser-induced transformation. Here, using 4D-EM, we demonstrate the in situ irreversible transformation of individual nanoparticles of the molecular framework Fe(pyrazine)Pt(CN)4. The newly formed material exhibits an unusually large negative thermal expansion (i.e. contraction), which is revealed by time-resolved imaging and diffraction. Negative thermal expansion is a unique property exhibited by only few materials. Here we show that the increased flexibility of the metal–cyanide framework after the removal of the bridging pyrazine ligands is responsible for the negative thermal expansion behavior of the new material. This in situ visualization of single nanostructures during reactions should be extendable to other classes of reactive systems.
27.
Chiroptical Properties of Intrinsically Chiral Thiolate-protected Gold Clusters
S. Knoppe and
Chimia, 67 (4) , 2013, p236-239
DOI:10.2533/chimia.2013.236 | unige:27716 | Abstract | Article PDF
Chiral thiolate-protected gold clusters of atomic precision have gained increasing interest in recent years due to their potential use in catalysis, sensing or bioapplications. While the protection of gold clusters with chiral ligands is a rather trivial task, it was found that the clusters can bear intrinsically chiral features, most obvious in the arrangement of the protecting ligands on the surface of the cluster. Recent efforts showed the separation of the enantiomers of such intrinsically chiral gold clusters. This technique can be used for the prediction of chirality in structurally unknown clusters. Activation barriers for the racemization of Au38(SR)24 were determined. As this involves a huge rearrangement of the ligands, the flexibility of the gold-thiolate interface is demonstrated. Furthermore, the ligand exchange reactions between intrinsically chiral clusters and bidentate chiral thiols were studied. A limited, regioselective exchange was found. Most importantly, the reaction is diastereoselective and allows tailoring of gold clusters that are protected with a defined layer of ligands.
26.
Single-nanoparticle phase transitions visualized by four-dimensional electron microscopy
R.M. Van der Veen, O.-H. Kwon, , and A.H. Zewail
Nature Chemistry, 5 (5) , 2013, p395-402
DOI:10.1038/NCHEM.1622 | unige:27715 | Abstract | Article HTML | Article PDF

The advancement of techniques that can probe the behaviour of individual nanoscopic objects is of paramount importance in various disciplines, including photonics and electronics. As it provides images with a spatiotemporal resolution, four-dimensional electron microscopy, in principle, should enable the visualization of single-nanoparticle structural dynamics in real and reciprocal space. Here, we demonstrate the selectivity and sensitivity of the technique by visualizing the spin crossover dynamics of single, isolated metal–organic framework nanocrystals. By introducing a small aperture in the microscope, it was possible to follow the phase transition and the associated structural dynamics within a single particle. Its behaviour was observed to be distinct from that imaged by averaging over ensembles of heterogeneous nanoparticles. The approach reported here has potential applications in other nanosystems and those that undergo (bio)chemical transformations.
  
25.
The Periodate-Based Double Perovskites M2NaIO6 (M = Ca, Sr, and Ba)
F. Kubel, N. Wandl, M. Pantazi, and
Zeitschrift für anorganische und allgemeine Chemie, 639 (6) , 2013, p892-898
Keywords: bariumstrontiumcalciumsodium ortho-periodateschemical stabilityRaman spectroscopyDFT calculations
DOI:10.1002/zaac.201200555 | unige:28397 | Abstract | Article HTML | Article PDF
The crystal structures of the M2NaIO6 series (M = Ca, Sr, Ba), prepared at 650 °C by ceramic methods, were determined from conventional laboratory X-ray powder diffraction data. Synthesis and crystal growth were made by oxidizing I with O2(air) to I7+ followed by crystal growth in the presence of NaF as mineralizator, or by the reaction of the alkali-metal periodate with the alkaline-earth metal hydroxide. All three compounds are insoluble and stable in water. The barium compound crystallizes in the cubic space group Fm3m (no. 225) with lattice parameters of a = 8.3384(1) Å, whereas the strontium and calcium compounds crystallize in the monoclinic space group P21/c (no. 14) with a = 5.7600(1) Å, b = 5.7759(1) Å, c = 9.9742(1) Å, β = 125.362(1)° and a = 5.5376(1) Å, b = 5.7911(1) Å, c = 9.6055(1) Å, β = 124.300(1)°, respectively. The crystal structure consists of either symmetric (for Ba) or distorted (for Sr and Ca) perovskite superstructures. Ba2NaIO6 contains the first perfectly octahedral [IO6]5– unit reported. The compounds of the ortho-periodates are stable up to 800 °C. Spectroscopic measurements as well as DFT calculations show a reasonable agreement between calculated and observed IR- and Raman-active vibrations.
24.
Tetrathiafulvalene-1,3,5-triazines as (Multi)Donor-Acceptor Systems with Tunable Charge Transfer: Structural, Photophysical, and Theoretical Investigations
F. Pop, F. Riobé, S. Seifert, T. Cauchy, J. Ding, N. Dupont, , and N. Avarvari
Inorganic Chemistry, 52 (9) , 2013, p5023-5034
DOI:10.1021/ic3027336 | unige:27865 | Abstract | Article HTML | Article PDF
 
Palladium-catalyzed cross-coupling reactions between chlorinated 1,3,5-triazines (TZ) and tetrathiafulvalene (TTF) trimethyltin derivatives afford mono- and C3 symmetric tris(TTF)-triazines as donor–acceptor compounds in which the intramolecular charge transfer (ICT) is modulated by the substitution scheme on TTF and TZ and by chemical or electrochemical oxidation. The TTF-TZ-Cl2 and (SMe)2TTF-TZ-Cl2 derivatives show fully planar structures in the solid state as a consequence of the conjugation between the two units. Electrochemical and photophysical investigations, supported by theoretical calculations, clearly demonstrate that the lowest excited state can be ascribed to the intramolecular charge transfer (ICT) π(TTF)→π*(TZ) transition. The tris(TTF) compound [(SMe)2TTF]3-TZ shows fluorescence when excited in the ICT band, and the emission is quenched upon oxidation. The radical cations TTF+• are easily observed in all of the cases through chemical and electrochemical oxidation by steady-state absorption experiments. In the case of [(SMe)2TTF]3-TZ, a low energy band at 5000 cm–1, corresponding to a coupling between TTF+• and TTF units, is observed. A crystalline radical cation salt with the TTF-TZ-Cl2 donor and PF6 anion, prepared by electrocrystallization, is described.
23.
Ultrafast Photochemistry in Liquids
, and
Annual Review of Physical Chemistry, 64 (1) , 2013, p247-271
DOI:10.1146/annurev-physchem-040412-110146 | unige:27485 | Abstract | Article HTML | Article PDF
Ultrafast photochemical processes can occur in parallel with the relaxation of the optically populated excited state toward equilibrium. The latter involves both intra- and intermolecular modes, namely vibrational and solvent coordinates, and takes place on timescales ranging from a few tens of femtoseconds to up to hundreds of picoseconds, depending on the system. As a consequence, the reaction dynamics can substantially differ from those usually measured with slower photoinduced processes occurring from equil-ibrated excited states. For example, the decay of the excited-state population may become strongly nonexponential and depend on the excitation wavelength, contrary to the Kasha and Vavilov rules. In this article, we first give a brief account of our current understanding of vibrational and solvent relaxation processes. We then present an overview of important classes of ultrafast photochemical reactions, namely electron and proton transfer as well as isomerization, and illustrate with several examples how nonequilibrium effects can affect their dynamics.
  
22.
Chiral Selectivity in the Binding of [4]Helicene Derivatives to Double-Stranded DNA
O. Kel, A. Fürstenberg, N. Mehanna, C. Nicolas, B. Laleu, M. Hammarson, B. Albinsson, J. Lacour and
Chemistry - A European Journal, 19 , 2013
DOI:10.1002/chem.201203915 | unige:27926 | Abstract | Article PDF
The interaction of a series of chiral cationic [4]helicene derivatives, which differ by their substituents, with double-stranded DNA has been investigated by using a combination of spectroscopic techniques, including time-resolved fluorescence, fluorescence anisotropy, and linear dichroism. Addition of DNA to helicene solutions results to a hypochromic shift of the visible absorption bands, an increase of fluorescence quantum yield and lifetime, a slowing down of fluorescence anisotropy decay, and a linear dichroism in flow-oriented DNA, which unambiguously points to the binding of these dyes to DNA. Both helicene monomers and dimeric aggregates, which form at higher concentration, bind to DNA, the former most probably upon intercalation and the latter upon groove binding. The binding constant depends substantially on the dye substituents and is, in all cases, larger with the M than the P enantiomer, by factors ranging from 1.2 to 2.3, depending on the dye.
21.
SiPM time resolution: From single photon to saturation
S. Gundacker, E. Auffray, N. Di Vara, B. Frisch, H. Hillemanns, P. Jarron, , T. Meyer, , and P. Lecoq
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 718 , 2013, p569-572
Keywords: SiPMTOF-PETsingle photon time resolutionmulti pixel photon counter (MPPC)NINOfemtosecond laser
DOI:10.1016/j.nima.2013.01.047 | unige:28911 | Abstract | Article HTML
The time resolution of photon detection systems is important for a wide range of applications in physics and chemistry. It impacts the quality of time-resolved spectroscopy of ultrafast processes and has a direct influence on the best achievable time resolution of time-of-flight detectors in high-energy and medical physics. For the characterization of photon detectors, it is important to measure their exact timing properties in dependence of the photon flux and the operational parameters of the photodetector and its accompanying electronics. We report on the timing of silicon photomultipliers (SiPM) as a function of their bias voltage, electronics threshold settings and the number of impinging photons. We used ultrashort laser pulses at 400 nm wavelength with pulse duration below 200 fs. We focus our studies on different types of SiPMs (Hamamatsu MPPC S10931-025P, S10931-050P and S10931-100P) with different SPAD sizes (25μm, 50μm and 100μm) coupled to the ultrafast discriminator amplifier NINO. For the SiPMs, an optimum in the time resolution regarding bias and threshold settings can be reached. For the 50μm type, we achieve a single photon time resolution of 80 ps sigma, and for saturating photon fluxes better than 10 ps sigma.
20.
Photochemistry of aqueous solutions of kynurenic acid and kynurenine yellow
E.A. Zelentsova, P.S. Sherin, O.A. Snytnikova, R. Kaptein, and Y.P. Tsentalovich
Photochemical and Photobiological Sciences, 12 (3) , 2013, p546-558
DOI:10.1039/c2pp25357g | unige:27494 | Abstract | Article HTML | Article PDF
The photophysics and photochemistry of kynurenic acid (KNA) and kynurenine yellow (KNY) in neutral aqueous solutions were investigated using time-resolved optical spectroscopy. Both molecules have similar quinoline-like structures, the only difference being the absence of conjugation in the nitrogen containing cycle in KNY. The main channel of S1 excited state decay in the case of partially-unconjugated KNY is the solvent assisted S1 → S0 radiationless transition via intermolecular hydrogen bonds (ΦIC = 0.96), whereas, in the case of fully-conjugated KNA, it is intersystem crossing to the triplet state (ΦT = 0.82). The major intermediate products of the singlet excited KNY deactivation are the triplet state (ΦT = 0.022) and, most probably, the enol form (Φenol = 0.012), which decay with the formation of 2,3-dihydro-4-hydroxyquinoline and 4-hydroxyquinoline, respectively. The results obtained show that KNA and KNY, which are products of the decomposition of the UV filter kynurenine, are significantly more photoactive and less photostable than the parent molecule.
19.
Effect of Temperature and Pressure on Emission Lifetime of Sm2+ Ion Doped in MFX (M=Sr, Ba; X=Br, I) Crystals
P. Pal, T. Penhouët, and
Journal of Luminescence, 142 , 2013, p66-74
Keywords: Sm2+high pressure lifetimetemperature lifetimeSrFBrBaFBrBaFI
DOI:10.1016/j.jlumin.2013.03.011 | unige:27714 | Abstract | Article PDF
 
The emission lifetime of Sm2+ ions doped in MFX (M=Ba, Sr; X=Br, I) crystals was investigated as a function of pressure and temperature. The decay of the 5DJ(J=0,1,2) levels showed single exponential relaxation. The analysis of these experiments yielded the position of the lowest 4f55d1 state as well as non-radiative rate constants. These values were compared with those for Sm2+ doped in other matlockite host crystals. The single exponential decrease of the 5D0,1 lifetime as a function of pressure was described considering the increased radiative decay rates of these 5D0,1 levels through electronic mixing between the 4f55d1 and 5DJstates.
18.
Study of Surfactant Alcohols with various Chemical Motives at the Hydrophilic/Hydrophobic Interface
P.-L. Zaffalon, , and A. Zumbuehl
RSC Advances, 3 (20) , 2013, p7237-7244
DOI:10.1039/c3ra40704g | unige:27864 | Abstract | Article PDF
The melting behavior, the solubility, and the influence of hydrogen bonds were analyzed for a series of single- and double-tailed surfactant alcohols. Various effects such as the presence of free amides or the intermolecular spacing were found to be important factors for increasing or decreasing the melting temperature of a surfactant. Furthermore, we present a model for the packing of diamido-lipids and study the temperature-dependence of the IR signals.
  
17.
Vibrational spectra and structure of borohydrides
, and
Journal of Alloys and Compounds, in press , 2013
Keywords: hydrogen storagevibrational spectraborohydridesFG method
DOI:10.1016/j.jallcom.2013.01.112 | Abstract | Article HTML | Article PDF
A comparison of the vibrational spectra of many inorganic borohydrides allows us to distinguish compounds with isolated BH4- ions and compounds containing complex ions such as Sc(BH4)4-. The characteristic spectral features of both types of compounds are identified, showing that the B–H bonding is quite different in both cases. A detailed analysis of the vibrations of the isolated BH4- ions provides new information about their local structure. Angular deformations of individual borohydride ion are analyzed quantitatively. It appears that the compounds containing isolated BH4- ions belong to those with the most electropositive cations and the highest decomposition temperature, while the complex borohydrides show significantly lower decomposition temperatures and possible diborane formation.
16.
Synthesis and Redox and Photophysical Properties of Benzodifuran–Spiropyran Ensembles
H. Li, J. Ding, S. Chen, C. Beyer, S.-X. Liu, H.-A. Wagenknecht, and S. Decurtins
Chemistry - A European Journal, 19 (20) , 2013, p6459-6466
Keywords: asymmetric synthesisclick chemistryelectron transferphotochromismredox chemistryspiro compounds
DOI:10.1002/chem.201204043 | unige:27859 | Abstract | Article PDF
Two benzodifuran (BDF)-coupled spiropyran (SP) systems and their BDF reference compounds were obtained in good yields through Huisgen–Meldal–Sharpless “click” chemistry and then subjected to investigation of their electrochemical and photophysical properties. In both SP and merocyanine (MC) forms of the coupled molecules, the BDF-based emission is quenched to around 1 % of the quantum yield of emission from the BDF reference compounds. Based on electrochemical data, this quenching is attributed to oxidative electron-transfer quenching. Irradiation at 366 nm results in ring opening to the MC forms of the BDF-coupled SP compounds and the SP reference compound with a quantum efficiency of about 50 %. The rate constants for the thermal ring closing are approximately 3.4×10−3 s−1. However, in the photostationary states the MC fractions of the coupled molecules are substantially lower than that of the reference SP compound, attributed to the observed acceleration of the ring-closing reaction upon irradiation. As irradiation at 366 nm invariably also excites higher-energy transitions of the BDF units in the coupled compounds, the ring-opening reaction is accelerated relative to the SP reference, which results in lower MC fractions in the photostationary state. Reversible photochromism of these BDF-coupled SP compounds renders them promising in the field of molecular switches.
15.
Tetrathiafulvalene-s-tetrazine: versatile platform for donor-acceptor systems and multifunctional ligands
F. Pop, J. Ding, , and N. Avarvari
RSC Advances, 3 , 2013, p3218-3221
DOI:10.1039/c3ra21702g | unige:27369 | Abstract | Article HTML | Article PDF
 
The structurally characterized tetrathiafulvalene-1,2,4,5-tetrazine donor–acceptor system shows redox tuneable intramolecular charge transfer, solvatochromic and electrochromic behaviour. Attachment of a dipicolyl-amine chelating unit affords a multifunctional ligand, which allows the preparation of the ZnCl2 complex in which an anion-π interaction is seen.
14.
Electron Transfer between Hydrogen-Bonded Pyridylphenols and a Photoexcited Rhenium(I) Complex
W. Herzog, C. Bronner, S. Löffler, B. He, D. Kratzert, D. Stalke, and O.S. Wenger
ChemPhysChem, 14 (6) , 2013, p1168-1176
Keywords: electron transferluminescencephotochemistryproton transfertransient absorption
DOI:10.1002/cphc.201201069 | unige:27484 | Abstract | Article PDF
Two pyridylphenols with intramolecular hydrogen bonds between the phenol and pyridine units have been synthesized, characterized crystallographically, and investigated by cyclic voltammetry and UV/Vis spectroscopy. Reductive quenching of the triplet metal-to-ligand charge-transfer excited state of the [Re(CO)3(phen)(py)]+ complex (phen=1,10-phenanthroline, py=pyridine) by the two pyridylphenols and two reference phenol molecules is investigated by steady-state and time-resolved luminescence spectroscopy, as well as by transient absorption spectroscopy. Stern–Volmer analysis of the luminescence quenching data provides rate constants for the bimolecular excited-state quenching reactions. H/D kinetic isotope effects for the pyridylphenols are on the order of 2.0, and the bimolecular quenching reactions are up to 100 times faster with the pyridylphenols than with the reference phenols. This observation is attributed to the markedly less positive oxidation potentials of the pyridylphenols with respect to the reference phenols (≈0.5 V), which in turn is caused by proton coupling of the phenol oxidation process. Transient absorption spectroscopy provides unambiguous evidence for the photogeneration of phenoxyl radicals, that is, the overall photoreaction is clearly a proton-coupled electron-transfer process.
  
13.
Towards accurate estimates of the spin-state energetics of spin-crossover complexes within density functional theory: a comparative case study of cobalt(ii) complexes
A. Vargas, I. Krivokapic, and
Physical Chemistry Chemical Physics, 15 (11) , 2013, p3752-3763
DOI:10.1039/c3cp44336a | unige:26498 | Abstract | Article HTML | Article PDF
We report a detailed DFT study of the energetic and structural properties of the spin-crossover Co(II) complex [Co(tpy)2]2+ (tpy = 2,2′:6′,2′′-terpyridine) in the low-spin (LS) and the high-spin (HS) states, using several generalized gradient approximation and hybrid functionals. In either spin-state, the results obtained with the functionals are consistent with one another and in good agreement with available experimental data. Although the different functionals correctly predict the LS state as the electronic ground state of [Co(tpy)2]2+, they give estimates of the HS–LS zero-point energy difference ΔE0HL (tpy)  which strongly depend on the functional used. This dependency on the functional was also reported for the DFT estimates of the zero-point energy difference ΔE0HL (bpy)  in the HS complex [Co(bpy)3]2+ (bpy = 2,2′-bipyridine) [A. Vargas, A. Hauser and L. M. Lawson Daku, J. Chem. Theory Comput., 2009, 5, 97]. The comparison of the ΔE0HL (tpy)  and ΔE0HL (bpy)  estimates showed that all functionals correctly predict an increase of the zero-point energy difference upon the bpy → tpy ligand substitution, which furthermore weakly depends on the functionals, amounting to (ΔE0HL)bpy->tpy  ≈ +2670 cm-1 . From these results and basic thermodynamic considerations, we establish that, despite their limitations, current DFT methods can be applied to the accurate determination of the spin-state energetics of complexes of a transition metal ion, or of these complexes in different environments, provided that the spin-state energetics is accurately known in one case. Thus, making use of the availability of a highly accurate ab initio estimate of the HS–LS energy difference in the complex [Co(NCH)6]2+ [L. M. Lawson Daku, F. Aquilante, T. W. Robinson and A. Hauser, J. Chem. Theory Comput., 2012, 8, 4216], we obtain for [Co(tpy)2]2+ and [Co(bpy)3]2+best estimates of ΔE0HL (bpy) ≈ -2800 cm-1  and ΔE0HL (tpy) ≈ 0 cm-1 , in good agreement with the known magnetic behaviour of the two complexes.
12.
A Straightforward Synthesis and Structure-Activity Relationship of Highly Efficient Initiators for Two-Photon Polymerization
Z. Li, N. Pucher, K. Cicha, J. Torgersen, S.C. Ligon, A. Ajami, W. Husinsky, , , S. Naumov, T. Scherzer, J. Stampfl and R. Liska
Macromolecules, 46 (2) , 2013, p352-361
DOI:10.1021/ma301770a | unige:26500 | Abstract | Article HTML | Article PDF | Video
The development of practical two-photon absorption photoinitiators (TPA PIs) has been slow due to their complicated syntheses often reliant on expensive catalysts. These shortcomings have been a critical obstruction for further advances in the promising field of two-photon-induced photopolymerization (TPIP) technology. This paper describes a series of linear and cyclic benzylidene ketone-based two-photon initiators containing double bonds and dialkylamino groups synthesized in one step via classical aldol condensation reactions. Systematic investigations of structure–activity relationships were conducted via quantum-chemical calculations and experimental tests. These results showed that the size of the central ring significantly affected the excited state energetics and emission quantum yields as well as the two-photon initiation efficiency. In the TPIP tests the 4-methylcyclohexanone-based initiator displayed much broader ideal processing windows than its counterparts with a central five-membered ring and previously described highly active TPA PIs. Surprisingly, a writing speed as high as 80 mm/s was obtained for the microfabrication of complex 3D structures employing acrylate-based formulations. These highly active TPA PIs also exhibit excellent thermal stability and remain inert to one-photon excitation. Straightforward synthesis combined with high TPA initiation efficiency makes these novel initiators promising candidates for commercialization.
11.
Ultrafast Long-Distance Excitation Energy Transport in Donor-Bridge-Acceptor Systems
G. Duvanel, J. Grilj and
The Journal of Physical Chemistry A, 117 (5) , 2013, p918-928
DOI:10.1021/jp311540x | unige:26403 | Abstract | Article HTML | Article PDF
 
The excited-state dynamics of two energy donor–bridge–acceptor (D–B–A) systems consisting of a zinc tetraphenylporphyrin (ZnP) and a free base tetraphenylporphyrin (FbP) bridged by oligo-p-phenyleneethynylene units with different substituents has been investigated using ultrafast spectroscopy. These systems differ by the location of the lowest singlet excited state of the bridge, just above or below the S2 porphyrin states. In the first case, Soret band excitation of the porphyrins is followed by internal conversion to the local S1 state of both molecules and by a S1 energy transfer from the ZnP to the FbP end on the 10 ns time scale, as expected for a center-to-center distance of about 4.7 nm. On the other hand, if the bridge is excited, the energy is efficiently transferred within 1 ps to both porphyrin ends. Selective bridge excitation is not possible with the second system, because of the overlap of the absorption bands. However, the time-resolved spectroscopic data suggest a reversible conversion between the D*(S2)–B–A and D–B*(S1)–A states as well as a transition from the D–B*(S1)–A to the D–B–A* states on the picosecond time scale. This implies that the local S2energy of the ZnP end can be transported stepwise to the FbP end, i.e., over about 4.7 nm, within 1 ps with an efficiency of more than 0.2.
  
10.
Improved photoluminescence and afterglow of CaTiO3:Pr3+ by ammonia treatment
S. Yoon, E.H. Otal, A.E. Maegli, L. Karvonen, S.K. Matam, S. Riegg, S.G. Ebbinghaus, J.C. Fallas, , B. Walfort, S. Pokrant and A. Weidenkaff
Optical Materials Express, 3 (2) , 2013, p248-259
Keywords: fluorescent materialsrare-earth doped materials
DOI:10.1364/OME.3.000248 | unige:26402 | Abstract | Article HTML | Article PDF
The phosphor CaTiO3:Pr3+ was synthesized via a solid-state reaction in combination with a subsequent annealing under flowing NH3. Comparatively large off-center displacements of Ti in the TiO6 octahedra were confirmed for as-synthesized CaTiO3:Pr3 by XANES. Raman spectroscopy showed that the local crystal structure becomes highly symmetric when the powders are ammonolyzed at 400 °C. Rietveld refinement of powder X-ray diffraction data revealed that the samples ammonolyzed at 400 °C have the smallest lattice strain and at the same time the largest average Ti-O-Ti angles were obtained. The samples ammonolyzed at 400 °C also showed the smallest mass loss during the thermal re-oxidation in thermogravimetric analysis (TGA). Enhanced photolumincescence brightness and an improved decay curve as well as the highest reflectance were obtained for the samples ammonolyzed at 400 °C. The improved photoluminescence and afterglow by NH3 treatment are explained as a result of the reduced concentration of oxygen excesses with simultaneous relaxation of the lattice strain.
9.
Tetrathiafulvalene-Benzothiadiazoles as Redox-Tunable Donor-Acceptor Systems: Synthesis and Photophysical Study
F. Pop, A. Amacher, N. Avarvari, J. Ding, , , , J. Hauser, S.-X. Liu and S. Decurtins
Chemistry - A European Journal, 19 (7) , 2013, p2504-2514
Keywords: charge transferdonor-acceptor systemsfluorescencephotophysicsredox chemistry
DOI:10.1002/chem.201202742 | unige:26401 | Abstract | Article PDF
 
Electrochemical and photophysical analysis of new donor–acceptor systems 2 and 3, in which a benzothiadiazole (BTD) unit is covalently linked to a tetrathiafulvalene (TTF) core, have verified that the lowest excited state can be ascribed to an intramolecular-charge-transfer (ICT) π(TTF)→π*(benzothiadiazole) transition. Owing to better overlap of the HOMO and LUMO in the fused scaffold of compound 3, the intensity of the 1ICT band is substantially higher compared to that in compound 2. The corresponding CT fluorescence is also observed in both cases. The radical cation TTF+. is easily observed through chemical and electrochemical oxidation by performing steady-state absorption experiments. Interestingly, compound 2 is photo-oxidized under aerobic conditions.
  
8.
Modular Synthesis, Orthogonal Post-Functionalization, Absorption, and Chiroptical Properties of Cationic [6]Helicenes
F. Torricelli, J. Bosson, C. Besnard, , and J. Lacour
Angewandte Chemie International Edition, 52 (6) , 2013, p1796-1800
Keywords: areneshelical structuressynthetic methodsUV/Vis spectroscopyvicarious nucleophilic substitution
DOI:10.1002/anie.201208926 | unige:26214 | Abstract | Article HTML | Article PDF
Novel cationic diaza-, azaoxo-, and dioxo[6]helicenes are readily prepared and functionalized selectively by orthogonal aromatic electrophilic and vicarious nucleophilic substitutions (see scheme). Reductions, cross-coupling, or condensation reactions introduce additional diversity and allow tuning of the absorption properties up to the near-infrared region. The diaza salts can be resolved into single enantiomers.
7.
Analysis of the Experimental Data for Pure and Diluted [FexZn1–x(bbtr)3](ClO4)2 Spin-Crossover Solids in the Framework of a Mechanoelastic Model
P. Chakraborty, C. Enachescu and
European Journal of Inorganic Chemistry, 2013 (5-6) , 2013, p770-780
Keywords: spin crossovermechanoelastic modeldopingironzinc
DOI:10.1002/ejic.201201193 | unige:26499 | Abstract | Article PDF
 
The mechanoelastic model is applied to reproduce the experimental relaxation and thermal transition curves as determined for crystals of pure and diluted {[FexZn1–x(bbtr)3](ClO4)2} [bbtr = 1,4-di(1,2,3-triazol-1-yl)butane] spin-crossover systems. In the mechanoelastic model, the spin-crossover complexes are situated in a hexagonal planar lattice, which is similar to the 2D coordination polymer with (3,6) network topology of [Fe(bbtr)3](ClO4)2. These complexes are linked by springs, which simulate the elastic interactions between them. Owing to the change in volume of the complexes during the spin transition, an elastic force accompanies the switch of every complex. This force propagates through the entire lattice and causes a shift of all molecules in the system and thus results in a new nuclear configuration. First, the ability of the model to reproduce various shapes of thermal transition and relaxation curves in pure compounds is analyzed; these range from gradual to very steep and include hysteresis behavior for the former and from single exponential to sigmoidal or with several steps for the latter. A structural phase transition can also be accounted for by changing the shape of the sample at a fixed temperature from a regular to an elongated hexagon. Furthermore, the effect of adding Zn as a dopant in a mixed crystal series is discussed. The role of dopants on the cluster evolution is also analyzed directly and by using the correlation factor.
  
6.
A Donor–Acceptor Tetrathiafulvalene Ligand Complexed to Iron(II): Synthesis, Electrochemistry, and Spectroscopy of [Fe(phen)2(TTF-dppz)](PF6)2
N. Dupont, Y.-F. Ran, S.-X. Liu, J. Grilj, , S. Decurtins and
Inorganic Chemistry, 52 (1) , 2013, p306-312
DOI:10.1021/ic3019277 | unige:25113 | Abstract | Article HTML | Article PDF
The synthesis and photophysical properties of the complex [Fe(phen)2(TTF-dppz)]2+ (TTF-dppz = 4′,5′-bis-(propylthio)tetrathiafulvenyl[i]dipyrido[3,2-a:2′,3′-c]phenazine, phen = 1,10-phenanthroline) are described. In this complex, excitation into the metal–ligand charge transfer bands results in the population of a high-spin state of iron(II), with a decay lifetime of approximately 1.5 ns, in dichloromethane, at room temperature. An intraligand charge transfer state can also be obtained and has a lifetime of 38 ps. A mechanism for the different states reached is proposed based on transient absorption spectroscopy.
5.
Excited-state dynamics of porphyrin-naphthalenediimide-porphyrin triads
, S. Bhosale, S.J. Langford and
Physical Chemistry Chemical Physics, 15 (4) , 2013, p1177-1187
DOI:10.1039/c2cp43595k | unige:25114 | Abstract | Article PDF
 
The excited-state dynamics of two triads consisting of a naphthalenediimide (cNDI) substituted at the core by two zinc (ZnP) or free-base tetraphenylporphyrins (FbP) was investigated by ultrafast fluorescence and transient absorption spectroscopy. The electronic absorption spectra of the triads are almost the composites of those of the constituents, pointing to a weak electronic coupling and to a localization of the excitation energy on one of the porphyrins. In cyclohexane, the excited-state dynamics of the triads are essentially the same as those of the individual porphyrins, with the exception of the Soret emission of the ZnP triad, whose lifetime exhibits a more than 10 fold shortening compared to ZnP. A similarly ultrafast fluorescence decay was measured in tetrahydrofuran and benzonitrile. In these two solvents, charge separation from the excited porphyrin to the cNDI was found to take place with ~1 ps and ~25 ps time constants in the ZnP and FbP triads, respectively. The build up of the charge-separated state population in the ZnP triad is independent on the excitation wavelength, indicating that charge separation takes place from the lowest singlet excited state. Charge recombination occurs with a time constant around 8 ps in both triads, i.e. is slower than charge separation in the ZnP triad but faster in the FbP triad. These differences are rationalized in terms of the driving forces for charge separation and recombination.
4.
A Comparison of Sensitized Ln(III) Emission using Pyridine- and Pyrazine-2,6-Dicarboxylates - Part II
E.G Moore, J. Grilj, and P. Ceroni
Dalton Transactions, 42 (6) , 2013, p2075-2083
DOI:10.1039/c2dt32229c | unige:26400 | Abstract | Article HTML | Article PDF
The synthesis, X-ray structures and photophysical properties of several new Ln(III) complexes with pyrazine-2,6-dicarboxylic acid (H2PYZ) that demonstrate excellent stability and solubility in non-aqueous solution are reported, and compared to structurally analogous complexes with pyridine-2,6-dicarboxylic acid (H2DPA). The Eu(III) and Yb(III) complexes demonstrate efficient metal centered luminescence in the visible and Near Infra-Red (NIR) regions respectively. Low temperature (77 K) phosphorescence measurements using the corresponding Gd(III) complex allowed the photophysical properties of the sensitizer to be rationalized, together with corresponding TD-DFT studies for a model complex. Lastly, we have evaluated the sensitization efficiencies for these complexes, and have undertaken femtosecond transient absorption (TA) measurements in order to evaluate the relative importance of the intersystem crossing and energy transfer processes involved with sensitized Ln(III) emission via the antennae effect.
  
3.
First-Principles Simulation of Absorption Bands of Fluorenone in Zeolite L
, , G. Tabacchi, E. Fois, G. Calzaferri and A. Devaux
Physical Chemistry Chemical Physics, 15 (1) , 2013, p159-167
DOI:10.1039/c2cp42750h | unige:24518 | Abstract | Article PDF
The absorption spectrum of fluorenone in zeolite L is calculated from first-principles simulations. The broadening of each band is obtained from the explicit treatment of the interactions between the chromophore and its environment in the statistical ensemble. The comparison between the simulated and measured spectra reveals the main factors affecting the spectrum of the chromophore in hydrated zeolite L. Whereas each distinguishable band is found to originate from a single electronic transition, the bandwidth is determined by the statistical nature of the environment of the fluorenone molecule. The K+...O=C motif is retained in all conformations. Although the interactions between K+ and the fluorenone carbonyl group result in an average lengthening of the C=O bond and in a redshift of the lowest energy absorption band compared to gas phase or non-polar solvents, the magnitude of this shift is noticeably smaller than the total shift. An important factor affecting the shape of the band is fluorenone’s orientation, which is strongly affected by the presence of water. The effect of direct interactions between fluorenone and water is, however, negligible.
2.
Effect of Pressure on the Free Ion and Crystal Field Parameters of Sm2+ in BaFBr and SrFBr Hosts
P. Pal, T. Penhouët, and
Journal of Luminescence, 134 , 2013, p678-685
Keywords: Sm2+high pressure luminescencecrystal fieldBaFBrSrFBr
DOI:10.1016/j.jlumin.2012.07.010 | unige:24061 | Abstract | Article HTML | Article PDF
 
The emission spectra of Sm2+ doped in BaFBr and SrFBr hosts were measured at 10 K from ambient pressure to 8 GPa. The crystal field energy levels determined from the emission spectra were used to extract the free ion parameters (Fk and ζ ) and crystal field parameters (Bqk). The variation of Fk and ζ as a function of pressure was studied systematically and was discussed in relation to the central field and symmetry restricted covalency models. The change of the spin orbit coupling parameter (ζ) with pressure for SrFBr:Sm2+ showed very different behavior than in other matlockite hosts. Moreover the variation of Bqk under pressure was studied. The pressure dependence of the Bqk was described quantitatively using the Superposition Model (SM) with the help of structural parameters as a function of pressure, obtained from periodic DFT calculations. The validity of the SM was tested for Sm2+ in BaFBr and SrFBr. It is shown that this model does not apply to SrFBr, in contrast to other matlockite host materials.
  
1.
Chromium(III)-trisoxalate, a versatile building block for luminescent materials
M. Milos and
Journal of Luminescence, 133 , 2013, p15-20
Keywords: chromium(III)-tris-oxalateenergy migrationfluorescence line narrowingspectral diffusionpersistent spectral hole burning
DOI:10.1016/j.jlumin.2011.12.053 | unige:24060 | Article HTML | Article PDF
Chromium(III)-trisoxalate,[Cr(ox)3]3- (ox = C2O42-), incorporated into polymeric networks of composition [NaCr(ox)3][MII(bpy)3] and [NaCr(ox)3][MIII(bpy)3]ClO4 (bpy= 2,2'-bipyridine, MII = Zn, Fe, Ru; MIII = Rh, Cr), results in interesting features ranging from phonon-assisted and resonant energy migration within the R1 line the 2E state to persistent spectral side-hole burning via the latter, and manifestations of specific nearest-neighbour π–π interactions between bipyridine and oxalate.



Redisplay in format 

                 

    in encoding 

  
Format for journal references
Format for book references
Last update Wednesday October 02 2013