RAMAN STUDY OF CONFORMATIONAL DISORDER IN n-PrNH₂X (X = Cl, Br, I)

H. HAGEMANN and H. BILL
Groupe de Physico-Chimie du Solide, Université de Genève, 30, quai E. Ansermet, CH-1211 Geneva 4 (Switzerland)
J. MAREDA
Département de Chimie Organique, Université de Genève, 30, quai E. Ansermet, CH-1211 Geneva 4 (Switzerland)
(Received 3 September 1984)

ABSTRACT

We have obtained the room temperature Raman spectra of the three salts n-PrNH₂X (X = Cl, Br and I). The concentration of gauche isomers increases when passing from the chloride to the iodide. We have evaluated experimentally the lattice contribution to the energy difference between gauche and anti conformers. A force field calculation yielded an energy difference of 0.85 kcal mol⁻¹ between the two conformations of the propylammonium moiety.

INTRODUCTION

The room temperature crystal structure of the n-propylammonium halides has been found to be tetragonal with space group P4/nmm (Z = 2) [1]. It is characterized by free rotation of the organic cation. Analysis of the structure factors in n-PrNH₂Cl [1] showed configurational isomerism.

In a more recent NMR study [2] on n-PrNH₂Cl, the dynamical disorder in the room-temperature phase was investigated. The second moment analysis revealed a relatively fast chain rotation about its long axis with independent methyl- and ammonium-group rotations. The activation energy of the chain rotation is found to be 2.5 kcal mol⁻¹, and thus this rotation is hindered. These conclusions have been obtained assuming that only anti isomers exist in n-PrNH₂Cl, in contrast to the results of the X-ray study. The authors of this NMR study suggested a vibrational analysis of the conformation of the propylammonium group in n-PrNH₂Cl.

In the course of investigations on the vibrational spectra of the alkylammonium halides [3], we decided to study the Raman spectra of n-PrNH₂X (X = Cl, Br, I) to obtain additional information on the conformation of the propylammonium ion.
n-PrNH₃Cl (Fluka, Switzerland) was vacuum dried and used without further purification. n-PrNH₃X (X = Br, I) were obtained by reacting an aqueous solution of n-propylamine with aqueous HX. After evaporation of the water, the powders were vacuum dried. n-PrNH₃I was additionally washed with ether to remove impurities of molecular iodine.

All the samples were finely ground and sealed in glass capillaries.

The Raman spectra were obtained using the laboratory assembled spectrometer described in ref. 3. All the measurements were performed at room temperature with the 488 nm line of the argon ion laser.

RESULTS AND DISCUSSION

The room temperature Raman spectra of n-PrNH₃ in H₂O and of polycrystalline n-PrNH₃X (X = Cl, Br, I) were measured. The solution spectrum is in agreement with the results reported by Edsall in 1937 [4].

Figure 1 shows the Raman spectra of solid n-PrNH₃X (X = Cl, Br, I) in the range 600 to 1100 cm⁻¹. The simplest spectrum belongs to the chloride and the two transitions at 876 and 1049 cm⁻¹ may be assigned to C—C stretching vibrations pertaining to the anti isomer. These values agree fairly well with the corresponding modes at 837 and 1058 cm⁻¹ in liquid n-butane [5]. The band at 997 cm⁻¹ has been assigned to an NH₃ rocking mode [3]. The additional transitions observed at 822, 950, 1015 and 1076 cm⁻¹ in n-PrNH₃I are assigned to the gauche isomer by analogy with the results reported for liquid n-butane [5].

We observe thus an increase of gauche isomers in the solid state when passing from the chloride to the iodide in the solids n-PrNH₃X (X = Cl, Br, I). The solution spectrum exhibits transitions pertaining to both gauche and anti isomers.

Using the intensity ratio of the 876 and 822 cm⁻¹ lines, we have evaluated the energy difference between the two conformations with the help of the relation

I("gauche")/I("anti") = C × exp(−ΔE/RT)

Assuming further that ΔE can be split into two components, i.e. ΔEₘₑₙ which is equal to the internal energy difference of an individual molecule and ΔEₚₑₚ which accounts for the lattice contribution to the total energy difference, and assuming additionally that in the solution on a time average ΔEₚₑₚ = 0, we can evaluate ΔEₚₑₚ for the three halides by

I("gauche")/I("anti") {solid} × I("anti")/I("gauche") {solution} = exp(−ΔEₚₑₚ/RT)

The results of this evaluation are given in Table 1, together with the two tetragonal lattice parameters [1] for n-PrNH₃X (X = Cl, Br, I). Table 1 shows that the lattice parameter a is mainly affected by the size of the halogen.
Fig. 1. Room temperature Raman spectra of powdered n-PrNH₂X between 800 and 1100 cm⁻¹. (A) X = I, λ = 514.5 nm (0.2 W), resolution 2 cm⁻¹; (B) X = Br, λ = 488 nm (0.2 W), resolution 2 cm⁻¹; (C) X = Cl, λ = 488 nm (0.3 W), resolution 3 cm⁻¹.

ΔEₜₐₜ can be correlated to this parameter through an experimental relation

ΔEₜₐₜ ∝ (a - a₀)⁻¹ where a₀ = 5.9 Å

This relation suggests a simple steric hindrance of the conformational equilibrium.

TABLE 1

Room temperature tetragonal lattice parameters (space group P4/1 nm, Z = 2) of n-PrNH₂X (X = Cl, Br, I) [taken from ref. 1] and lattice energy contribution to the conformational equilibrium. The values in parentheses indicate the evaluated experimental error.

<table>
<thead>
<tr>
<th>X</th>
<th>a</th>
<th>c</th>
<th>ΔEₜₐₜ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Å</td>
<td>Å</td>
<td>kcal mol⁻¹</td>
</tr>
<tr>
<td>Cl</td>
<td>6.220</td>
<td>7.377</td>
<td>2.5 (0.4)</td>
</tr>
<tr>
<td>Br</td>
<td>6.497</td>
<td>7.380</td>
<td>1.43 (0.2)</td>
</tr>
<tr>
<td>I</td>
<td>6.931</td>
<td>7.332</td>
<td>0.84 (0.1)</td>
</tr>
</tbody>
</table>
We executed force-field calculations on the propylammonium group using Allinger's program MM2 [6, 7]. The standard force-field of this program was used [6]. In order to determine the relative energy of possible rotamers, the rotational barrier around the central carbon–carbon bond was computed.

The energy profile (shown in Fig. 2) was obtained by incrementing the dihedral angle \(\tau(C–C–C–N) \) by 5° starting from 180° (anti-form). All remaining degrees of freedom were optimized.

As can be anticipated, the eclipsed-form is located on the top of a barrier of 3.65 kcal mol\(^{-1}\) where \(\tau = 120° \). Corresponding within 5° to the gauche-form, the second minimum is detected for \(\tau = 65° \). In terms of relative energy, the gauche rotamer is less stable than the anti-form by 0.85 kcal mol\(^{-1}\). This value was obtained on searching by varying only one dihedral angle (\(\tau \)). Multidimensional grid search could further reduce the energy difference between the gauche and the anti conformer.

It should be pointed out that our results for the propylammonium group are in qualitative agreement with those obtained by Allinger et al. [8, 9] for the isoelectronic n-butane (barrier 3.35 kcal mol\(^{-1}\); gauche form 0.67 kcal mol\(^{-1}\)).

![Fig. 2. Energy profile corresponding to internal rotation about the central carbon–carbon bond in the n-propylammonium group calculated using Allinger's program MM2 [6, 7].](image)
Using the calculated value of ΔE_{int} (0.85 kcal mol$^{-1}$), one obtains at room temperature a concentration ratio gauche/anti of 0.43. This value may be compared with the observed intensity ratio $I(832 \text{ cm}^{-1})/I(873 \text{ cm}^{-1})$ in the solution spectra of the propylammonium group (concentration 10% by weight). This ratio is found to be 0.71 at room temperature.

Considering that the Raman intensity is only proportional to the concentration and that the force field calculations remain approximate, we may qualitatively justify observing mainly ΔE_{int} in the solution spectra. Additional measurements of solution spectra as a function of temperature are in progress to obtain an experimental value of ΔE_{int}.

As suggested in the NMR study [2], we may now evaluate the concentration of gauche isomers in solid n-PrNH$_3$Cl. Using the calculated value of ΔE_{int} (0.85 kcal mol$^{-1}$) and the experimental value of ΔE_{ex} (2.5 kcal mol$^{-1}$), we obtain at room temperature the concentration ratio gauche/anti of 0.03. The relative gauche population is thus almost negligible. This result supports the analysis of the NMR spectra [2], but contradicts the crystallographic analysis [1].

ACKNOWLEDGEMENTS

This work has been supported by the Swiss National Science Foundation. The authors thank D. Mottier and J. P. Perler for obtaining several of the Raman spectra.

REFERENCES