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Abstract

We present a theoretical analysis of the temperature dependence of the vanadyl pyrophosphate VO,P,0; 3'P NMR
spectra. Four distinct phosphorus sites responsible for four signals are identified in the crystal structure. The magnetic
states of the crystal are described by two alternative models: the spin ladder and the dimer chain. Within both models,
finite clusters with and without periodic conditions are considered. The fit of the experimental NMR data allows us to
define combinations of hyperfine coupling parameters which are found to be similar in both spin models. © 2000

Elsevier Science B.V. All rights reserved.

1. Introduction

The vanadyl pyrophosphate compound
(VO),P,0; (VPO) attracts much attention from
the physical and chemical communities, but from
rather different points of view. The chemical im-
portance of VPO is dictated by the fact that it
represents the most active phase of the vanadium-—
phosphorus—oxide catalysts for the selective oxi-
dation of butane and butene to maleic anhydride
[1]. Numerous experimental and theoretical studies
were performed to elucidate the electronic and
structural properties of this system and, finally, to
identify the nature of the catalytic active site. In
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solid state physics, the interest to VPO has grown
from its intriguing magnetic properties. It has long
been considered as a first example of antiferro-
magnetic spin ladder [2-7]. This low-dimensional
magnetic system (Fig. 1(1)) is characterized by two
exchange parameters, corresponding to the near-
est-neighbour interactions: along the infinite chain
(/) and along the rungs of a ladder geometry (J.).
However, the magnetic susceptibility of the VPO
can be accurately fitted not only by the spin ladder
model, but also by a rather different model,
namely the dimer chain [2,7]. For the latter, the
one-dimensional chain is described by two alter-
nating exchange parameters J; and J, (Fig. 1(1)). It
is clear that these two models correspond to quite
different schemes of exchange interaction.

Although, the spin ladder model visually seems
more natural for the VPO (Fig. 1(2)), latest
quantum-—chemical [8] and experimental (inelastic
neutron scattering) [9,10] studies favour the dimer
chain.
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Fig. 1. (1) The two concurrent interactions schemes postulated for the VPO system. They correspond to the spin ladder model (top)
and the dimer chain model (bottom). (2) The unit cell of VPO. It contains 104 atoms. This figure shows its idealized structure as

proposed by Thompson et al. [11].

Among all the experimental methods used in
the VPO studies, the 3P NMR occupies a special
place, since it gives access to the local character-
istics of the electronic structure. NMR was widely
used along different VPO research directions. The
first P NMR data for VPO were obtained by Li
et al. with the spin echo technique [12]. A very
broad band was observed around 2500 ppm.
However, more recent studies of Tuel [13] and
Yamauchi [14] showed the presence of four signals
with different temperature dependences. It suggests
the presence of four types of phosphorus atom in
the solid with different hyperfine coupling with
paramagnetic vanadium centers. It is well known
that the interpretation of the NMR data for a
magnetically coupled system such as VPO must be
based on the analysis of the exchange interactions
[15,16]. In order to describe the temperature de-

pendence of the NMR paramagnetic shift, one
needs to know the energy spectrum and the ei-
genfunctions of electronic spin levels.

Recently, we performed quantum—chemical
calculations of molecular models of VPO in the
diamagnetic state (all vanadium atoms are in d°
electronic configuration) [17]. In the present Let-
ter, we want to analyze the temperature depen-
dence of VPO NMR spectroscopy data on the base
of the real (with some simplifications) VPO struc-
ture. We will identify four different types of
phosphorus atom and define dominating hyperfine
interactions for them. The pathways of the ex-
change interactions between vanadium ions will be
considered either within the spin ladder model or
within the dimer chain model. For both cases, we
firstly study a finite cluster and then impose peri-
odic conditions.
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2. Theoretical model

The hyperfine interaction in paramagnetic sys-
tems represents usually the main contribution to
the observed NMR chemical shifts. In the case of a
nucleus sensing only one paramagnetic center in-
dexed by i, the expression for this contribution is
[16]

gl A
) = g 3T
2 Ki(n)S, (S, +1)(2S, + 1) exp (— E, /ksT) 0
Zn (2Sn+1)exp(_E"/kBT) ’

where 4; is the hyperfine coupling constant, g the
electronic g-factor, and g; is the nuclear gyro-
magnetic factor. The summation runs over all en-
ergy levels E, characterized by the total spin S,.
The projection coefficients K;(n) are given

Ki n)= pre— 5

(2)

where 5, is the spin operator of the center i and S is
the total spin operator. In order to simplify the
relation (1) and derived expressions, we introduce
the quantity

F(T)
_ 2. Ki(n)Su(S, +1)(25 +1)exp(
n > (28, +1

— E,/kgT)
Yexp (— E,/ksT)

3)

which gives the temperature dependence of the
spin density on the paramagnetic center i. Eq. (1)
now reads

with € = gug/(3grpyks). If the nucleus sees more
than one center, Eq. (4) is replaced by

Opara ZA F(T (5)

Opara(T) =

where now the summation runs over all para-
magnetic centers. As it directly follows from (1)-
(5), the calculation of the hyperfine shift needs the
knowledge of energies E, and eigenfunctions |S,)
of the spin levels.

The spin system of VPO is formed by interact-
ing spins s; = 1/2, corresponding to vanadium
atoms in oxidation state +IV (electronic configu-
ration d'). We consider the two models of ex-
change interaction in VPO mentioned in Section 1.
In the case of spin ladder hypothesis, the spin
subsystem of VPO is described by the Heisenberg
Hamiltonian

Hi=J1 Z§2k—l Sy +J) Z
=1 ]

. . S o
(SZk—l Skl T S 'S2k+2)~ (6)

This model takes into account two types of ex-
change interaction. The J, parameter is responsi-
ble for the indirect exchange through di—p—oxo
bridges along c-direction, and the J; describes
the exchange in V=0...V =0 units along the
a-direction (Fig. 1(2)).

The magnetic susceptibility data were success-
fully fitted on the base of this model with
Jy=90.7 K and J, =90.1 K [7].

The dimer chain model supposes that the ex-
change through vanadyl oxygens is negligible, but
that the interaction through O—P-O bridges in the
¢-direction is important. Although this pathway
corresponds to a longer V-V distance, recent ex-
perimental data [9] and quantum-—chemical esti-
mations agree with this statement [8]. The
corresponding Heisenberg Hamiltonian is

o0 o0
Hr =J E Sok—1 S +J2 E Sk * S2k41- (7)
=1 =1

The satisfactory description of magnetic data was
achieved with J; = 128.9 and J, = 93.1 K [7].

The Hamiltonians (6) and (7) can be diago-
nalized exactly in the case of a finite number of
centers. In order to handle infinite systems, dif-
ferent approximation schemes can be used. For
both spin models, we considered finite clusters
with 2 x 6 spin centers. As was shown earlier by
Barnes and Riera [7], clusters of such size give a
good estimate of bulk susceptibility. In order to
improve this description, we also considered clus-
ters of the same size, but with periodic conditions.
We will show below that both approximations give
very close results.
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Next, we must choose the most important hy-
perfine interactions defining the paramagnetic
shift. It is done by inspecting the crystal structure
of VPO. The real structure of VPO, whose deter-
mination was firstly addressed by Gorbunova and
Linde [18] and recently precised by Nguyen et al.
[19], shows a complex packing. For our purposes,
we consider rather the simplified model proposed
by Thompson et al. [11]. This idealized model
preserves the equivalence of atoms found in the
real structure and removes minor variations in
bond lengths and bond angles. Next, let us recall
that for a nucleus, the magnitude of the hyperfine
interaction is defined by the transferred spin den-
sity which in its turn depends predominantly on
the nucleus distance to the paramagnetic centers.
Therefore, the most important factor to be taken
into account in the estimation of the hyperfine
interactions is the distances between a 3'P nucleus
and magnetic vanadium centers. If we limit our-
selves to distances less than 4 A, it is easy to find
two types of phosphorus atom (Fig. 2). For one of
them the shortest distances to vanadium atoms are
3.15 (twice), 3.34 and 3.41 A. For the second one,
these distances are: 3.23 (twice), 3.34 and 3.41 A.

We introduce four different hyperfine constants
which depend only on the distances (Table 1).

However, all vanadium atoms are not equiva-
lent. If we consider only the first coordination

‘ Oxygen

O Phosphorus

Fig. 2. A view from the top of the unit cell associated with the
idealized structure, the shortest ' PV distances are indicated by
[11].

O Vanadium

Table 1
The four different hyperfine coupling constants obtained using
the 3'P-V distances as criteria

Coupling constant Ay A As Ay
Distance (A) 3.15 3.23 3.34 3.41

sphere, the difference appears in the relative ori-
entation of the vanadyl group. Let us note the
hyperfine constants for vanadium atoms with
vanadyl bond up and down by superscripts +
and —, respectively. Finally, we obtain four types
of phosphorus atom characterized by the follow-
ing combinations of the hyperfine constants

1o 24}, A7, 47
11 < 245, A5, Af

Il & 247,45, A
IV & 245,47 ,4;

and for which paramagnetic contributions read

8hn(T) = & RATFY (T) + AL F5 (T) + A, Fy (7)),

para T
C o S

Oa(T) = 7 [RATFy (T) + A3 Fy (T) + A{F (T),
3

O (T) = AL (T) + A5 Fy (T) + AL F (7)),
€ .. o

O(T) = 7 [RASFS (T) + ALF (T) + A Fy ()]

(8)
In our approach, we distinguish phosphorus atoms
only by their distances to the magnetic vanadium
centers and the nature of these latters. However,
the transferred spin density at a phosphorus atom
can also depend on its pathway. If one takes into
account also the V-O-P angles, the number of
non-equivalent phosphorus atoms in the elemen-
tary cell is equal to eight.

Now, our goal is to fit the observed temperature
dependent NMR signals using Eq. (8) and to de-
termine the hyperfine parameters 4. The func-
tions F* will be calculated within the different
approximation schemes mentioned above.

3. Results and discussion

In order to fit the NMR data of the exchange
coupled system VPO, we need to know the values
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of the exchange constants. In principle, they can
also be used as fit variables, but this increases the
number of variables. In agreement with the results
of the magnetic susceptibility studies, we took for
the spin ladder model J; = J, = 90 K [7]. For the
dimer chain model, we took the parameters found
from inelastic neutron scattering experiments
J; =119 and J, = 101 K [9].

In both models, we considered clusters con-
taining six dimers, i.e., 12 magnetic centers, with or
without periodic conditions. Using the values of
the coupling constants mentioned above, the
Hamiltonians (6) and (7) have been diagonalized
within the individual subspaces of total electronic
spin §$=0,...,6. The knowledge of the eigen-
functions allowed us to readily evaluate the pro-
jection coefficients K; (see Appendix A). We thus
can adjust the NMR data using the Eq. (8).

We took as estimates of the functions F=(T') in
Eq. (8) those resulting from the diagonalization of
the model Hamiltonians. Actually, for infinite
model systems, those functions which are equiva-
lent to a common one we note F, (T) (see Ap-
pendix A). In the case of finite clusters, this
equivalence is not respected and we must choose
the paramagnetic centers which donate spin den-
sity to the phosphorus atoms. The most conve-
nient choice is to take for each model system a
paramagnetic center located in the middle of the
cluster, close to a bisecting plane (for the dimer
chain model, this plane is parallel to the (d, 5)
plane, and for the spin ladder model, it is parallel
to the (1_9)7 ¢) plane). The corresponding functions
F,(T) are taken as estimates of F,. (7). With this
choice, the errors due to the clusters finite size are
minimal. When dealing with systems with periodic
conditions, the quantities F;(7) are identical (see
Appendix A) and also taken as estimates of F, (7).
Fig. 3 shows the plot of the functions F, (T) ob-
tained for the spin ladder and dimer chain models,
with and without periodic periodic conditions. For
each model, both approximations give nearly
identical results, slight differences occur only at
low temperatures. The values taken by F.,(T) for
the spin ladder model are lower than those ob-
tained for the dimer chain model. At high tem-
peratures, this gap between the two families of
curves remains almost constant.
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Fig. 3. Temperature dependence of the F,, function in the case
of the spin ladder with (e) and without periodic (o) conditions,
and in the case of the dimer chain model with () and without
(0) periodic conditions. The inset allows to emphasize the
slightly different behaviours encountered at low temperatures.

With these approximations, Eq. (8) now reads

5K (T):ZK@:ZKSpara(T)a (9)

para T
with K = I-1V and
Xy =247 + 47 + 4,
Xy =247 + 45 + 47,
Xm =245 + 45 + 45,
Xy =245 + A7 + 45

(10)

The sums Xk are given by the fit of P NMR data
through the use of the formulae

385,(T) = 8%, + Zx dpara(T), (K =1-1V) (11)

exp

5fxp represents the experimental data for the
phosphorus atoms of type K, and 5§ia their dia-
magnetic shift. In order to proceed, we used the
experimental data set published by Tuel. Mea-
surements were done at six different temperatures
in the 150-300 K temperature range and 24 points
were thus obtained. We performed the adjustment

by minimizing the function
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. 2
1 1;11 Zi [55);;)(7:') - (5§ia + 5para(Ti) ZK)}

N &5 [ ]

i

(12)

where N =24 is the number of experimental
points, and n =8 is the number of parameters
used. However, the 3P NMR spectra recorded by
Yamauchi et al. in the temperature range 4-300 K
indicate at low temperatures that the different
types of 3P nuclei have very close diamagnetic
shifts (about —150 ppm). This allowed us to
significantly decrease n to 5 by constraining the
diamagnetic shift parameters to take a common
value dg4,.

6000 I T T T T
5000 -

4000

3000 § ’

3 (ppm)
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1000 -

Fig. 4 shows the temperature dependence of the
3'P NMR shifts and the curves resulting from the
fits.

As can be noted, a reasonably good agreement
with the experimental data has been achieved.
Remarkably, this is the case with the spin ladder
model as well as with the dimer chain model. The
values obtained for the parameters and the resi-
dues # are given in Table 2.

For each model, we can see that the presence or
absence of periodic conditions leads to similar re-
sults. We note also that fits are slightly better with
the dimer chain model than with the spin ladder
one, whereas the sums 2 are of the same order of
magnitude. However, there is a small drop in the
values of these constants of approximatively 2
MHz when going from the spin ladder model to

1 1 1 1 1 1

_1 000 1 1 1 1 1 1
0 50 100

T (K)

150 200 250 300 350 O 50 100

150 200 250 300 350
T(K)

Fig. 4. Adjustment of the VPO *'P NMR data in the case of the spin ladder model (left) and in the case of the dimer chain model
(right), with (solid lines) and without (dashed lines) periodic conditions.

Table 2

Results obtained by the adjustment of the 3'P NMR data in the frameworks of the spin ladder model and the dimer chain model

Spin ladder

Dimer chain

No periodicity Periodicity No periodicity Periodicity
R 0.0045 0.0045 0.0039 0.0039
2in (MHz) 61.1, 53.1 61.2,53.2 58.6, 51.0 58.7, 51.0
Zmv (MHz) 47.5,42.8 47.6, 42.8 45.6, 41.0 45.6, 41.0
Odia (ppm) —167.0 —168.8 —168.2 —168.8
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the dimer chain model. This is due to the fact that
the F,, function takes higher values when evalu-
ated in the framework of the dimer chain model
than when calculated in the framework of the spin
ladder model (Fig. 3).

It is obvious that we cannot obtain from our fits
the values of the hyperfine coupling constants
since we have only four linear combinations
(2, K=1-1V) for eight unknown parameters
A5, i=14, e==).

Recent works on the dimer chain model indi-
cate that the privileged exchange pathways corre-
spond to the exchange interactions through O-P-
O bridges [8,20]. If these pathways correspond to
the most important transfer of the spin density, the
hyperfine constants A7 and 45 are predominating
in the sums Xk. Since hyperfine interaction gen-
erally decreases with the distance between the nu-
cleus and paramagnetic centers involved in the
interaction, we can assume that the inequality
AT > A5 is verified. In this case, we have the re-
lations

ZI ~ 2AT,
ZIII ~ 2A;r7

ZH ~ 21417,

2 =245, (13)
where the assignments for Xi, 21y on the one hand,
and Xy, 21y on the other hand, are arbitrary since
we cannot distinguish the constant 4 from the
constant A;. So, using the fitted values of the pa-
rameters X} for the dimer chain model (Table 2),
we obtain the highest values allowable for the
hyperfine constants 47 and 45 within this model

framework:
Ali ~ 29;26MHz

(14)
A5 ~23;21MHz (A3 = A; =~ 0)

To our knowledge, this is the first time, estimates
of hyperfine coupling constants are given for the
(VO,)P,07 system.

Our fit is limited by the 150-300 K temperature
range used to probe the spin ladder and dimer
chain models. The recent *'P NMR studies of
Yamauchi et al. covered the more important
temperature range 4-300 K [14]. Their low tem-
peratures data reveal that all four signals have a
broad maximum around 80 K which is also dis-

played by the curve of the bulk susceptibility
plotted against the temperature [2]. The theoretical
signals we have computed present also such a
maximum (Fig. 4): in the case of the spin ladder
model with or without periodic conditions, the
maximum is located at 80 K; in the case of the
dimer chain model, it is located at 70 K when
periodic conditions are used and 80 K when they
are not used.

Yamauchi et al. have shown that the four types
of 3'P signal can be divided into two families: the
first corresponds to the two types of nucleus
resonating at higher fields, the second consists of
the two types resonating at lower fields. Within
each family, both types of signal show the same
behaviour at low temperatures. Such phenome-
non has been interpreted by the presence of two
types of dimer chain in VPO; this model was
called the double gap model (as it explains the
two singlet-triplet gaps observed by inelastic
neutron scattering experiments [9]). One chain,
referred to as chain A, is the one we have used for
our studies; it is associated with the exchange
coupling constants (Ji',J;') = (119,101 K). The
second chain, referred to as chain B, is associated
with the exchange coupling constants (J£,J?) =
(130,90 K). In order to probe the double gap
model, additional parameters are needed to dis-
tinguish the hyperfine coupling interactions aris-
ing from one chain or the other. Within this
model framework, one can readily show that the
expression Eq. (9) for the paramagnetic shift
takes the form
HlT) = % [GAFA(T) + o2 (T)) (15)
where superscripts 4 and B refer to the con-
tributions arising from chains A and B and where
parameters o (X = 4,B) admit one of the foll-
owing four expressions: oy € {247,(X),245(X) +
247 (X)}. For both chains, we have evaluated the
F.(T) functions with the exchange parameters
proposed in [14]. They are plotted on Fig. 5.

One notes on Fig. 5 that the functions differ at
low temperatures and that, as expected, the func-
tion corresponding to the chain A (with the
smaller gap) takes higher values than the function
corresponding to chain B (with the larger gap).
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Fig. 5. Temperature dependence of the F,, function for chain A
(solid line) and chain B (dashed line) in the case of the double
gap model (periodic conditions were used).

Spin density increases with temperature faster on
chain A than on chain B. One notes also that the
contributions from both chains are identical at
high temperatures. Such observation implies that
we cannot have further informations using the
double gap model to analyze the data measured in
the 150-300 K temperature range Nevertheless,
since we have at high temperatures FZ(7T) =
F5(T), we can establish the following equalities:
3y 2ol + o, (k = i-iv), where the parameters X
are those obtained within the framework of the
dimer chain model (Table 2).

It is clear that models such as spin ladder and
dimer chain, or even double gap model, remain
comparatively simple regarding the structural
features of VPO. In fact, exchange parameters do
not depend only on V-V distances as it was pro-
posed in [14]. It was shown for different V(+1V)
systems with oxo, arsenate and phosphate bridges
that they strongly depend on small angle varia-
tions [21,22]. Therefore, if one takes into account
the structural details, it becomes necessary to in-
troduce more than two exchange parameters, even
for a single chain, in order to give an accurate
description of the VPO system.

4. Conclusion

Taking into account the exchange interactions
in the paramagnetic system (VO,)P,0O;, we were
able to analyze its *'P NMR data over the 150-300
K temperature range. Using the P-V distances and
the orientation of the vanadyl groups as criteria,
we have identified four different types of phos-
phorus atom and defined for them dominating
hyperfine interactions. We have fitted the experi-
mental data within the spin ladder model frame-
work as well as within the dimer chain model
framework. The satisfactory agreement between
theory and experiments obtained for both models
did not allow us to favour any of the concurrent
models. However, we were able to give estimates
for the hyperfine coupling constants.

Further work on the analysis of 3'P NMR and
other magneto—chemical data for the VPO system
should consider fine structural-magnetic correla-
tions. In our forthcoming publications, we will
give a quantum—chemical analysis of the exchange
interactions in VPO which will allow us to refine
the spin model of this system.
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Appendix A. Exact numerical evaluation of the
functions F;

In order to evaluate the functions F; (Eq. 3), we
need to know the eigenvalues E, and the eigen-
functions |S,) of the system Hamiltonian. We also
need to evaluate the projection coefficients K;(n)
Eq. (2). The main difficulty encountered when
evaluating these coefficients is related to the cal-
culation of the matrix elements (S,|5; - S|S,). They
get calculated in two steps. Firstly, we use the fact
that the matrix of the operator &; .S is diagonal
when expressed in the orthonormal basis
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{I(s:,5)8)} (Si =45 =S —5); the non van-
ishing matrix elements read [S(S + 1) — s;(s; + 1)—
S,(S; + 1)]/2. Secondly, (S,|s; - S|S,) is obtained by
a simple change of basis.

We do not have to calculate all functions F;
because of the presence of symmetry properties
in the studied systems. Let us consider the sub-
space &,, possibly d-fold degenerated, corre-
sponding to the level of energy E,. Let us note
{IS¥)} (k=1,...,d) an orthonormal basis of &,
made of the system’s Hamiltonian eigenfunc-
tions. The contribution C/ of this subspace to F;
is given by

ey - (z S5 §|ssk>>>

) (28, + 1) exp (= Eu/kpT)
% >, (2S, + 1)exp (— E,/ksT)

The sum (327, (SWI3; - S|S®)) is the trace of the
operator §; .S restricted to &,. We consider a site
j related to site i through a symmetry operation
whose operator is noted #. We verify for the
fundamental observables §; and its transformed
by 25, the relation [23]: 5, = #5,2!, which gives
5§, = P52, sites i and j being equivalent. Since
the total electronic spin S is unchanged by car-
rying out the symmetry operation, the same re-
lation holds for §:S = 252'. We thus obtain the
equality

d d
D (SPIS - SIS = > [(SWI2)G: - S22
=1 =1

The right member of this equality is the trace of
the operator 5, - S restricted to the subspace gen-
erated by the orthonormal set of functions
21|SW). Because 2! and the system Hamiltonian
commute, the subspace &, is globally invariant
under the action of 2" and admits {21|S)} as an
orthonormal basis. Therefore, the trace of an op-
erator being independent of the basis choice, the
right member of the equality above is the trace of
;- S restricted to &,. We thus have

d
S (s - SIs) = > (S5 - SIs).

d
k=1 k=1

Consequently, if sites i and j are equivalent, we
verify: F; = F}.

If we consider infinite systems (spin ladder or
dimer chain), all sites are related to each other
through symmetry operations (translations and
reflections): the F; functions are all equivalent to a
unique one. The same holds for finite clusters with
periodic conditions. In the case of finite clusters
modeling dimer chain, there exists a bisecting
symmetry plane. In the case of finite clusters
modeling spin ladder, there exists two orthogonal
bisecting symmetry plane.
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