Comment on: “Nucleation and Growth of BaF$_{x}$Cl$_{2-x}$ Nanorods”

Frank Kubel$^a[a]$ and Hans-Rudolf Hagemannb

In a recent paper, Xie et al1 reported on the nucleation and growth of BaF$_{x}$Cl$_{2-x}$ nanorods. In this comment, we wish to draw attention to pertinent experimental results that shed more light on the observed morphology and structure of the nanorods discussed in reference [1]. In an independent paper, Zhang et al2 present the synthesis and characterization of Ba$_3$ClF$_7$ microrods.

The composition BaF$_2$Cl given in references [1,2] should be corrected. In the Ba/F/Cl system, three compounds have been characterized from single-crystal data: BaFCl3, Ba$_{12}$F$_{19}$Cl$_5$ and BaF$_7$Cl$_2$.4 The matlockite-type compound BaFCl can be obtained under different synthesis conditions, and Ba$_{12}$F$_{19}$Cl$_5$ forms in a flux only at high temperature. At high fluorine concentrations and at relatively low temperatures, the compound Ba$_7$F$_{12}$Cl$_2$ can be obtained in the form of hexagonal needles: melt synthesis with an NaCl/LiCl flux gives an ordered and a disordered modification5 with space group $P6_3/m$ and $P6_3/m$, respectively. Between 160°C and 250°C under hydrothermal conditions, and by gel growth at room temperature, an ordered structure6 and a superstructure7 can be obtained, respectively.

Synthesis conditions given in references [1,2] are consistent with the conditions for the formation of Ba$_7$F$_{12}$Cl$_2$. The powder pattern given in reference [1] was indexed by using unconfirmed powder diffraction data8 and should be indexed with the structural data given for ordered Ba$_7$F$_{12}$Cl$_2$ (Figure 1); an experimental FWHM of 0.03° and a presumed crystal size of about 60 nm according to the fast growth conditions was included in the pattern simulation (Powder-Cell).9 The rod-like shaped nano-units given in reference [1] are in agreement with the hexagonal needle shape (Figure 2) obtained during crystal growth and might explain the a/c ratio of the nanocrystalline material formed on precipitation.

A powder sample, kindly provided by Prof. Yadong Li, was measured additionally by X-ray diffraction using a STOE Stadi P diffractometer with capillary equipment and CuK$_{α1}$ radiation. Rietveld refinements (Topas 4.2)10 for this sample yielded the following phase composition: Ba$_{12}$F$_{12}$Cl$_2$ ($a=10.6281(3)$ Å, $c=4.17940(14)$ Å) 66 wt %, BaFCl 20 wt %, NaF 12 wt %, and BaF$_2$ 2 wt %. The average crystallite sizes in nm (with e.s.d. values of the last digits in parentheses) based on the Scherrer method were: Ba$_{12}$F$_{12}$Cl$_2$ 166(4), BaFCl 96(5), NaF 97(8) and BaF$_2$ 30(2).

As a further comparison of the samples using another experimental technique, we have obtained Raman spectra. Figure 3 compares the Raman spectra of the sample provided by Professor Li and an assembly of single crystals of

[a] Prof. F. Kubel
Institut für Chemische Technologien und Analytik
TU Wien, Getreidemarkt 9/164, 1060 Vienna (Austria)
Fax: (+43) 1-58801-17199
E-mail: frank.kubel@tuwien.ac.at

[b] Dr. H.-R. Hagemann
Dépt. de Chimie Physique, University of Geneva
30, quai E. Ansermet, 1211 Geneva 4 (Switzerland)
Ba$_7$F$_{12}$Cl$_2$ prepared in our laboratory. The spectra are quite similar; the small shift of the band around 220 cm$^{-1}$ is related to polarization effects, as our crystals are slightly oriented.

A common feature of the crystal structures of BaFCl, Ba$_2$F$_3$Cl$_3$, and Ba$_3$F$_7$Cl$_2$ is that the Ba atoms have a coordination number of 9. In the crystal, however, the arrangement is quite different. In Ba$_2$F$_3$Cl$_3$ and Ba$_3$F$_7$Cl$_2$ as well as in the corresponding lead compounds Pb$_3$F$_7$Cl$_2$ and Pb$_3$F$_7$Br$_2$, the propeller shape arrangement of the halides in the structure as well as the short lattice constant c favors a needle shape crystal habitus for all synthesis methods.

Barium halides are interesting hosts for optical applications. Ba$_3$F$_7$Cl$_2$ is a host for the rare-earth element Eu$^{2+}$ and acts as an intense white phosphor. The channel-type structure allows the replacement of Ba$^{2+}$ and Cl$^{-}$ with other ions and interstitial sites can be occupied. Detailed order/disorder studies on single crystals of substituted Ba$_3$F$_7$Cl$_2$ are still in progress. Nanocrystalline barium fluoride chloride samples might reveal further interesting optical properties.

Acknowledgements

This work was supported in part by the Swiss National Science Foundation. E. Eitenberger is acknowledged for the REM measurements. We thank Professor Yadong Li for sending his sample for comparisons. We thank also Dr. C. Besnard and Dr. J. P. Rapin in Geneva for help with the new X-ray experiments.

Received: February 12, 2009
Revised: June 30, 2010
Published online: October 12, 2010