Optimizing Millisecond Time Scale Near-Infrared Emission in Polynuclear Chrome(III)–Lanthanide(III) Complexes

Lilit Aboshyan-Sorgho, Homayoun Nozary, Annina Aebischer, Jean-Claude G. Bünzli, Pierre-Yves Morgantini, Kevin R. Kjellström, Andreas Hauser, Svetlana V. Eliseeva, Stéphane Petoud, and Claude Piguet

Department of Inorganic, Analytical and Applied Chemistry, and Department of Physical Chemistry, University of Geneva, 30 quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland, and Center for Next Generation Photovoltaic Systems, Korea University, Sejong Campus, Jochiwon, Chungnam 339700, South Korea
Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45701 Orléans Cedex 2, France
Le Studium, Institute for Advanced Studies, Orléans and Tours, France
Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States

ABSTRACT: This work illustrates a simple approach for optimizing long-lived near-infrared lanthanide-centered luminescence using trivalent chromium chromophores as sensitizers. Reactions of the segmental ligand L2 with stoichiometric amounts of M(CF3SO3)2 (M = Cr, Zn) and Ln(CF3SO3)3 (Ln = Nd, Er, Yb) under aerobic conditions quantitatively yield the D3-symmetrical trinuclear \([\text{M}L_2L\text{Ln}[\text{CF3SO3}]_n]^{9+}\) complexes (M = Zn, n = 7; M = Cr, n = 9), in which the central lanthanide activator is sandwiched between the two transition metal cations. Visible or NIR irradiation of the peripheral Cr(III) chromophores in \([\text{Cr}L_2\text{LnCr}L_2L\text{Ln}[\text{CF3SO3}]_n]^{9+}\) induces rate-limiting intramolecular intermetallic Cr→Ln energy transfer processes (Ln = Nd, Er, Yb), which eventually produces lanthanide-centered near-infrared (NIR) or IR emission with apparent lifetimes within the millisecond range. As compared to the parent dinuclear complexes \([\text{Cr}L_2\text{Ln}[\text{CF3SO3}]_3]^{9+}\), the connection of a second strong-field [CrN3] sensitizer in \([\text{Cr}L_2\text{LnCr}L_2L\text{Ln}[\text{CF3SO3}]_n]^{9+}\) significantly enhances the emission intensity without perturbing the kinetic regime. This work opens novel exciting photophysical perspectives via the buildup of non-negligible population densities for the long-lived doubly excited state \([\text{Cr}^{*}L_2\text{LnCr}L_2L\text{Ln}[\text{CF3SO3}]_n]^{9+}\) under reasonable pumping powers.

INTRODUCTION

Formally, the near-infrared (NIR) spectral range starts at 750 nm (13 333 cm⁻¹), and many trivalent lanthanide ions, Ln(III) = Pr, Nd, Sm, Dy, Ho, Er, Tm, and Yb, display radiative f–f transitions above this wavelength. Those with Ln = Nd, Er, and Yb are often exploited for applications as optical amplifiers (for instance, in Er-doped silica fibers, which are transparent around 1580 nm, the wavelength of the Er(4I13/2→4I15/2) emission), as laser materials (for instance, in Nd:YAG lasers based on the Nd(4F3/2→4I11/2) transition at 1060–1090 nm), as NIR-visible light upconverting devices, and as luminescent probes for high-resolution analysis of deep living tissues (light transmission is maximized in the 850–1100 nm spectral range for biological material). In this context, hundreds of lanthanide-containing NIR emitters were synthesized and investigated during the past decade, with a special emphasis on the connection of sophisticated organic chromophores that are able to harvest near-UV or visible light for sensitizing NIR emission. Because energy transfer processes are optimized when the spectral overlap integral between the emission spectrum of the donor (i.e., that of the light-harvesting chromophore) and the absorption spectrum of the lanthanide activator is maximized, highly conjugated polyaromatic antennae emitting in the red part of the electromagnetic spectrum are actively investigated for improving the global sensitization process. However, the focus of many studies on practical applications has somewhat masked some of the less-common photophysical properties of molecular lanthanide-centered NIR emissive complexes, which are currently underexploited. First, the estimated effective vibrational energies \(\hbar\omega_{\text{eff}} \approx 2000\) cm⁻¹ in molecular coordination complexes, combined with interactions of the metallic centers with solvent molecules possessing high-energy CH, OH, and NH oscillators, are particularly efficient for inducing nonradiative deexcitation pathways in lanthanide-centered NIR emitters. Consequently, the characteristic luminescence lifetimes of NIR-emitting Ln(III) ions, \(\tau_{\text{IR}} = 1/k_{\text{IR}}\), are on the (sub)microsecond time scale, which is far below their predicted millisecond radiative decays. Because biological materials

Received: April 26, 2012
Published: June 22, 2012
irradiated in the visible do not produce strong background emission in the NIR range, time-gated amplification is not considered an important issue for short-term applications, and only few efforts have been focused on the lengthening of NIR lanthanide lifetimes in molecular systems. However, millisecond NIR lifetimes should offer remarkable opportunities (i) for security and identification systems that cannot be forged and (ii) for the quantification of trace targets in biological materials with time-gated detection. Second, broadband light-harvesting organic chromophores can be favorably replaced with d-block sensitizers possessing much narrower and tunable absorption bands to facilitate the design of more specific excitation/emission wavelength pairs.11

Pseudo-octahedral trivalent chromium chromophores are particularly attractive as sensitizers in this context because two broad and spin-allowed transitions (4T2, 4T1 ← A2) are available in the UV-visible domain, while narrow spin-forbidden excited states are accessible in the visible (2T2, 2E ← A2) and in the NIR region (2T2, 2E ← A4). Figure S1, Supporting Information. For instance, cocystalization of [Cr(CN)6]3− with Nd(III) and Yb(III) cations gives infinite [Cr(CN)6(μ-CN)Ln(H2O)2(dmf)]n chains, in which the NIR emitting lanthanides could be indirectly sensitized by the blue excitation of the spin-allowed Cr(4T2 ← A2) transition. However, the efficient intermetallic Cr→Ln energy transfer processes operating in these coordination polymers (WCr→Ln > 108 s −1) did not offer a possibility for lengthening the Ln(III)-centered emission lifetimes.16

To restrain Cr/Ln communication to an isolated pair of metals, for which the intermetallic energy transfer rate constant can be controlled, Kaizaki and Piguet designed two families of dinuclear Cr(III)/Ln(III) molecular complexes exhibiting Ln-centered NIR emission upon Cr(III) sensitization (Figure 1). The detection of residual Cr(2E ← A2) emission together with the target Yb(2F7/2 ← 2F5/2) fluorescence upon visible or NIR irradiation (Figure 1) confirmed that incomplete intramolecular Cr→Yb energy transfers occur due to small WCr→Yb rate constants, thus leading to long apparent Yb-centered NIR lifetimes mirroring the millisecond decay of the Cr(III) donor chromophore, but to small quantum yields. In this Article, we propose a simple and efficient strategy for optimizing lanthanide-centered emission intensity in such edifices by increasing their nuclearity and apply it to Ln = Nd, Er, and Yb.

RESULTS AND DISCUSSION

Theoretical Background

The complete light-conversion processes in the dinuclear CrLn helicates can be modeled with the Jablonski diagram depicted in Figure 2a for Ln = Yb. The solutions of the associated kinetic differential equations, given in matrix form in eq 1,20 under continuous-wave irradiation of the Cr-centered absorption bands and (b) computed steady-state population densities for the various levels (the 0–0.05 population density range is highlighted on the right) by using WCr→Yb = 240 s −1, kWGa = 270 s −1, and kCrYb = 5 × 104 s −1 with increasing incident pump power P (Cr = Cr(4A2) ground state, Yb = Yb(2F7/2) ground state, Cr* = Cr(4E) excited state, and Yb* = Yb(2F5/2) excited state).

![Figure 1](image1.png)

Figure 1. Cr(III)-sensitized Yb-centered NIR emission occurring in isolated dinuclear complexes (a) [[acac]2Cr(ox)Yb(HB(pz)3)] (Cr→Yb = 5.67 Å)17 and (b) [CrYb(L1)]3+ (Cr→Yb = 9.33 Å).18 solutions of the associated kinetic differential equations, given in matrix form in eq 1,20 under continuous-wave irradiation of the Cr-centered transitions yield the variations of the steady-state population densities N versus increasing pump power shown in Figure 2b. In eq 1, WCr→Yb is the energy transfer rate constant measured in [CrYb(L1)]3+ upon irradiation into the Cr-centered absorption bands and (b) computed steady-state population densities for the various levels (the 0–0.05 population density range is highlighted on the right) by using WCr→Yb = 240 s −1, kWGa = 270 s −1, and kCrYb = 5 × 104 s −1 with increasing incident pump power P (Cr = Cr(4A2) ground state, Yb = Yb(2F7/2) ground state, Cr* = Cr(4E) excited state, and Yb* = Yb(2F5/2) excited state).

![Figure 2](image2.png)

Figure 2. (a) Kinetic scheme for modeling the light-conversion process operating in [CrYb(L1)]3+ upon irradiation into the Cr-centered absorption bands and (b) computed steady-state population densities for the various levels (the 0–0.05 population density range is highlighted on the right) by using WCr→Yb = 240 s −1, kWGa = 270 s −1, and kCrYb = 5 × 104 s −1 with increasing incident pump power P (Cr = Cr(4A2) ground state, Yb = Yb(2F7/2) ground state, Cr* = Cr(4E) excited state, and Yb* = Yb(2F5/2) excited state).16
Article

Journal of the American Chemical Society

Because \(k_{\text{Cr}}^{\text{exc}} \gg k_{\text{Yb}}^{\text{exc}} \), the population densities of the Yb-centered excited levels \(|\beta\rangle \) and \(|\gamma\rangle \) remain negligible for all incident pump powers, and as the intrinsic luminescence quantum efficiency of the Yb luminescence, \(\eta_{\text{Yb}} \), is low, the intensity of the NIR emission remains marginal \((I \approx \eta_{\text{Yb}}^{\text{NIR}} \cdot \eta_{\text{Cr}}^{\gamma} \cdot N^{\text{pp}}) \), Figure S2, Supporting Information. However, its apparent exponential decay \(\tau_{\text{Yb}}^\text{obs} = 1/k_{\text{Yb}}^{\text{exc}} = 1.96 \text{ ms} \) in \([\text{CrYbCr}^{\text{III}}(\text{L}_1)_3]^{9+}\) mirrors the long Cr(III) donor lifetime.\(^{16}\)

With this in mind, the only available option for improving emission intensity in molecular edifices without affecting the apparent millisecond dynamics of the Yb-centered NIR emission observed in dinuclear helicates requires the connection of additional Cr(III) sensitizers with identical photophysical properties. A first step toward this goal is to extend the polynuclear axis by addition of a second terminal Cr(III) ion. The trinuclear dinuclear complex \([\text{CrYbCr}^{\text{III}}(\text{L}_2)_3]^{9+}\) is expected to meet the above-mentioned criterion (Figure 3a):\(^{23}\) introduction of the rate constants obtained for \([\text{CrYbCl}(\text{L}_1)_3]^{9+}\) into a kinetic scheme adapted to \([\text{CrYbCr}^{\text{III}}(\text{L}_2)_3]^{9+}\) (Figure 3b, \(k_{\text{Cr}}^{\text{Gd}}, k_{\text{Cr}}^{\text{Er}}, k_{\text{Cr}}^{\text{Yb}}, k_{\text{Cr}}^{\text{Yb}}^{\text{Zn}}, k_{\text{Cr}}^{\text{Cr}} \), and \(W_{\text{Cr-Yb}} \) logically predicts a statistical increase of the intensity of the NIR emission by a factor: \(f_{\text{gain}} = 2 \) (Figure S2, Supporting Information). It is worth noting here that the Yb-centered NIR luminescence in \([\text{CrYbCr}^{\text{III}}(\text{L}_2)_3]^{9+}\) is expected to mainly originate from the singly excited state \(\text{CrYb}^\ast \text{Cr} (|\beta\rangle \text{ in Figure 3b}) \) at low incident pump power, as found for \([\text{CrYbCl}(\text{L}_1)_3]^{9+}\), whereas the doubly excited state \(\text{Cr}^\ast \text{Cr} \text{Yb}^\ast \text{Cr} (|\gamma\rangle \text{ in Figure 3b}) \) becomes the main contributor at higher incident pump power (Figure S3b, Supporting Information), a characteristic inherent to the trinuclear molecular complex.

In the following sections, the accuracy of these predictions for the complete molecular light-conversion process leading to NIR emission in the trinuclear complexes is demonstrated for \([\text{CrLnCr}^{\text{III}}(\text{L}_2)_3]^{9+}\) (\(\text{Ln} = \text{Nd}, \text{Er}, \text{Yb} \)) in which the two d-block metal ions act as sensitizers, as well as for the reference helicates \([\text{ZnLnZn}^{\text{II}}(\text{L}_2)_3]^{7+}\) for which no d-block sensitization is present.

Synthesis and Structural Characterization of \([\text{ZnLnZn}^{\text{II}}(\text{L}_2)_3]^{7+}\) and \([\text{CrLnCr}(\text{L}_2)_3]^{6+}\)

Stoichiometric mixing of \(\text{M} \text{CF}_3\text{SO}_3 \cdot x\text{H}_2\text{O} \) (\(\text{M} = \text{Cr}^{\text{II}}, \text{Zn}^{\text{II}} \)) 2 equiv and \(\text{Ln} \text{CF}_3\text{SO}_3 \cdot n\text{H}_2\text{O} \) (\(\text{Ln} = \text{Nd}, \text{Er}, \text{Yb} \), 1 equiv) with the segmental tridentate ligand \(\text{L}_2 \) 3 equiv in acetonitrile quantitatively yields the targeted self-assembled \(\text{ZnLnZn}^{\text{II}}(\text{L}_2)_3]^{7+}\) (Table S1) whose ESI-MS (Table S2) and \(^{1}H\) NMR spectra (\(\text{Ln} = \text{Nd}, \text{Yb} \), Table S3 and Figure S5) are diagnostic for the systematic formation of 3-symmetrical triple-stranded helicates \([\text{ZnLnZn}^{\text{II}}(\text{L}_2)_3]^{7+}\). Despite several attempts, we were unable to obtain X-ray quality crystals for these complexes. Therefore, a DFT-optimized gas-phase molecular structure was computed for \([\text{ZnEuZn}^{\text{II}}(\text{L}_2)_3]^{7+}\) (Figure 4a). For \(\text{M} = \text{Cr} \), the intermediate \([\text{CrLnCr}(\text{L}_2)_3]^{7+}\) complexes undergo fast air oxidation to give \([\text{CrLnCr}(\text{L}_2)_3]^{7+}(\text{CF}_3\text{SO}_3)_6m\text{TBAf} \cdot n\text{H}_2\text{O}\) after slow diffusion of diethyl ether into concentrated acetonitrile solutions containing an excess of \(\text{Bu}_4\text{N} \text{CF}_3\text{SO}_3 \) (=TBAf, Table S1). Because of the slow electronic relaxation rate of the nondegenerate \(\text{Cr}^{2+}\) ground state,\(^{24}\) \(^{1}H\) NMR spectra are too broad for any reliable characterization of these complexes (Figure S6), but ESI-MS data strongly support the exclusive formation of \([\text{CrLnCr}(\text{L}_2)_3]^{7+}\) in acetonitrile (Table S2 and Figure S4b). Recrystallization by slow diffusion of diethyl ether into propionitrile solutions yields fragile orange needles of \([\text{CrLnCr}(\text{L}_2)_3]^{7+}(\text{CF}_3\text{SO}_3)_6\text{TBAf} \cdot n\text{H}_2\text{O}\) after slow diffusion of diethyl ether into concentrated acetonitrile solutions containing an excess of \(\text{Bu}_4\text{N} \text{CF}_3\text{SO}_3 \) (=TBAf, Table S1). Because of the slow electronic relaxation rate of the nondegenerate \(\text{Cr}^{2+}\) ground state,\(^{24}\) \(^{1}H\) NMR spectra are too broad for any reliable characterization of these complexes (Figure S6), but ESI-MS data strongly support the exclusive formation of \([\text{CrLnCr}(\text{L}_2)_3]^{7+}\) in acetonitrile (Table S2 and Figure S4b). The isorotational (monoclinic, \(P2_1/c \)) with huge unit cells (\(V \approx 48 \text{ 000 \AA}^3, Z = 4 \)) and limited diffraction intensities, which require synchrotron facilities for collecting suitable sets of diffraction data. \(\text{Ln} = \text{Eu} \) (midrange sized lanthanide) and \(\text{Ln} = \text{Yb} \) (small sized lanthanide) have been selected for further structural
The replacement of the terminal diamagnetic Zn(II) with open-shell Cr(III) in [CrGdCr(L2)3]9⁺ enhances the paramagnetic coupling mechanism responsible for the increasing intensity of the spin-forbidden 3π→π* phosphorescence29 arising at 24 510 cm⁻¹ (dissociate unit, τ = 5.19(1) ms) and 21 050 cm⁻¹ (tridentate unit, τ = 1.58(1) ms, Figure 5).

These spectroscopic levels are summarized in the associated Jablonski diagram (Figure 6, center), which can be completed with the Cr(2E) excited state evidenced by intramolecular L2→Cr energy transfer processes sensitizing the famous long-lived Cr(2E→4A2) luminescence at 13 240 cm⁻¹ in [CrGdCr(L2)3]9⁺ (τCr(2E) = 2.27(2) ms at 10 K, Table 1, column 2, Figure 5, and Figure S10).

The associated excitation profile recorded for [CrGdCr(L2)3]9⁺ upon monitoring the Cr(2E→4A2) transition unravels that both Cr-centered Cr(2E→4A2) at 13 330 cm⁻¹; Cr(2T1→4A2) at 13 910/14 090 cm⁻¹; Cr(4T2→4A2) at 19 970/21 780 cm⁻¹ and ligand-centered (>24 500 cm⁻¹) excitation processes (Figure S11) contribute to NIR phosphorescence centered at 13 240 cm⁻¹ (Figure 6). Because of the pseudo-D₃ symmetry in [CrGdCr(L2)3]9⁺, the Cr(2T₁) and Cr(4T₂) excited levels are split into A + E components. From the barycenter of these transitions, we can estimate the Cr(III) pseudo-octahedral ligand-field strength Δ = 20 880 cm⁻¹14 and the Racah parameter B = 750 cm⁻¹, that is reduced to 72% of its free ion value by the nephelauxetic effect; see eq 3 with C ≈ 4B for N-donor atoms bound to Cr(III).30
The energies of the Ln-centered excited levels are deduced from excitation of the ligand-centered $1\pi^*$ singlet states in $[\text{ZnLnZn}(L2)]^7+$ (Ln = Nd, Er, Yb), which produces residual ligand-centered emission, because of incomplete energy transfer, together with Ln-centered luminescence arising from Cr(2E)/Nd(4F3/2) in [CrNdCr(L2)]$^9+$, Cr(2E)/Er(4I13/2) in [CrErCr(L2)]$^9+$, and Cr(2E)/Yb(2F5/2) in [CrYbCr(L2)]$^9+$ with characteristic lifetimes $\tau_{\text{Cr(L2)}} = 1/\omega_{\text{Cr(L2)}}$ and $\tau_{\text{Ln}} = 1/\omega_{\text{Ln}}$ collected in Table 1 (columns 3 and 5).

Intermetallic Energy Transfer and Light-Conversion Processes in [CrLnCr(L2)]$^9+$ (Ln = Nd, Er, Yb). The use of short-time and low-power light pulses for pumping the Cr(2E\rightarrowA2) transition in [CrLnCr(L2)]$^9+$ at 13 330 cm$^{-1}$ for Nd(4F3/2\leftrightarrow4I11/2, 4I13/2) (Figure S15a), and at ~6500 cm$^{-1}$ for Er(4I13/2\leftrightarrow4I15/2) (Figure S15b). The excitation spectra recorded upon monitoring the Ln-centered NIR emission demonstrate that the Cr(2E) excited state can be systematically used as a feeding level for lanthanide sensitization in [CrLnCr(L2)]$^9+$ (Ln = Nd, Er, Yb, Figure S16).

![Figure 6](image.png)

Figure 6. Partial energy level diagram with pertinent excited states for individual components summarizing the excitation processes (straight upward arrows), resonant energy transfer processes (horizontal dashed arrows), and observed radiative emission processes (straight downward arrows) occurring in $[\text{ZnLnZn}(L2)]^7+$ and $[\text{CrLnCr}(L2)]^9+$ (Ln = Nd, Er, Yb). The Cr(2E) levels are omitted for clarity, although they can act as a relay for energy transfer processes.

$$\Delta E = E[\text{Cr}(^2E)] - E[\text{Cr}(^A2)] = (9B + 3C) - 90B^2/\Delta) = 13 330 \text{ cm}^{-1}$$ (3)

The characteristic lifetimes of the Ln-centered NIR emissions are within the microsecond range as expected for molecular complexes with reasonably protected coordination sites ($\tau_{\text{ZnNdZn}} = 1/\omega_{\text{ZnNdZn}} = 1.60(6)$ µs, $\tau_{\text{ZnErZn}} = 1/\omega_{\text{ZnErZn}} = 4.54(4)$ µs, and $\tau_{\text{ZnYbZn}} = 1/\omega_{\text{ZnYbZn}} = 31.0(2)$ µs, solid state 10 K, Table 1, column 4).9

Finally, irradiation into the ligand-centered $\pi^*\rightarrow\pi^*$ transitions in $[\text{CrLnCr}(L2)]^9+$ (Ln = Nd, Er, Yb) induces a luminescence produced by three components: (i) the residual ligand-centered $1\pi^*\rightarrow\pi^*$ phosphorescence (incomplete L2\rightarrowLn energy transfer), (ii) the Cr(III) sensitized emission at 13 300 cm$^{-1}$; and (iii) the Ln(III) sensitized NIR emission at ~10 000 cm$^{-1}$ for Yb(2F5/2\rightarrow2F7/2) (Figure 7), at ~11 000/9500/7500 cm$^{-1}$ for Nd(4F3/2\rightarrow4I11/2, 4I13/2) and at ~6500 cm$^{-1}$ for Er(4I13/2\rightarrow4I15/2).

![Figure 7](image.png)

Figure 7. Emission spectrum recorded for [CrYbCr(L2)]$^9+$ (CF$_3$SO$_3$)$_9$ upon ligand-centered excitation ($\lambda_{\text{exc}} = 37 037$ cm$^{-1}$, solid state, 77 K).

Table 1. Rate Constants (k/s^{-1}), Efficiencies (η, eq 5), Intramolecular Intermetallic Ln\rightarrowCr Distances ($R_{\text{Cr(Lane)}}$, and Critical Distances for S0 Energy Transfer ($R_{\text{Cr(Lane)}}^0$, eq 6) in [LnCr(L1)]$^9+$ and [CrLnCr(L2)]$^9+$ (Ln = Gd, Nd, Er, Yb; 10 K)a

<table>
<thead>
<tr>
<th>compd</th>
<th>$k_{\text{Cr(Gd)}}^0$</th>
<th>$k_{\text{Cr(Ln)}}^0$</th>
<th>$k_{\text{Cr(Nd)}}^0$</th>
<th>k_{Nd}^0</th>
<th>k_{Er}^0</th>
<th>k_{Yb}^0</th>
<th>$W_{\text{Gd-\text{Cr}}}^0$</th>
<th>$\eta_{\text{Gd-\text{Cr}}}^0$</th>
<th>$R_{\text{Gd-\text{Cr}}}^0$</th>
<th>$R_{\text{Cr(Ln)}}^0$</th>
<th>ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>[GdCr(L1)]$^9+$</td>
<td>2.73(8)$\times 10^7$</td>
<td>6.85(5)$\times 10^5$</td>
<td>5.0(3)$\times 10^4$</td>
<td>2.13(7)$\times 10^3$</td>
<td>5.1(2)$\times 10^2$</td>
<td>4.40(9)$\times 10^0$</td>
<td>6.2(1)$\times 10^5$</td>
<td>3.2(1)$\times 10^4$</td>
<td>2.20(3)$\times 10^3$</td>
<td>2.00(6)$\times 10^3$</td>
<td>6.9(2)$\times 10^2$</td>
</tr>
<tr>
<td>[ZnNdZn(L1)]$^9+$</td>
<td>6.2(1)$\times 10^5$</td>
<td>3.2(1)$\times 10^4$</td>
<td>2.20(3)$\times 10^3$</td>
<td>2.00(6)$\times 10^3$</td>
<td>6.9(2)$\times 10^2$</td>
<td>9.3(3)$\times 10^2$</td>
<td>4.5(4)$\times 10^4$</td>
<td>1.56(6)$\times 10^3$</td>
<td>4.9(2)$\times 10^2$</td>
<td>31.0(2)$\times 10^2$</td>
<td>37.037</td>
</tr>
</tbody>
</table>

a $k_{\text{Cr(Gd)}}$, $k_{\text{Cr(Ln)}}$, k_{Nd}, k_{Er}, k_{Yb}, $R_{\text{Cr(Lane)}}$, and $R_{\text{Cr(Lane)}}^0$ are reported with their experimental standard deviations. All other uncertainties are calculated by using standard mathematical propagations.
produces a non-negligible transient population only for the lowest excited Cr\(^{2E}\) donor level (i.e., Cr\(^{2E}\) ground state (l0) level in Figure 3b), which relaxes (i) via radiative and nonradiative pathways (k\(_{Cr,GdCr}^{Cr,GdCr}\)) toward the CrLnCr ground state (l0) level in Figure 3b) and (ii) via energy transfer W\(_{Cr,GdCr}^{Cr,GdCr}\) toward the CrLn*Cr state (l0 level in Figure 3b). This simple kinetic scheme allows straightforward estimates of energy transfer rate constant \(W\) and efficiencies \(\eta\) of the latter complexes because of the shorter intrinsic Cr\(^{2E}\) lifetime in Cr\(^{2E}\) (i.e., Dexter-type)\(^{33}\) for the latter complexes because of the shorter intrinsic Cr\(^{2E}\) lifetime in Cr\(^{2E}\) (i.e., Dexter-type)\(^{34}\) for the latter complexes because of the shorter intrinsic Cr\(^{2E}\) lifetime in Cr\(^{2E}\) (i.e., Dexter-type)\(^{34}\) for the latter complexes because of the shorter intrinsic Cr\(^{2E}\) lifetime in Cr\(^{2E}\) (i.e., Dexter-type)\(^{34}\).

\[
W_{Cr^{2E} \rightarrow Ln^{2E}} = \eta_{Cr^{2E} \rightarrow Ln^{2E}} = \frac{k_{Cr^{2E} \rightarrow Ln^{2E}}} {k_{Ln^{2E} \rightarrow Cr^{2E}}} = 1 - \left(\frac{k_{Ln^{2E} \rightarrow Cr^{2E}}} {k_{Cr^{2E} \rightarrow Ln^{2E}}} \right)
\]

(4)

The calculated rate constants for the intramolecular Cr→Ln energy transfer processes are similar for the dinuclear \([CrLn(L_1)]^{6+}\) and trinuclear \([CrLnCr(L_2)]^{9+}\) complexes (Ln = Nd, Er, Yb, Table 1, column 6), in line with the starting hypothesis. This leads to slightly less efficient energy transfer for the latter complexes because of the shorter intrinsic Cr\(^{2E}\) lifetime in Cr\(^{2E}\) (i.e., Dexter-type)\(^{33}\) and (the multipolar) Coulombic interaction between the donor and acceptor electric fields (i.e., Förster-type),\(^{34}\) the energy transfer efficiencies in \([CrLn(L_1)]^{6+}\) and \([CrLnCr(L_2)]^{9+}\) (Ln = Nd, Er, Yb) were analyzed within the strict limit of the long-range dipole–dipole formalism according to eq 6, in which \(R_{D-A}^{L_1}\) is the donor–acceptor distance separation taken as the intramolecular Cr→Ln contact distance in the complexes and \(R_{D-A}^{L_2}\) is the critical distance at which \(\eta_{Ln^{2E} \rightarrow Cr^{2E}} = 0.5\)\(^{32,35}\). This simplification is justified by the presence of methylene units linking the tridentate coordination moieties in L2 acting as electronic insulators.

\[
\eta_{Ln^{2E} \rightarrow Ln^{2E}} = \frac{1 + \left(R_{D-A}^{Ln,Ln} / R_{L_0}^{Ln,Ln} \right)^6} {\left(R_{L_0}^{Ln,Ln} \right)^6 + \left(R_{L_0}^{Ln,Ln} \right)^6} = 1 - \left(\frac{k_{Ln^{2E} \rightarrow Ln^{2E}}} {k_{Ln^{2E} \rightarrow Ln^{2E}}} \right)
\]

(5)

We find critical distances for 50% energy transfer efficiencies in the nanometric range for all complexes with \(R_{D-A}^{GdCr} < R_{D-A}^{Cr,Ln} < R_{D-A}^{Yb,Gd} \) (Table 1, column 9), a trend in line with the decreasing number of Ln-centered excited acceptor levels available on each cation for resonant or phonon-assisted energy transfer mechanisms (Figure 6).

We are now equipped for introducing the rate constants collected in Table 1 into eq 1 with the kinetic matrix adapted for \([CrLnCr(L_2)]^{9+}\) (Figure S3a). Steady-state simulations for Ln = Nd, Er, Yb using the simplified Jablonski diagram depicted in Figure 3b show that the slow decay rates of the Cr\(^{2E}\) donor levels control the stepwise depopulation of the CrLnCr ground state to the benefit of the Cr-centered excited levels CrLnCr (low pumping power) and CrLn*Cr* (large pumping power, Figure S17, Supporting Information). The population density of the Ln-centered NIR emitting levels CrLn*Cr, CrLn*Cr, and CrLn*Cr remains negligible (less than 1%) for any pumping power leading to weak NIR emission because of the low intrinsic luminescence quantum efficiency of the Yb luminescence (Figure S18). We however could notice that the predicted statistical 2-fold gain in intensity in going from \([LnCr(L_1)]^{6+}\) to \([CrLnCr(L_2)]^{9+}\) is verified for Ln = Nd (Figure S19), whereas some “positive cooperative effect” is observed for Ln = Yb, with a somewhat larger overall gain \(f_{gain} = 2.4\) at low incident power and \(f_{gain} = 3.1\) at high power, Figure 8.

Interestingly, these slow CrLn energy transfer rates constants can be converted into an advantage when one considers the apparent lifetimes of the Ln-centered NIR emission. For the short-time low-power light pulses used in this work, only the ground CrLnCr (l0) and the two first excited states CrLn*Cr (l0, l0) and CrLn*Cr (l0, l0) contribute to the kinetic scheme. Equation 7 therefore satisfyingly models the relaxation processes originating from the initial density population matrix written as its transpose \((N_0^{(i)} = N_{tot} - N_0^{(i)} N_0^{(j)} N_0^{(k)}) \) to:

\[
\begin{pmatrix}
\frac{dN_0^{(i)}}{dt} \\
\frac{dN_0^{(j)}}{dt} \\
\frac{dN_0^{(k)}}{dt}
\end{pmatrix}
\begin{bmatrix}
0 & k_{Cr^{2E} \rightarrow Ln^{2E}} & k_{Ln^{2E} \rightarrow Ln^{2E}} \\
0 & -k_{Cr^{2E} \rightarrow Ln^{2E}} + W_{Cr^{2E} \rightarrow Ln^{2E}} & 0 \\
0 & W_{Cr^{2E} \rightarrow Ln^{2E}} & -k_{Ln^{2E} \rightarrow Ln^{2E}}
\end{bmatrix}
\begin{pmatrix}
N_0^{(i)} \\
N_0^{(j)} \\
N_0^{(k)}
\end{pmatrix}
\]

(7)

Using projection operator solutions\(^{20}\) we obtain (Appendix 1):
The connection of a second strong-field [CrN$_6$] chromophore to the C$_3$-symmetrical dinuclear complexes [LnCr(L$_1$)$_3$]$^{3+}$, resulting in the formation of [CrLnCr(L$_2$)$_3$]$^{3+}$, does not significantly affect the ligand-centered and metal-centered photophysical properties. Excitation into the Cr(2E)-centered levels with NIR irradiation at 13 300 cm$^{-1}$ induces intra-

molecular Cr→Ln energy transfers, which eventually sensitize low-energy luminescence for Ln = Nd, Er, or Yb in the spectral range 6000–10 000 cm$^{-1}$. As compared to the fast Ln-centered relaxation pathways operating in [ZnLnZn(L$_2$)$_3$]$^{3+}$, the slow Cr→Ln energy transfer responsible for the feeding of the same Ln-centered excited levels in [CrLnCr(L$_2$)$_3$]$^{3+}$ acts as bottleneck, which controls the kinetics of the low-energy NIR emission. The apparent millisecond Ln-centered lifetimes thus mirror those of the Cr(2E) donor levels. This unusual property is obtained at the cost of the intensity of the NIR output, but the connection of a second Cr(III) donor in [CrLnCr(L$_2$)$_3$]$^{3+}$ partially overcomes this limitation because the predicted intensities are more than twice larger than those found in the related dinuclear [LnCr(L$_1$)$_3$]$^{6+}$ complexes. The effective experimental gain in NIR emission intensity further depends on the ratio between radiative and nonradiative de-excitation pathways for the emitting Nd($^{4}F_{3/2}$), Er($^{4}I_{13/2}$), and Yb($^{4}F_{5/2}$) levels, a trend that can be addressed by measuring intrinsic and global quantum yields. Because no such data were recorded for [LnCr(L$_1$)$_3$]$^{6+}$ in ref 23a, an exact comparison of experimental NIR→NIR light-conversion efficiencies between dinuclear and trinuclear complexes is currently inaccessible, but the encouraging global quantum yields measured for [CrLnCr(L$_2$)$_3$]$^{3+}$ upon Cr-centered irradiation ($\eta_{\text{Nd}} = 0.027(1)$ and $\eta_{\text{Er}} = 0.030(3)$, solid state, 295 K) are compatible with their use as long-lived NIR probes for analytical chemistry and biology. Last, but not least, the presence of two Cr(III) donors sandwiching the Ln(III) activator results in the non-negligible population of long-lived doubly excited states Cr*LnCr* (δ), and Cr*Ln*Cr* (γ, Figures 3b and S3) under reasonable pumping powers as illustrated for Yb on Figure 10 (see Figures S22–S23 for corresponding graphs for Nd and Er; equations are given in Appendix 2), a phenomenon that has no counterpart in the parent dinuclear complexes (Figure 2).

This work opens unprecedented perspectives for the programming of molecular Ln-centered energy transfer upconversion (ETU) processes exploiting lanthanide-centered CrLn**Cr doubly excited states when the activator possesses an adequate series of accessible spectroscopic levels as found in [CrErCr(L$_2$)$_3$]$^{3+}$,23b We believe that such a supramolecular control of NIR luminescence parameters will be helpful for the design of materials and probes in fields as diverse as telecommunications, security devices, and bioimaging, especially that extension to multidimensional arrays can be envisaged.36

\begin{align*}
N_t^{(0)} &= N_{\text{tot}} - N_t^{(a)} - N_t^{(b)} - N_t^{(0)} \\
N_t^{(a)} &= N_t^{(0)} e^{-(k_{\text{Cr}} + k_{\text{Cr}} - W_{\text{Cr} \rightarrow \text{Ln}})} \\
N_t^{(b)} &= N_t^{(0)} e^{-(k_{\text{Cr}} + k_{\text{Cr}} - W_{\text{Cr} \rightarrow \text{Ln}})} \\
N_t^{(0)} &= N_t^{(a)} e^{-(k_{\text{Cr}} + k_{\text{Cr}} - W_{\text{Cr} \rightarrow \text{Ln}})} - e^{-(k_{\text{Ln}} + k_{\text{Cr}} - W_{\text{Cr} \rightarrow \text{Ln}})}
\end{align*}

The time evolution of the population densities computed for [CrYbCr(L$_2$)$_3$]$^{3+}$ (Figure 9), [CrNdCr(L$_2$)$_3$]$^{3+}$ (Figure S20), and [CrErCr(L$_2$)$_3$]$^{3+}$ (Figure S21) shows that, except for the first microseconds following the pulse, the decay rate of the Ln-centered NIR emission mirrors the Cr(2E) emission lifetimes of the lowest excited states Cr*YbCr (\(\alpha\), full trace, eq 9) and Cr*YbCr (\(\beta\), dotted trace, eq 10) in [CrYbCr(L$_2$)$_3$]$^{3+}$ after a 500 \(\mu\)J/mm2 pulse in the Cr-centered transition (solid state, 10 K).

\begin{figure}

Figure 9. Computed time evolution of the population densities of the ground state CrYbCr (10), dashed trace, eq 8), and of the lowest excited states Cr*YbCr (\(\alpha\), full trace, eq 9) and Cr*YbCr (\(\beta\), dotted trace, eq 10) in [CrYbCr(L$_2$)$_3$]$^{3+}$ upon Cr-centered irradiation (eq 8), and of the lowest excited states Cr*YbCr (\(\alpha\), full trace, eq 9) and Cr*YbCr (\(\beta\), dotted trace, eq 10) in [CrYbCr(L$_2$)$_3$]$^{3+}$ after a 500 \(\mu\)J/mm2 pulse in the Cr-centered transition (solid state, 10 K).

CONCLUSION

The connection of a second strong-field [CrN$_6$] chromophore to the C$_3$-symmetrical dinuclear complexes [LnCr(L$_1$)$_3$]$^{6+}$, resulting in the formation of [CrLnCr(L$_2$)$_3$]$^{3+}$, does not significantly affect the ligand-centered and metal-centered photophysical properties. Excitation into the Cr(2E)-centered levels with NIR irradiation at 13 300 cm$^{-1}$ induces intra-

EXPERIMENTAL SECTION

Synthesis. Chemicals were purchased from Strem, Acros, Fluka AG, and Aldrich, and used without further purification unless otherwise stated. The ligand L$_2$ and complexes Cr(CF$_3$SO$_3$)$_3$H$_2$O$_{23a}$, [ZnGdZn(L$_2$)$_3$]([CF$_3$SO$_3$])$_{23a}$, [CrGdCr(L$_2$)$_3$], Cr(CF$_3$SO$_3$)$_{25}$, and [CrErCr(L$_2$)$_3$]([CF$_3$SO$_3$])$_{23b}$ were prepared according to literature procedures. The triflate salts Ln(CF$_3$SO$_3$)$_3$·nH$_2$O were prepared from the corresponding oxide (Aldrich, 99.99%).36 Acetonitrile and dichloromethane were distilled over calcium hydride.

Preparation of [ZnLnZn(L$_2$)]([CF$_3$SO$_3$])$_3$·nH$_2$O (Ln = Nd, Er, Yb). Ln(CF$_3$SO$_3$)$_3$·xH$_2$O (17 mmol) in acetonitrile (2 mL) was added into a dichloromethane/acetonitrile (1:1, 24 mL) solution of L$_2$ (41.3 mg, 51 mmol). After being stirred at room temperature for 24 h, the mixture was evaporated to dryness, the solid residue was dissolved into acetonitrile (10 mL), and Zn(CF$_3$SO$_3$)$_3$·xH$_2$O (12.4 mg, 34 mmol) in acetonitrile (2 mL) was added. The resulting solution was stirred for 24 h and concentrated. Slow diffusion of diethylether (12 h) eventually

dx.doi.org/10.1021/ja304009b/1. Am. Chem. Soc. 2012, 134, 12675–12684

12681
gave 75–80% \([\text{ZnLnZn}(\text{L}_2)]_2(\text{CF}_3\text{SO}_3)_x\cdot n\text{H}_2\text{O} \quad (\text{Ln} = \text{Nd, Er, Yb})\) as yellow microcrystals, which were characterized by \(^1\text{H}\) NMR, ESI-MS, and elemental analyses (Table S1).

Preparation of \([\text{CrLnCr}(\text{L}_2)]_2(\text{CF}_3\text{SO}_3)_y\cdot m\text{TBAf} \cdot n\text{H}_2\text{O} \quad (\text{Ln} = \text{Nd, Er, Yb})\). \(\text{Ln}(\text{CF}_3\text{SO}_3)_y\cdot n\text{H}_2\text{O} \quad (17 \text{ mmol})\) in acetonitrile (2 mL) was added into a dichloromethane/acetonitrile (1:1, 24 mL) solution of \(\text{L}_2\) (41.3 mg, 51 \text{ mmol}). After being stirred at room temperature for 24 h, the mixture was evaporated to dryness, and the pale yellow solid was transferred into a glovebox and dissolved in degassed acetonitrile (25 mL). A blue degassed acetonitrile solution (1 mL) of \(\text{Cr}(\text{CF}_3\text{SO}_3)_y\cdot n\text{H}_2\text{O} \quad (12.6 \text{ mg, 34 \text{ mmol}})\) was added, and the resulting mixture slowly turned brown, then green. After being stirred for 12 h under an inert atmosphere, solid \(\text{Bu}_4\text{NCF}_3\text{SO}_3\) (TBAf, 13.3 mg, 34 \text{ mmol}) was added and air was slowly bubbled through the solution for 2 h. The yellow solution was evaporated, and the solid residue was dissolved in a minimum amount of acetonitrile. Slow diffusion of diethyl ether (24 h) yielded 92–95% of \([\text{CrLnCr}(\text{L}_2)]_2(\text{CF}_3\text{SO}_3)_y\cdot n\text{TBAf} \cdot n\text{H}_2\text{O} \quad (\text{Ln} = \text{Nd, Er, Yb})\) as pale microcrystalline powders, which were separated by filtration, washed with diethyl ether, dried under vacuum, and characterized by ESI-MS and elemental analyses (Table S1). Slow diffusion of diethyl ether into a concentrated protonitrile solution of \([\text{CrYbCr}(\text{L}_2)]_2(\text{CF}_3\text{SO}_3)_3\cdot 0.5\text{TBAf} \cdot 3\text{H}_2\text{O}\) gave fragile X-ray quality prisms of \([\text{CrYbCr}(\text{L}_2)]_2(\text{CF}_3\text{SO}_3)_3\cdot 0.5\text{TBAf} \cdot 3\text{H}_2\text{O}\).

Spectroscopic Measurements. \(^1\text{H}\) NMR spectra were recorded at 298 K on a Bruker Avance 400 MHz spectrometer. Chemical shifts were given in ppm with respect to TMS. Pneumatically assisted electrospray (ESI-MS) mass spectra were recorded from 3 to 5 \times 10^{-4} \text{ M} solutions on an Applied Biosystems API 150EX LC/MS System equipped with a Turbo Ionspray source, on a Finnigan-mat SSQ 7000, or on an Applied Biosysytem API III. Elemental analyses were performed by Dr. H. Eder from the Microchemical Laboratory of the University of Geneva. Electronic spectra in the UV–vis were recorded at 293 K from solutions in MeCN with a Perkin-Elmer Lambda 900 spectrometer using quartz cells of 0.1 cm path length.

Photophysical measurements at 10 K were performed on powdered samples, which were mounted onto copper plates with either rubber cement or conductive silver glue; cooling was achieved either with a closed-cycle He cryostat (CTI-Cryogenics, Oxford Instruments, CCC1100T) or with a liquid-helium bath cryostat (Oxford Instruments MD4). For room temperature or 77 K measurements, the samples were transferred into quartz tubes (\(O_2 = 2.4 \text{ mm}, \text{Verre et Quarts Technique SA, Neuchâtel}\)) or borosilicate glass tubes (\(O_2 = 0.8–1.1 \text{ mm}, \text{Kimble Kontes}\)), which were sealed with Parafilm. Room temperature and 77 K emission and excitation spectra were measured on a LS-50B fluorescence spectrometer (Perkin-Elmer) or a Fluorolog FL3-22 spectrometer (Horiba Jobin-Yvon Ltd.) equipped with a 450W Xe-lamp, two double-grating emission monochromators, and three different detectors, a Hamamatsu R928 photomultiplier (300–750 nm), a solid-state InGaAs detector cooled at 77 K (range 800–1600 nm), and a Peltier-cooled (–60 °C) Hamamatsu H9170-75 photomultiplier (950–1700 nm) for measuring the Er\(^{3+}\)(4I_{13/2} \rightarrow 4I_{15/2}) emission. High-resolution room temperature and low temperature emission spectra were recorded upon excitation with an Ar\(^+\) laser (Coherent Innova 90C) at 488 nm or with Nd:YAG laser (Quantel Brilliant B) at 355 nm. The emitted light was analyzed at 90° with a Spex 270 M monochromator blazed at 600 nm with holographic gratings (150 L/mm). Light intensity was measured by a photomultiplier or CCD detectors. Appropriate filters were utilized to remove the laser light, the Rayleigh scattered light, and associated harmonics from the emission spectra. Luminescent lifetimes were measured using excitation provided by a Quantum Brilliant or Quantel YG 980 WNd:YAG laser equipped with frequency doubler, tripler, and quadrupler as well as with an OPOTEK MagicPrismTM OPO crystal and a Quantel TDL + dye laser. The output signal of the photomultiplier was fed into a Stanford Research SR-400 multichannel scaler or to a 500 MHz Tektronics TDS724C and transferred to a PC for treatment with Origin 8. Lifetimes are averages of three independent determinations. Resonant excitation into the Cr\(^{3+}\)(4S\(^{1}S_{0} \rightarrow 4P_{1/2}) transition in CrLnCr was achieved with a tunable Ti:sapphire laser (Spectra Physics 3900S) pumped by the 532 nm excitation of a Nd:YVO\textsubscript{4} laser (Spectra Physics Millenia-10SJ). The emission was tuned to 13 360–13 890 cm\(^{-1}\). A short pass filter that cuts the scattered laser light and allows the passing of green light was used for these measurements. Residual pump laser light was removed at the exit of the Ti:sapphire laser with an RG 715 nm color filter. All excitation spectra were corrected for the emission of the xenon lamp, and all emission spectra were corrected for the instrumental response. The spectra were displayed as photons versus energy (cm\(^{-1}\)). Quantum yield measurements of the solid state samples were measured on quartz tubes with the help of an integration sphere developed by Frédéric Gumy at the Laboratory of Lanthanide Supramolecular Chemistry, EPFL and commercialized by GMP S.A. (Renens, Switzerland, www.gmp.ch).

Computational Details. The gas-phase geometry of the complex \([\text{ZnEuZn}(\text{L}_2)]\)\(^{12+}\) was optimized by Density Functional Theory using the PW91PW91 exchange-correlation functional\(^{11}\) implemented in Gaussian 03.\(^{12}\) The DZVP double-\(\zeta\) basis set developed by Godbout et al.\(^{13}\) was used for the H, C, N, and Zn atoms, and the europium cation was described by the quasi-relativistic pseudopotential of Dolg et al.\(^{14}\) for the S2 + 4e\(^{-}\) core electrons and by a (7s, 6p, 5d)/(5s, 4p, 3d)
Gaussian basis set for the valence electrons. All kinetic calculations were performed with EXCEL.

ASSOCIATED CONTENT

Details for the determination of matrix differential equations (appendices 1 and 2); tables of 1H NMR shifts, elemental analyses, ESI-MS molecular peaks, characteristic emission lifetimes; figures showing 1H NMR spectra, ESI-MS spectra, molecular structure models, computed steady-state and time-evolution of population densities, computed dependences of the intensity on the incident pump power, electronic excitation and emission spectra, and Tanabe–Sugano diagram. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author
claudette.piguet@unige.ch; jean-claude.bunzli@epfl.ch; andreas.hauser@unige.ch; stephane.petoud@cnrs-orleans.fr

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Financial support from the Swiss National Science Foundation is gratefully acknowledged. S.P. acknowledges support in France from la Ligue contre le Cancer and from Institut National de la Santé et de la Recherche Médicale (INSERM). J.-C.G.B. thanks the world Class University program (Photovoltaic Materials) funded by the Ministry of Education, Science, and Technology of the South Korean government (grant R31-2011-000-10350).
deduce that the crystal within 10 cm−1, and for [CrGdCr(L)2]3+ (Δ = 20 880 cm−1, B = 750 cm−2) indicate that the terminal didentate 2-pyridyl-benzimidazole unit in L1 and L2 is a weaker π-donor and a stronger π-acceptor.

(31) The analysis of high-resolution emission spectra for [ZnLuZn(L2)]3− (Ln = Nd, Yb, Figure S13), leads to the identification of ligand-field sublevels (Figure S14), from which we deduce that the crystal field effects in [ZnLuZn(L2)]3− are identical, within 10 cm−1, with those reported for [LnZn(L)1]2+ despite the replacement of LnN6O3 with LnN9 coordination spheres.16

