Experimental Evidence of Ultrafast Quenching of the 3MLCT Luminescence in Ruthenium(II) Tris-bipyridyl Complexes via a 3dd State

Qincho Sun, Sandra Mosquera-Vazquez, Latévi Max Lawson Daku, Laure Guénée, Harold A. Goodwin, Eric Vauthey, and Andreas Hauser

1 Département de chimie physique, Université de Genève, 30 Quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland
2 Laboratoire de cristallographie, Université de Genève, 24 Quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland
3 School of Chemical Sciences, University of New South Wales, Sydney 2052, Australia

Supporting Information

ABSTRACT: Ultrafast transient absorption spectroscopy serves to identify the 3dd state as intermediate quencher state of the 3MLCT luminescence in the non-luminescent ruthenium complexes $[\text{Ru}(\text{m-bpy})_3]^2+$ (m-bpy = 6-methyl-2,2'-bipyridine) and $[\text{Ru}(\text{tm-bpy})_3]^2+$ (tm-bpy = 4,4',6,6'-tetramethyl-2,2'-bipyridine). For $[\text{Ru}(\text{tm-bpy})_3]^2+$, the population of the 3dd state from the 3MLCT state occurs within 1.6 ps, while the return to the ground state takes 450 ps. For $[\text{Ru}(\text{tm-bpy})_3]^2+$, the corresponding values are 0.16 and 7.5 ps, respectively. According to DFT calculations, methyl groups added in the 6 and 6' positions of bipyridine stabilize the 3dd state to \sim4000 cm$^{-1}$ each, compared to $[\text{Ru}(\text{bpy})_3]^2+.$

The effect of excited ligand-field states on the photophysical properties of ruthenium(II) polybpyridyl complexes has been widely discussed. For photovoltaic applications, the lowest energy ligand-field state has to be at higher energy than the luminescent triplet metal-to-ligand charge-transfer (3MLCT) state. However, a recently proposed strategy to develop drugs for anticancer therapy based on light-induced ligand dissociation via ligand-field states has led to renewed interest in the fundamental questions regarding their role. In this system, even though thermal quenching becomes important above room temperature, the signature of the 3dd state is not accessible experimentally because its population as a short-lived transition state is never sufficiently high. Except for attributing short luminescence lifetimes in multidentate systems to the quenching by the short-lived 3dd manifold, to date there is no spectroscopic study of the corresponding ISC and internal conversion processes. In this Communication, we present ultrafast transient absorption spectra of $[\text{Ru}(\text{m-bpy})_3]^2+$ (m-bpy = 6-methyl-2,2'-bipyridine) and $[\text{Ru}(\text{tm-bpy})_3]^2+$ (tm-bpy = 4,4',6,6'-tetramethyl-2,2'-bipyridine) and compare them to those of $[\text{Ru}(\text{bpy})_3]^2+$, thus identifying the 3dd state in the two complexes as an intermediate state in the relaxation cascade.

$[\text{Ru}(\text{bpy})_3]^2+(\text{PF}_6)_2$, $[\text{Ru}(\text{bpy})_3]^2+(\text{BF}_4)_2$, and $[\text{Ru}(\text{tm-bpy})_3]^2+(\text{BF}_4)_2$ were prepared according to standard methods (see Supporting Information (SI)). Their absorption spectra are almost identical, with the intense 3MLCT band centered at \sim454 nm. The only difference is that, for $[\text{Ru}(\text{m-bpy})_3]^2+$ and $[\text{Ru}(\text{tm-bpy})_3]^2+$, the extinction coefficients at the band maximum are smaller. Whereas $[\text{Ru}(\text{bpy})_3]^2+$ in CH$_3$CN solution at 295 K shows intense luminescence from the 3MLCT state (λ_{max} = 610 nm, $\tau_I \approx 850$ ns, $\eta_L \approx 9\%$), the other two complexes show no luminescence at the sensitivity of the spectrometer used. Figure 1 shows the transient absorption spectra of the three compounds recorded in deoxygenated CH$_3$CN solutions following pulsed irradiation at 400 nm (pulse duration 80 fs, instrument response 150 fs). The series measured for $[\text{Ru}(\text{bpy})_3]^2+$ shows the build-up of the transient spectrum during the pulse, with a bleaching of the 3MLCT band at 454 nm (to be compared with the absorption spectrum included in Figure 1) and excited-state absorptions (ESAs) centered at 600 nm and above 500 nm. The ESA bands at 600 nm and above 500 nm have been attributed to a transition centered on bpy, that is, on the formally reduced ligand, and a ligand-to-metal charge-transfer (1LMCT) transition from one of the neutral ligands to the formally oxidized Ru$^{3+}$ ion of the 3MLCT state, respectively. This spectrum decays monoexponentially at all wavelengths with the same time constant as...
the luminescence decay, indicating that \(^3 \text{MLCT} \) decay and ground-state recovery go hand in hand.

For \([\text{Ru(m-bpy)}_3]^2+\) and \([\text{Ru(tm-bpy)}_3]^2+\), the spectra at short delays are similar to that of \([\text{Ru(bpy)}_3]^2+\); that is, they show the characteristics typical of the \(^3 \text{MLCT} \) state. However, the band at 360 nm decays much faster than the ground-state recovery. The fast disappearance of the 360 nm signal indicates a depopulation of the \(^3 \text{MLCT} \) state. The fact that ground-state recovery is orders of magnitude slower indicates an almost quantitative population of an intermediate state.

Figure 2 shows the experimental transient profiles at 370, 454, and 630 nm for all three complexes and the results of multi-exponential global fits performed using all spectra and taking into account the instrument response function of 150 fs via iterative reconvolution. The corresponding decay-associated difference absorption spectra (DADS) are shown in Figure 3. For \([\text{Ru(bpy)}_3]^2+\), the fit function is
\[
 f(t) = A_1 \exp\left(-t/\tau_1\right) + A_\infty,
\]
because the \(^3 \text{MLCT} \) does not decay noticeably within the time window of \(t < 1 \text{ ns} \).\cite{13a} The fast component with the time constant \(\tau_1 = 1.8 \text{ ps} \) corresponds to a combination of the ultrafast \(^1 \text{MLCT} \to ^3 \text{MLCT} \) ISC, charge localization on one of the ligands,\cite{11,13a,18} solvent reorganization, and vibrational relaxation.\cite{11,13a,18} The \(A_\infty \) component corresponds to the ESA of the \(^3 \text{MLCT} \) state and ground-state bleaching as discussed above. For \([\text{Ru(m-bpy)}_3]^2+\), the fit function is
\[
 f(t) = A_1 \exp\left(-t/\tau_1\right) + A_2 \exp\left(-t/\tau_2\right).
\]
The DADS show that the 360 nm ESA characteristic for the \(^3 \text{MLCT} \) state decays with \(\tau_1 = 1.6 \text{ ps} \), whereas the ground-state recovery occurs with \(\tau_2 = 450 \text{ ps} \). For \([\text{Ru(tm-bpy)}_3]^2+\), a global fit to the transient absorption spectra was not possible, as, in addition to the electronic processes, vibrational cooling on the same time scale results in slightly time-dependent band shapes. However, bi-exponential fits at the wavelengths of the transient maxima and minima were satisfactory. In particular, the decay of the 360 nm signal as well as the ground-state recovery at 454 nm are even faster than for \([\text{Ru(m-bpy)}_3]^2+\), with values of \(\tau_1 = 0.16 \text{ ps} \) (comparable to the instrument response function) and \(\tau_2 = 7.5 \text{ ps} \), respectively.

Figure 2. Time profiles at different wavelengths for (a) \([\text{Ru(bpy)}_3]^2+\), (b) \([\text{Ru(m-bpy)}_3]^2+\), and (c) \([\text{Ru(tm-bpy)}_3]^2+\). Insets: corresponding ground-state recovery at 454 nm. Symbols, experimental; lines, least-squares fits.

Figure 3. Decay-associated difference absorption spectra from global analysis of the transient spectra for (a) \([\text{Ru(bpy)}_3]^2+\), fit function
\[
 f(t) = A_1 \exp\left(-t/\tau_1\right) + A_\infty,
\]
and (b) \([\text{Ru(m-bpy)}_3]^2+\), fit function
\[
 f(t) = A_1 \exp\left(-t/\tau_1\right) + A_2 \exp\left(-t/\tau_2\right).
\]
picoseconds. From the latter the system returns to the ground state more slowly. Two possibilities for this state offer themselves: (a) partial ligand dissociation and re-chelation, or (b) the 3dd state. The former is not very likely, as this would also result in ESA signals in the region of the ground-state bleach and re-chelation would be expected to be slower for the tm-bpy ligand because of higher steric hindrance. The rationale for the 3dd state as intermediate state is the following: for [Ru(tm-bpy)$_3$]$^{2+}$, the methyl group in the 6 position forces a slightly longer Ru–N bond to the corresponding N atom. This results in a reduction of the effective ligand-field strength, like in the analogous Fe(II) complex, which, in contrast to low-spin [Fe(bpy)$_3$]$^{2+}$, is a well-known spin-crossover complex. A similar stabilization is expected for the 3dd state in [Ru(tm-bpy)$_3$]$^{2+}$ since, even though the metal–ligand bond length difference between the ground state and the 3dd state is smaller than that between the low-spin and high-spin states in iron(II) complexes. The effect of a bond length change in ruthenium complexes is enhanced due to the overall stronger ligand-field strength for 4d metal ions. For [Ru(tm-bpy)$_3$]$^{2+}$ with methyl groups in both the 6 and the 6′ positions, the reduction of the ligand-field strength and therefore the stabilization of the 3dd state are even larger. With this in mind, the qualitative diagram for the potential energy surfaces shown in Figure 4 can be proposed. For [Ru(bpy)$_3$]$^{2+}$, the 3dd state is, as is well accepted in the literature, higher in energy than the 3MLCT state. For both of the other two complexes, the 3dd state lies lower in energy than the 3MLCT state, but more so for [Ru(tm-bpy)$_3$]$^{2+}$. In all cases, the ISC from the initially excited 3MLCT to the 3dd state is assumed to take ∼50 fs, as determined for [Ru(bpy)$_3$]$^{2+}$, which therefore [Ru(tm-bpy)$_3$]$^{2+}$ have a minor influence and that therefore [Ru(dm-bpy)$_3$]$^{2+}$ is a good model for the former with respect to the relevant structural and energetic parameters. Experimental and calculated ground-state geometries show good agreement (see SI for details). Furthermore, the DFT results agree well with recently published high-level computational results on ruthenium(II) tris-diimine complexes. Table 1 shows the average Ru–N bond lengths for experimental and calculated geometries, illustrating that the ground-state bond lengths are indeed slightly longer for the Ru–N bonds with an adjacent methyl group. Also, the bond-length difference between the ground state and the 3MLCT state is very small, in agreement with experiment, whereas that between these two and the 3dd state is substantial. The 3dd state, with its unpaired electron in the eg orbitals, is Jahn–Teller active, as becomes evident from the simulations.
strongly distorted optimized structures in this state with one Ru–N distance of as much as ∼2.9 Å for [Ru(dm-bpy)]$_3^{2+}$ and [Ru(tm-bpy)]$_3^{2+}$ (see SI for details). Although DFT is sensitive to absolute energy differences for states of different spin multiplicities, it provides very good relative energies for the same spin state in different compounds. Thus, DFT predicts a stabilization of the 3dd energy on going from [Ru(bpy)]$_3^{2+}$ to [Ru(m-bpy)]$_3^{2+}$ by ∼4000 cm$^{-1}$ and by another ∼3000 cm$^{-1}$ on going to both [Ru(dm-bpy)]$_3^{2+}$ and [Ru(tm-bpy)]$_3^{2+}$, putting it definitely below the 3MLCT state for those two (Table 1).

The above is also consistent with photo-dissociation experiments performed on the three complexes for irradiation at 405 nm (for details see SI). The quantum efficiencies for ejection of a ligand are 2.4 × 10$^{-4}$ for [Ru(bpy)]$_3^{2+}$, 2.7 × 10$^{-3}$ for [Ru(m-bpy)]$_3^{2+}$, and 2.5 × 10$^{-4}$ for [Ru(tm-bpy)]$_3^{2+}$. The value for the parent [Ru(bpy)]$_3^{2+}$ complex is consistent with stabilization of the 3dd energy on going from [Ru(bpy)]$_3^{2+}$ to [Ru(m-bpy)]$_3^{2+}$ by 3000 cm$^{-1}$ and by another 3000 cm$^{-1}$ on going to both [Ru(dm-bpy)]$_3^{2+}$ and [Ru(tm-bpy)]$_3^{2+}$, putting it definitely below the 3MLCT state for those two (Table 1).

In conclusion, we have identified a comparatively long-lived intermediate state in the relaxation cascade of non-luminescent ruthenium(II) tris-bipyridyl complexes, and we attribute it to the lowest energy 3dd state. This is quite an important finding, as to date it has been tacitly assumed that the lifetime of this state was much shorter than the internal conversion process feeding it. This is of even greater significance, for instance, in the optimization of the photo-decomposition in the proposed application of ruthenium(II)-based polypyridyl complexes in anticancer therapy.7,8

■ ASSOCIATED CONTENT

Supporting Information
Details of the structure determination, computational results, and photo-dissociation experiments. This material is available free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Author
andreas.hauser@unige.ch

Author Contributions
§Q.S. and S.M.V. contributed equally.

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

We thank the Swiss National Science Foundation (Grant Nos. 200020-137567 and the NCCR MUST) for financial support and the CSCS for computational resources.

■ REFERENCES