Complementary Surface Second Harmonic Generation and Molecular Dynamics Investigation of the Orientation of Organic Dyes at a Liquid/Liquid Interface

Denis Svechkarev, Dmitry Kolodezny, Sandra Mosquera-Vázquez, and Eric Vauthey

Abstract: The second-order nonlinear response of two dyes adsorbed at the dodecane/water interface was investigated by surface second harmonic generation (SSHG). These dyes consist of the same chromophoric unit, 2-pyridinyl-5-phenyloxazole, with an alkyl chain located at the two opposite ends. The analysis of the polarization dependence of the SSHG intensity as usually performed points to similar tilt angles of the two dyes with respect to the interface but does not give information on the absolute direction. Molecular dynamics (MD) simulations reveal that both dyes lie almost flat at the interface but have opposite orientations. A refined SSHG data analysis with the width of the orientational distribution yields tilt angles that are in very satisfactory agreement with the MD simulations.

1. INTRODUCTION

Interfaces between two immiscible liquids are ubiquitous in nature and play a crucial role in many technological processes.1−3 Their specific properties, which often diverge from those of the constituting phases, arise from the asymmetry of the forces acting on this frontier region and from the resulting anisotropic orientations of the interfacial molecules. Therefore, molecules adsorbed at a liquid/liquid interface experience microenvironmental characteristics, such as friction or local electric field, that differ from those of the bulk phases, which are usually described by macroscopic quantities such as viscosity or dielectric constant. This in turn can lead to chemical reactivity that deviates from that observed in bulk solutions. For example, several chemical reactions involving water-insoluble compounds have been shown to proceed faster at the interface with water than in pure organic solvents.4−6

Knowledge of the orientation of the molecules adsorbed at the interface is of primary importance for rationalizing their chemical reactivity. However, this information is not readily accessible. In order to probe only the adsorbed solute molecules and not those dissolved in the bulk phases, experimental techniques with high interfacial selectivity have to be used. This is the case of nonlinear optical techniques such as surface second harmonic generation (SSHG)7−10 and surface sum frequency generation (SSFG)11,12 which probe the second-order nonlinear optical susceptibility, \(\chi^{(2)}\). Within the dipolar approximation, \(\chi^{(2)}\) vanishes in centrosymmetric media but not at the interface between two isotropic liquids. Moreover, \(\chi^{(2)}\) is frequency-dependent and exhibits resonances at frequencies corresponding to one- or two-photon transitions. SSFG, which is mostly used with one of the optical fields in the infrared to study vibrational resonances, has proven to be particularly powerful for investigating naked interfaces (i.e., interfaces without a solute adsorbed).13,14 On the other hand, SSHG is usually used in the visible region in resonance with electronic transitions of the adsorbed molecules.15−19 Electronic SSFG has recently been demonstrated to be a promising alternative for studying adsorbates at air/liquid interfaces.20,21 Information on the orientation of the adsorbate can be deduced from polarized SSHG experiments.22−25 However, a number of approximations normally have to be made when analyzing the resulting data to extract orientational information. One of them is the use of a Dirac \(\delta\) function to describe the angular distribution of the molecules at the interface, which obviously loses its physical meaning when going from a theoretical approach to real systems. This issue has been addressed in several studies,23,25−28 but the use of an angular distribution is still not systematic. Recently, a novel approach was suggested to obtain the orientational distribution of the transition dipole moments of the adsorbate using a ratio of second harmonic intensities recorded before and after excitation of the molecule with a circularly polarized pump pulse and using particular sets of polarization for the probe and signal fields.29 However, when pump–probe studies are not feasible, it is not possible to obtain this information from SSHG polarization profiles alone. Additionally, as SSHG is inherently a homodyne technique, the signal intensity is proportional to the square modulus of the susceptibility, \(|\chi^{(2)}|^2\). As a consequence, no information on the...
absolute orientation of the adsorbate (i.e., on which particular end of the molecule is pointing up or down) can be obtained unless heterodyne detection is performed.21,30

Alternatively, modern computational methods such as molecular dynamics (MD) can be particularly helpful to gain insight into the interfacial behavior of a solute molecule. Over the past years, MD has been increasingly used to simulate interfaces and interfacial processes21–35 for example, adsorption and solvation,36,37 extraction,38 or the microenvironment of adsorbates.39,40

To the best of our knowledge, the determination of the orientation of a solute molecule at a liquid/liquid interface using the combination of polarized SSHG experiments and MD simulations has not been described to date. Here we report on the application of such a combination to study the orientation of two organic dyes consisting of the same pyridine–oxazole–phenyl (POP) chromophoric unit but having an octyl tail attached to the opposite ends at the dodecane/water interface (Figure 1). The chromophore bears donor (alkyloxy) and acceptor (quaternary nitrogen) moieties, thus giving a good perspective for a substantial second-order nonlinear response. The influence of the alkyl chain at both sides of the chromophore on the adsorption at the interface as well as on its orientation are discussed. The results of the MD simulations are compared to the information extracted from the analysis of SSHG polarization profiles and applied to go beyond the assumptions usually used in such SSHG data analysis.

2. EXPERIMENTAL SECTION

Sample Preparation. The organic dyes, 1-methyl-4-(5-(4-(octyloxy)phenyl)oxazol-2-yl)pyridinium tosylate (N1) and 4-(5-(4-methoxyphenyl)oxazol-2-yl)-1-octylpyridinium tosylate (N8), were synthesized in the group of Prof. A. O. Doroshenko (V. N. Karazin Kharkov National University) and were used as received. Distilled water and dodecane (pure from Acros Organics) were used without further purification. In the group of Prof. A. O. Doroshenko (V. N. Karazin Kharkov National University) and were used as received. Distilled water and dodecane (pure from Acros Organics) were used without further purification. The absorption spectra were recorded on a Cary 50 spectrophotometer (Varian) in 1 cm quartz cells. The samples for the SSHG experiments were prepared by pouring 10 mL of distilled water into a 4 cm × 4 cm × 4 cm quartz cell along with 100 μL of the dye solution in distilled water (approx. 10⁻⁴ M) and then adding 12 mL of dodecane. All of the measurements were performed at room temperature.

Surface Second Harmonic Generation. The SSHG measurements were performed using the experimental setup described previously.41,42 In brief, the probe pulses were generated with a noncollinear optical parametric amplifier (TOPAS-C, Light Conversion) pumped by a 1 kHz Ti:sapphire amplified system (Solitcse, Spectra-Physics). About 0.3 μW of the TOPAS output beam was focused through the dodecane phase onto the interface at an angle of incidence of about 70°, where it underwent total internal reflection. The SSHG signal was then collected and focused onto the entrance slit of a Czerny–Turner spectrograph (Shamrock 163, Andor) equipped with a cooled CCD camera (Newton 920, Andor). The illuminated pixels were vertically binned and summed over the wavelength range of interest. In all of the experiments, the polarization of the probe pulse was controlled with a half-wave plate, and the p, s, or −45° polarized component of the SSHG signal was detected. The nonresonant contribution to the SSHG signal measured without dye in the aqueous phase was found to be negligibly small.

Quantum-Chemistry Calculations. The ground-state geometries and charge distributions of dodecane, N1, and N8 were optimized using density functional theory (DFT) with the B3LYP functional and the cc-pVDZ basis set as implemented in Gaussian 09.43 The transition dipole moments of both N1 and N8 were calculated using time-dependent DFT (TD-DFT) with the same combination of functional and basis set. The hyperpolarizability tensor elements were computed at the B3LYP/cc-pVTZ level at 800 and 1000 nm. These wavelengths were chosen because the experimental and calculated S2 ← S0 absorption maxima of both dyes are at 400 and 500 nm, respectively, and thus correspond to two-photon resonances.

Molecular Dynamics Simulations. The MD model of the dodecane/water interface was based on the all-atom CHARMM36 force field for the GROMACS package, version 4.6.5,44 with the three-site TIP3P water model.45 The bond lengths and angles for dodecane, N1, and N8 were adapted to the CHARMM force field format with PRODRG.46 The partial charges necessary to account for Coulomb interactions were derived from the B3LYP/cc-pVDZ electron densities by fitting the electrostatic potential to point (ESP) charges. All of the covalent bonds were constrained to their equilibrium values using the P-LINCS algorithm.47 The repulsion and dispersion terms of nonbonded interactions were computed using the Lennard-Jones potential energy function. Electrostatics was treated with a particle-mesh Ewald model48 using a short-range cutoff of 1.0 nm and van der Waals interactions switched off between 0.8 and 1.0 nm. The temperature was maintained using the thermostat by Bussi et al.49 Periodic boundary conditions were applied, as well as the Berendsen barostat.50 The simulations were performed with constant number of particles, pressure, and temperature (NPT ensemble) using an integration time step of 1 fs with the neighbor list updated every 20 fs. Chloride ions, available in the force field, were used as counterions instead of toslylate ions.

First, a cell containing 267 dodecane molecules was created and equilibrated during 1 ns. In a second stage, two 5 nm × 5 nm × 4 nm cells were added and filled with water (~6400 molecules) to obtain a 5 nm × 5 nm × 12 nm sandwichlike cell with the dodecane phase in the middle and a water phase on each side along the z axis. Because of the periodic boundary conditions adopted here, using only two layers would have led to the formation of two new unwanted dodecane/water interfaces. Additionally, the sandwichlike cell allowed information about the dynamics of N1 and N8 to be gathered simultaneously. The volume of the cell also allowed some simulations to be started with the dye molecules located in the bulk phase. A 20 ns trajectory was recorded in every case, allowing enough time for the accumulation of data after adsorption of the dye molecules. Because the motions of the atoms in the MD simulations are random, it was necessary to prepare several starting geometries to analyze all of the most probable cases and to obtain reliable statistical information. Thus, in two cases, the molecules were standing vertically with either their octyl or methyl tail pointing toward the dodecane phase, and three more runs were made with the molecules initially lying flat with respect to the interface. Trajectories were visualized with the VMD package to analyze the behavior of the adsorbed dyes.21

Because of the periodic boundary conditions, the molecule could go beyond the cell at one (or more) edges of the cell and virtually appear at the opposite side. In terms of atomic coordinates, this means that the distance between the x and y coordinates becomes larger than the cell size, thus artificially increasing the population of molecules lying almost flat with respect to the interface. To address this issue, the analysis algorithm was amended to detect abnormally large x and y vector coordinates that exceeded a certain threshold, set to be half of the molecule’s length. The dimensions of the cell at each step were...
then additionally recorded, and the translation procedure was applied when necessary to bring the molecule back to the neighbor virtual cell. To analyze the molecular orientation at the interface at each time step along the trajectory, vectors going between atoms 10 to 31 and 30 to 9 (Figure 1) were chosen as the z axes for N1 and N8, respectively. These vectors are close to the actual transition dipole moments. Additionally, the xy molecular planes of N1 and N8 were defined using atoms 10, 25, and 31 and atoms 30, 19, and 9, respectively. These atoms were chosen to ensure that small torsional rotations of the rings would have very little impact on the directions of the chosen vectors.

3. RESULTS AND DISCUSSION

Spectral Properties. The electronic absorption spectra of the two dyes in water exhibit a broad band with a maximum at approximately 400 nm (Figure 2A), which, as for its well-known analogue 2,5-diphenyloxazole (PPO) and its numerous derivatives, has π→π* character and corresponds to the S1 ← S0 electronic transition. Figure 2A also shows the stationary SSHG spectra measured with N1 and N8 at the dodecane/water interface by tuning the probe wavelength between 800 and 1000 nm. The band maximum is at around 440 nm for both dyes, but the band of N1 is broader with a shoulder at around 480 nm. Compared with the electronic absorption spectra, both SSHG spectra are red-shifted by about 40 nm (2200 cm⁻¹) and are substantially narrower. Such shifts and bandwidth differences have been observed previously with other dyes such as coumarins. Whereas the shift has been ascribed to a solvatochromic effect, the origin of the narrowing has not been totally clarified. In the present case, the absorption spectra of N1 and N8 measured in toluene are essentially the same as those in water, and thus, environmental effects cannot be invoked here. However, it should be noted that the enhancement of the SSHG intensity in this spectral region arises from a resonance with a two-photon transition, and therefore, the SSHG spectrum should not only be compared to the linear absorption spectrum but also to the two-photon absorption spectrum, which has been shown to often differ from the one-photon absorption spectrum. The SSHG signal obtained without the dye in the aqueous phase was negligibly small, indicating that the SSHG signal with the dyes has a purely resonant character of dipolar origin. Therefore, the signal intensity depends on the square modulus of the relevant elements of the second-order susceptibility tensor and hence on the square of the number of dye molecules contributing to the signal.

Polarized SSHG Experiments. The dependences of the intensities of the s, p, and −45° components of the SSHG signal on the polarization of the probe field at 850 nm measured with both dyes at the dodecane/water interface are shown in Figure 2B and C. The polarization profiles measured at 800 and 1000 nm had the same shape, within the limit of error, excluding the contribution to the measured signal by other species, such as aggregates. If the SSHG spectra in Figure 2A were due to several species, the polarization profiles should vary with the probe wavelength unless all of the species have very similar χ(2) tensors and orientations at the interface, which is very improbable. The solid lines in Figure 2B and C are the best fits to the data of the following equation describing the SSHG intensity:

\[
I_{\text{SSHG}} = C \cdot \text{la}(\chi_{\text{XXZ}}^{(2)}) \sin 2\gamma \sin \Gamma + (a_\gamma \chi_{\text{XXZ}}^{(2)} + a_\pi \chi_{\text{ZXZ}}^{(2)}) \cos^2 \gamma \cos \Gamma + a_\phi \chi_{\text{ZZZ}}^{(2)} \sin^2 \gamma \cos \Gamma \gamma \Gamma I_p^2
\]

where C is a constant that depends on the solvents and the probe wavelength; \(a_i\) (\(i = 1−5\)) are the Fresnel coefficients; \(\chi_{\text{XXZ}}^{(2)}\), \(\chi_{\text{ZXZ}}^{(2)}\), and \(\chi_{\text{ZZZ}}^{(2)}\) are the three independent nonzero elements of the second-order susceptibility tensor for a material with a C₆ᵥ symmetry, as is the case for an interface, with the subscripts representing the Cartesian coordinates in the laboratory frame (Figure 3); \(\gamma\) is the polarization angle of the probe field (\(\gamma = 0°\) and 90° for p and s polarization, respectively); \(\Gamma\) is the angle of the polarization component of the SSHG signal (\(\Gamma = −45°\), 90°, and 0° for the −45°, s, and p components, respectively); and \(I_p\) is the intensity of the probe pulse. The Fresnel coefficients were first calculated as described in the Supporting Information, and the relative magnitudes of the three tensor elements were adjusted by using all three polarization profiles simultaneously. The resulting values are listed in Table 1. These values point to substantial differences...
between the interfaces with N1 and N8 adsorbed, pointing to distinct orientations at the interface. However, as \(\chi^{(2)} \) is a macroscopic quantity, it does not give direct access to this orientation. For this, one has to consider the microscopic equivalent, which is the second-order polarizability or hyperpolarizability tensor, \(\beta \):

\[
\chi^{(2)} \propto N(\beta)
\]

(2)

where \(N \) is the interfacial adsorbate density and the angle brackets indicate an average over the molecular orientations.

Relating \(\chi^{(2)} \), represented in the laboratory frame, to \(\beta \) first requires a molecular coordinate system to be defined. As both N1 and N8 belong to the C1 point group, the long molecular axis of each dye, defined as discussed above, was chosen as the z axis. This axis is also close to parallel to the S0 \(\leftrightarrow S_1 \) transition dipole moment (Figure 1). It has previously been shown that the conformation of a polar tail on a chromophore can noticeably influence the direction and size of the transition dipole moment. A similar effect due to the flexibility of the chromophore could not be ruled out here but was assumed to be negligible. The conjugated π-electronic system thus is located in the \(xy \) plane (Figure 3). As the strong S1 \(\leftrightarrow S_0 \) transition in the POP chromophore has π–π* character, almost no electronic density redistribution occurs along the y axis upon excitation. As a consequence, the hyperpolarizability tensor elements with a y index should make a negligible contribution. Quantum-chemical calculations of \(\beta \) at the resonance wavelength were carried out to determine whether the number of relevant tensor elements could be further reduced. The results listed in Table S2 in the Supporting Information indicate that only one tensor element, \(\beta_{zzz} \), is significant, in good agreement with predictions based on symmetry considerations. In this case, eq 2 can be developed as:

\[
\chi_{zzz}^{(2)} = \frac{N}{2\varepsilon_0} (\cos^2 \theta) \beta_{zzz}
\]

(3a)

where the tilt angle \(\theta \) and the other Euler angles, which describe the orientation of the dye with respect to the interface, are defined in Figure 3.

The orientation parameter \(D \), which directly depends on the tilt angle \(\theta \), can be calculated from the following combination of the \(\chi^{(2)} \) tensor elements:

\[
D = \frac{\langle \cos^3 \theta \rangle}{\langle \cos \theta \rangle} = \frac{\chi_{zzz}^{(2)}}{\chi_{zzz}^{(3)} + 2\chi_{zzz}^{(3)}}
\]

(4)

With the values of the \(\chi^{(2)} \) tensor elements obtained from the SSSHG polarization profiles, \(D \) amounts to 0.39 ± 0.03 and 0.21 ± 0.04 for N1 and N8, respectively. The determination of the angle \(\theta \) from \(D \) requires knowledge of \(f(\theta) \), the distribution function of \(\theta \). In most previous works, a Dirac \(\delta \) function was used, leading to the simplest case of \(D = \cos^3 \theta \). Making this assumption here results in \(\theta \) values of 51.8 ± 1.8° (or 128.2 ± 1.8°) and 63.1 ± 2.6° (or 116.9 ± 2.6°) for N1 and N8, respectively. These two \(\theta \) values for each dye reflect the two possible directions of the transition dipole moments, i.e., toward the dodecane phase or the aqueous phase. As discussed above, the absolute orientation of the adsorbate cannot be deduced from the polarized SSSHG data. For the sake of simplicity, we will henceforth only consider the smallest \(\theta \) value, which describes the tilt angle of the long molecular axis. The absolute orientation of the molecule will be mentioned when necessary. Such a \(\delta \) distribution function as assumed here is highly improbable for dyes adsorbed at a liquid/liquid interface, and therefore, the tilt angles obtained with this assumption correspond to lower-limit values. Further information about the orientations of N1 and N8 was obtained by performing MD simulations.

MD Simulations. Some of the simulations were performed with the dyes initially located in the aqueous bulk phase. After approximately 1–4 ns, both N1 and N8 were adsorbed at the interface and stayed there for the remaining duration of the simulation. The time at which the dye was adsorbed at the interface was chosen as the starting point for the trajectory analysis. In all of the simulations, the dyes had a definite orientation relative to the interface, i.e., with the octyl chain pointing up into the dodecane, down into the aqueous phase, or along the interface. Figure 4A illustrates the variation of the angle \(\theta \) during 20 ns of simulation. Equilibration can be clearly noticed after about 3 ns. All of the MD results shown in the figures were obtained by starting the simulation with the octyl chain up in the dodecane sulphas. The angle distributions obtained from such trajectories could be well-reproduced using a Gaussian function (Figure 4B,C).
The Gaussian distribution \(f(\theta) \) obtained from the simulations can now be used instead of the \(\delta \) function to extract the most probable angle \(\theta_0 \) from the orientation parameter \(D \) (eq 4). The \(D \) value of 0.39 ± 0.03 obtained for N1 results now in \(\theta_0 = 61 \pm 2^\circ \), whereas the \(D \) value of 0.21 ± 0.04 found for N8 yields \(\theta_0 = 76 \pm 4^\circ \) (see the Supporting Information for details of the procedure). These values obtained by using the physically more realistic angular distributions are now in better agreement with the MD simulations (Table 2). The remaining ~10° difference could be due to various factors: (i) the direction of the \(S_1 \leftarrow S_0 \) transition dipole moment of the adsorbed dye may differ from that calculated for the equilibrium geometry; (ii) the local temperature in the interfacial region irradiated by the probe beam might be higher than assumed in the MD simulations, leading to a broadening of the angular distribution; (iii) some specific properties of interfacial water may not be well-reproduced by the MD simulations; and (iv) interactions between nearby adsorbates might influence their orientation.

As the hyperpolarizability tensors of both molecules are dominated by a single element, \(\beta_{zzz} \), no information on the Euler angle \(\psi \), which represents the rotation around the main molecular axis, is available. Hence, the distribution around its most stable value. The Gaussian distribution \(f(\psi) \) shown in Figure 6A gives an even wider look at the dependence of \(f(\psi) \) on the tilt angle \(\theta \). For molecules with small \(\theta \), i.e., with the molecular axis almost perpendicular to the interface, \(f(\psi) \) is almost random. However, as \(\theta \) approaches 90°, the distribution becomes increasingly localized around 90°, i.e., the dye tends to have its molecular plane parallel to the interface. As a consequence, the overall \(f(\psi) \) distributions shown in Figure 6B,C are due to the predominance of adsorbates with a large tilt angle.

Table 2. Orientational Parameters Obtained from MD Simulations with Different Initial Orientations of the Dyes and from Polarized SSHG Measurements

<table>
<thead>
<tr>
<th>initial orientation</th>
<th>trajectory length (ns)</th>
<th>tilt angle</th>
<th>rotation angle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\theta_0)</td>
<td>(\Delta \theta)</td>
<td>(\psi_0)</td>
</tr>
<tr>
<td>octyl up</td>
<td>17</td>
<td>74</td>
<td>13</td>
</tr>
<tr>
<td>octyl down</td>
<td>15.5</td>
<td>75</td>
<td>12</td>
</tr>
<tr>
<td>horizontal</td>
<td>16.5</td>
<td>75</td>
<td>12</td>
</tr>
<tr>
<td>SSHG</td>
<td>19</td>
<td>74</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>76</td>
<td>12</td>
</tr>
</tbody>
</table>

After equilibration at the interface.

Figure 4. (A) Variation of the tilt angle \(\theta \) along a whole MD trajectory. (B, C) \(f(\theta) \) distributions after equilibration with best fits to eq 5. The full width at half-maximum (FWHM = 2(2 ln 2)\(^{1/2}\)\(\Delta \theta \)) is also given for comparison.
The above investigation demonstrates that the combination of SSHG spectroscopy and MD simulations is a very powerful method for determining the orientation of organic molecules adsorbed at liquid/liquid interfaces. We investigated two molecules consisting of the same chromophoric unit but with an aliphatic chain located at the two opposite ends. From the analysis of the polarized SSHG measurements alone, only relatively minor differences in the tilt angle between the long molecular axis of the dyes and the interface normal were obtained, pointing a priori to similar orientations. On the other hand, MD simulations showed that the two dyes are oriented in opposite directions, as expected from the positions of the alkyl chain, and they allowed the distribution of the tilt angle to be determined. Using the width of this distribution to refine the analysis of the polarized SSHG measurements yielded tilt angles that are in very satisfactory agreement with those obtained from the MD simulations, although smaller in both cases by about 10°. This difference is most likely due to the various assumptions made in the SSHG data analysis and to several effects not taken into account in the MD simulations.

ASSOCIATED CONTENT

- **Supporting Information**
 Calculation of the Fresnel coefficients and details of the analysis of polarized SSHG data; dependence of the distribution of ψ on the tilt angle θ for N8; and topologies of dodecane and both dyes used for MD simulations. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author
*E-mail: Eric.Vauthey@unige.ch.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
We are thankful to Prof. P.-F. Brevet (Institut Lumière Matière, Université Lyon 1) for fruitful discussions and to O. Borodin and R. Iliashenko (V. N. Karazin Kharkov National University)
for providing the compounds for study. This work was supported by the Swiss National Science Foundation through Project 200020-147098 and the University of Geneva. D.S. and D.K. also thank the Swiss Federal Commission for Scholarships and the Ministry of Education and Science of Ukraine, respectively, for supporting their stays in Switzerland.

REFERENCES

