Luminescence of Sm$^{2+}$ Doped in BaFBr

Prodipta Pal and Hans Hagemann*

Département de Chimie Physique, Université de Genève, 30, q. E. Ansermet, CH 1211 Genève 4, Switzerland
E-mail: Hans-Rudolf.Hagemann@unige.ch

Abstract. The luminescence of Sm$^{2+}$-doped BaFBr has been measured as a function of temperature and pressure. The 7F_J crystal field levels have been identified and the corresponding crystal field parameters evaluated. Temperature dependent lifetime measurements allow to locate the energy of the lowest 4f55d1 level. Pressure dependent measurements up to 8 GPa show linear red shifts of the $^5D_{2,1,0}$ levels. These shifts are about 3 times stronger than the well known ruby pressure shifts and highlight thus the potential use as pressure sensors below 8 GPa.

Keywords: Rare-Earth Elements; Samarium; Luminescence; High pressure; Crystal Field

Introduction

Alkaline earth fluorohalides (MFX) doped with Eu$^{2+}$ and/or Sm$^{2+}$ find many applications as X-ray or neutron detectors, pressure sensors as well as optical storage by hole burning. In this work we study the luminescence of Sm$^{2+}$ in BaFBr and related hosts as a function of pressure and temperature.

Luminescence spectra of Sm$^{2+}$

Sm$^{2+}$ has a 4f6 electronic ground state configuration, but the lowest energy levels of the 4f55d1 configuration are in the range of the 3D_J levels (see Figure 1A). At low temperatures, emissions from the 3D_2 and 3D_1 level dominate, while at high temperature, emissions from the 3D_0 level and a broad emission from the lowest 4f55d1 level are observed (Figure 1B).

Temperature dependent spectra allowed to identify the different transitions observed and to establish an experimental energy level scheme. The experimental positions of the 3F_J levels could be calculated within about 5-8 cm$^{-1}$ using the following parameters (in cm$^{-1}$): $F^2 = 332$, $\xi = 1054$, $B^2_0 = -279$, $B^4_0 = -125$, $B^4_4 = -156$, $B^6_0 = 433$ and $B^6_4 = -118$. The agreement for the 3D_0 levels is less satisfactory, however it is likely that these levels are subject to configuration interaction with the lowest 4f55d1 levels.
Lifetime measurements as a function of temperature show a strong decrease of the lifetime of the 5D_1 level which is related to a non-radiative transition to the lowest $4f^55d^1$ level. The energy separation between these two levels could be estimated to be 2712 ± 29 cm$^{-1}$.

High pressure experiments were performed at room and low temperatures up to about 8 GPa. The emissions of the 5D_1 levels are red shifted by more than 20 cm$^{-1}$/GPa, which is an about 3 times stronger shift than the corresponding shift of the ruby R_1 and R_2 lines.

Figure 2 illustrates the splitting of the 7F_1 level as a function of pressure in BaFBr and SrFBr. A systematic shift can be observed, and the values of the two host materials follow a similar trend.

Experimental Section

Synthesis. Small Sm$^{2+}$-doped BaFBr and SrFBr crystals were obtained by slow cooling of stoichiometric melts of commercial barium (strontium) fluoride and anhydrous bromide under dry nitrogen atmosphere using graphite crucibles. Samarium was added as SmF$_3$ with a mole fraction of less than 1% respective to Ba or Sr.

Optical measurements. To obtain the low temperature we used a closed-cycle Oxford cryostat. High temperature spectra were obtained using a home-built furnace. Different lasers with emission wavelengths of 405 nm, 488 nm and 532 nm were used as excitation sources. Luminescence spectra were obtained using a Bruker IFS66 FT instrument. Lifetime measurements were performed using a SR 430 Multichannel Scaler and a Spex 270 Monochromator.

A D'Anvils Diamond Anvil Cell (DAC) with a 4:1 methanol:ethanol mixture as pressure transmitting medium was used to generate high pressure. The pressure was monitored using the ruby (present with the sample) luminescence.

Crystal field calculations. The crystal field parameters were estimated using the program by Edvardsson and Aberg2 which calculates all energy levels of the $4f^6$ configuration. As only 5D_1 and 7F_1 levels are observed for Sm$^{2+}$, the adjustable free ion parameters were limited to F^5 (F^5 and F^6 are related to F^2) and the spin-orbit coupling parameter ξ. Using an iterative routine written by D. Lovy of our department, selected parameters can be optimized by comparison with experimental data.

Acknowledgements.

This work has been supported by the Swiss National Science Foundation. The authors thank D. Lovy for implementing the crystal field calculation programs.

Received: August 19, 2009.
