Frozen-Density Embedding Theory for Multi-level simulations



Lecture for the Virtual Winterschool on Computational Chemistry, January 18, 2017


by T.A. Wesolowski 

Department of Physical Chemistry 

University of Geneva 



Appendix: Derivation of the FDET embedding potential 

Appendix: Exact and approximate solutions of FDET in  model systems  of two  embedded electrons

Appendix: Exact and approximate non-additive kinetic potential  in a model system (spherical)

Appendix: LR-TDDFT/FDET 

Appendix: Approximation to Tsnad[rhoA,rhoB] accounting for the exact cusp condition 

Appendix: What to use as rhoB  , subsystem DFT  using iterative FDET (freeze-and-thaw) , Amazing performance of LDA in subsystem DFT (freeze-and-thaw)

Appendix: ADC/FDET paper: Prager, Zech, Aquilante, Dreuw & Wesolowski, JCP2016

Review article Review article on Density Embedding Methods: Wesolowski, Zhou, Shedge, Chem. Rev. Vol 15 (2015) 5891 

 

Essential papers on FDET

FDET for embedding not-interacting reference systems :Wesolowski&Warshel JCP 1993

FDET for excited states LR-TDDFT :Wesolowski JACS 2004

FDET for embedding interacting reference systems :Wesolowski PRA2008

FDET for embedding DMFT systems :Wesolowski& Pernal IJQC2009

FDET for excited states from stationary solutions (dealing with orthogonality):Wesolowski JCP2014

Linearized FDET for orthogonal stationary states:  Zech, Aquilante, & Wesolowski JCP2015

 

Essential papers on Approximations to Tsnad[rA,rB]

Failure of Gradient Expansion Approximation at small rA,rB overlaps :  Wesolowski&Weber, IJQC1997

GGA97 approximation to Tsnad[rA,rB]   for small rA,rB overlaps :  Wesolowski, Chermette & Weber, JCP1996, Wesolowski, JCP1997

Failure of semi-local approximations to Tsnad[rA,rB] at large rA,rB overlaps :  Bernard, Kaminski & Wesolowski, JPhysA2008, : Savin & Wesolowski, book chapter 2013

NDSD approximation to Tsnad[rA,rB] reflecting the  exact casp condition for vsnad[rA,rB](r) :  Garcia Lastra, Kaminski, & Wesolowski, JCP2008 

Accurate reference potentials vsnad[rA,rB](r) and approximate counterparts : Savin & Wesolowski, book chapter 2013, De Silva&Wesolowski, JCP2012

 

 

Essential papers on subsystem DFT  

Iterative optimization  rA and rB (freeze-and-thaw) and the first application of Cortona’s subsystem DFT to molecules:  Wesolowski&Weber, CPL1996

Performance of LDA in subsystem DFT for hydrogen-bndend complexes: Dulak, Kaminski & Wesolowski, JCTC2007 (geometries) , Dulak&Wesolowski, JMolModel2007 (energies)

Generalization of subsystem DFT for excited states:  Casida&Wesolowski, IJQC2004