Tomasz A. Wesolowski
Department of Physical Chemistry
University of Geneva
Publications
2012
First-Principles Simulation of Absorption Bands of Fluorenone in Zeolite
L
Xiuwen Zhou Tomasz A. Wesolowski, Gloria Tabacchi, Ettore Fois, Gion Calzaferri, Andre Devaux
Phys. Chem. Chem. Phys. , xx, accepted (2012)
Exact non-additive kinetic potentials in realistic chemical systems
P. de Silva and T.A. Wesolowski,
J. Chem. Phys. , 136, 094110 (2012)
Revealing the bonding pattern from the molecular electron density using Single Exponential Decay Detector (SEDD): an orbital-free alternative to the Electron Localization Function (ELF)
P. de Silva, Jacek Korchowiec, and T.A. Wesolowski,
ChemPhysChem, 13, 3462(2012)
Pure-state non-interacting v-representability of electron densities from Kohn-Sham calculations with finite basis sets
P. de Silva, T.A. Wesolowski,
Physical Review A, 85, 032518 (2012)
2011
Optimizing Sensitization Processes in Dinuclear Luminescent
Lanthanide Oligomers: Selection of Rigid Aromatic Spacers
J.-F. Lemonnier, L. Guénée, C.Beuchat, T.A. Wesolowski, P. Mukherjee,
D.H. Waldeck, K.A. Gogick, S. Pethoud, C. Piguet
Journal of American Chemical Society, 133 (2011) 16219-16234.
Importance of the Intermolecular Pauli Repulsion in Embedding Calculations for Molecular Properties: The Case of Excitation Energies for a Chromophore in Hydrogen-Bonded Environments
Georgios Gradelos and Tomasz A. Wesolowski,
Journal of Physical Chemistry A , 115 (2011) 10018-10026.
Self-consistency in Frozen-Density Embedding Theory Based Calculations
Francesco Aquilante and Tomasz A. Wesolowski,
Journal of Chemical Physics, 135 (2011) 084120.
Comment on: "Accurate frozen-density embedding potentials as a first step towards a subsystem description of covalent bonds" [Fux et al., J. Chem. Phys., vol. 132 164101 (2010).]
Tomasz A. Wesolowski,
Journal of Chemical Physics, 135(2011) 027101.
Embedding vs supermolecular strategies in evaluating
the hydrogen-bonding-induced shifts of excitation energies
Georgios Fradelos, Jesse J. Lutz, Tomasz A. Wesolowski,
Piotr Piecuch, and Marta Wloch
Journal of Chemical Theory and Computations,
7 (2011) 1647-1666.
Shifts in Excitation Energies
Induced by Hydrogen Bonding:
A Comparison of the Embedding and Supermolecular
Time-Dependent Density Functional Theory Calculations
with the Equation-of-Motion Coupled-Cluster Results
Georgios Fradelos, Jesse J. Lutz, Tomasz A. Wesolowski,
Piotr Piecuch, and Marta Wloch
Progress in Theoretical Chemistry and Physics, Vol. 22,
(2011) 219-266.
Multi-scale modelling of solvatochromic shifts from frozen-density embedding theory with non-uniform continuum model of the solvent: the coumarin 153
Xiuwen Zhou, Jakub W. Kaminski,
Tomasz A. Wesolowski
Phys. Chem. Chem. Phys. , 13 (2011) 10565-10576 (special issue on Multilevel Modelling).
The importance of going beyond Coulombic potential in embedding calculations for molecular properties: the case of iso-g for biliverdin in protein-like environment
Georgios Fradelos and Tomasz A. Wesolowski
Journal of Chemical Theory and Computations, 7 (2011) 213.
2010
Thermal Desorption, Vibrational Spectroscopic, and DFT Computational Studies of the Complex Manganese Borohydrides Mn(BH4)2 and [Mn(BH4
)4]2-
G. Severa, H. Hagemann, M. Longhini, J.W. Kaminski,
Tomasz A. Wesolowski, C.M. Jensen,
Journal of Physical Chemistry C , 114 (2010) 15516-15521.
Modeling solvatochromic shifts using the orbital-free embedding potential at
statistically-mechanically
averaged solvent density
Jakub W. Kaminski, Sergey Gusarov, Andriy Kovalenko,
Tomasz A. Wesolowski
Journal of Physical Chemistry A , 114 (2010) 6082.
2009
Physical Chemistry at the University of Geneva
H. Hagemann,
T.A. Wesolowski, T. Berclaz, L. Gagliardi, M. Geoffroy,
A. Hauser, H. Bill, A. Buchs, F. Gulacar, E.E.C. Lucken, J. Weber, E. Vauthey,
CHIMIA, 63 (2009) 807-815.
The cooperative effect of hydrogen-bonded chains in the environment of a p->p* chromophore
Georgios Fradelos, Jakub W. Kaminski, Samuel Leutwyler, Tomasz A. Wesolowski
Journal of Physical Chemistry A , 113 (2009) 9766-9771.
Orbital-free embedding effective potential in analytically solvable cases
Andreas Savin, Tomasz A. Wesolowski
Progress in Theoretical Chemistry and Physics, 19 (2009) 327-339.
Orbital-free effective embedding potential: Density-matrix functional
theory case
Katarzyna Pernal, Tomasz A. Wesolowski
Intl. J. Quant. Chem. 109 (2009) 2520
Linearized Orbital-Free Embedding Potential
in Self-Consistent Calculations
Marcin Dulak, Jakub W. Kaminski, and Tomasz A. Wesolowski,
Intl. J. Quant. Chem. 109 (2009) 1886.
2008
Orbital-free effective embedding potential at nuclear cusps
URL: http://link.aip.org/link/?JCP/129/074107
DOI: 10.1063/1.2969814
J.-M. Garcia Lastra, Jakub W. Kaminski, and Tomasz A. Wesolowski,
J. Chem. Phys. 129 (2008) 074107.
LiSc(BH4)4: a novel salt of Li+ and discrete Sc(BH4)4- complex anions
H. Hagemann, M. Longhini , J.W. Kaminski, T.A. Wesolowski, R. Cerny,
N. Penin, M.H. Sorby, B.C. Hauback, G. Severa, and C.M. Jensen
J. Phys. Chem. A 112 (2008) 7551-7555.
The energy-differences based exact criterion for testing
approximations to the
functional for the kinetic energy
of non-interacting electrons
Yves A. Bernard, Marcin Dulak, Jakub W. Kaminski, and Tomasz A. Wesolowski,
J. Phys. A. 41 (2008) 055302.
Embedding a multi-determinantal wavefunction in orbital-free environment.
T.A. Wesolowski,
Phys. Rev.A. 77 (2008) 012504.
2007
Hohenberg-Kohn-Sham Density Functional Theory: The formal basis for a family of succesful and still evolving computational
methods for modelling interactions in complex chemical systems.
T.A. Wesolowski,
In: Molecular Materials with Specific Interactions: Modeling and Design, A.W. Sokalski, Ed., Springer Verlag, 2007 , 153-202.
Equilibrium geometries of non-covalently bound intermolecular complexes derived from
subsystem formulation of density functional theory
M. Dulak, J. Kaminski, and T.A. Wesolowski,
Journal of Chemical Theory and Computation 3 (2007) 735-745.
Interaction energies in non-covalently bound intermolecular complexes derived using
subsystem formulation of density functional theory
M. Dulak and T.A. Wesolowski,
Journal of Molecular Modeling 13 (2007) 631-642.
Comment on: "On the original proof by reductio ad absurdum of the Hohenberg-Kohn Theorem for many-electron Coulomb systems"
[E.S. Kryachko,
Intl. J. Quant. Chem 103 (2005) 818-823]
W. Szczepanik, M. Dulak, and T.A. Wesolowski,
Intl. J. Quant. Chem. 107 (2007) 762-763.
2006
Non-linearity of the bi-functional of the non-additive kinetic energy: numerical consequences
in orbital-free embedding calculations
M. Dulak and T.A. Wesolowski,
Journal of Chemical Theory and Computation 2 (2006) 1538-1543.
One-electron Equations for Embedded Electron Density:
Challenge for Theory and Practical Payoffs in Multi-Level
Modeling of Complex Polyatomic Systems
T.A. Wesolowski,
Computational Chemistry: Reviews of Current Trends - Vol. 10 World Scientific, 2006, pp. 1-82.
Effect of the f-Orbital Delocalization on the Ligand-Field Splitting Energies in Lanthanide-Containing Elpasolites
M. Zbiri, C. Daul, and T.A. Wesolowski,
Journal of Chemical Theory and Computation 2 (2006) 1106-1111.
On the charge-leak problem in orbital-free embedding calculations
M. Dulak, T.A. Wesolowski,
J. Chem. Phys. 124 (2006) 164101.
Water trapped in dibenzo-18-crown-6: theoretical and spectroscopic (IR, Raman)
studies.
M. Dulak,
R. Bergougnant,
K.M. Fromm,
H.R. Hagemann,
A.Y. Robin, and
T.A. Wesolowski,
Spectrochimica Acta Part A: Molecular and
Biomolecular Spectroscopy 64 (2006) 532-548.
Optical and vibrational properties of (MnF6)4- complexes in cubic fluoroperovskites: insight through embedding calculations using Kohn-Sham Equations with Constrained Electron Density
J.M. Garcia-Lastra, T.A. Wesolowski, M.T. Barriuso, J.A. Aramburu, and M. Moreno,
J. Phys.: Condens. Matter, 18 (2006) 1519-1534.
Interaction energies in hydrogen-bonded systems: A testing ground for subsystem formulation of density-functional theory
R. Kevorkiants, M. Dulak, T.A. Wesolowski,
J. Chem. Phys. 124 (2006) 024104.
Mechanism of Nitrate Reduction by Desulfovibrio desulfuricans
Nitrate Reductase - A Theoretical Investigation
M. Leopoldini, N. Russo, M. Toscano, M. Dulak, T.A. Wesolowski,
Chem. Eur. J. 12 (2006) 2532-2541.
2005
Orbital-free embedding applied to the calculation of induced dipole moments in CO2.. X( X=He, Ne, Ar, Kr, Xe, Hg) van
der Waals complexes.
C.R. Jacob, T.A. Wesolowski, L. Visscher,
J. Chem. Phys. 123 (2005) 174104.
Preface to the symposium:
Explicit
Density Functional of the Kinetic Energy in Computer Simulations at Atomistic Level
T.A. Wesolowski,
Lecture Series on Computer and Computational Sciences, 4 (2005) 1442-1444.
Study of Mn2+-doped fluoroperovskites by means of the Kohn-Sham Constrained Electron Density embedding formalism.
J.M. Garcia-Lastra,T.Wesolowski, M.T. Barriuso, J.A. Aramburu, and M. Moreno,
Lecture Series on Computer and Computational Sciences, 4 (2005) 1445-1449.
Multi-level Computer Simulations of Condensed Matter Based on Subsystem Formulation of Density Functional Theory.
T.A. Wesolowski,
Lecture Series on Computer and Computational Sciences, 4 (2005) 748-750.
Modeling solvent effects on electron spin resonance
hyperfine couplings by frozen-density embedding.
J. Neugebauer, M.J. Louwerse, P. Belanzoni, T.A. Wesolowski, E. J. Baerends,
J. Chem. Phys. 123 (2005) 114101.
Adaptive grid technique for computer simulations
of condensed matter using orbital-free embedding formalism.
M. Dulak and T.A. Wesolowski,
Lecture Series on Computer and Computational Sciences, 3 (2005) 282-288.
An Explicit Quantum Chemical Method for Modeling Large Solvation Shells
Applied to Aminocoumarin C151
J. Neugebauer, C.R. Jacob, T.A. Wesolowski, E.J. Baerends,
J. Phys. Chem. A. 109 (2005)
7805.
One-Electron Equations for Embedded
Electron Density and Their Applications to Study
Electronic Structure of Atoms and Molecules in Condensed Phase
M. Dulak, R. Kevorkyants, F. Tran, and T.A. Wesolowski,
CHIMIA 7-8 (2005) 488-492.
Ground
States, Excited States and Metal-Ligand Bonding in Rare Earth
Hexachloro Complexes: A DFT Based Ligand Field Study.
M. Atanasov, C. Daul, H.U. Gudel, T.A. Wesolowski, M. Zbiri,
Inorganic Chemistry 44 (2005) 2954.
Approximating the kinetic energy functional Ts[rho]: lessons from four-electron systems.
T.A. Wesolowski,
Mol. Phys. 103 (2005) 1165-1167. (Handy special issue)
The merits of the frozen-density embedding scheme to model solvatochromic shifts.
J. Neugebauer, M.J. Louwerse, E.J. Baerends, T.A. Wesolowski,
J. Chem. Phys. 122 (2005) 094115
The basis set effect on the results of the minimization of the total energy bifunctional E[rhoA,rhoB].
M. Dulak and T.A. Wesolowski,
Int. J. Quantum Chem. 101 (2005) 543-549.
Theoretical study of neutral and cationic complexes involving phenol.
F. Tran and T.A. Wesolowski,
Int. J. Quantum Chem. 101 (2005) 854-859.
2004
Pi-stacking behavior of selected nitrogen-containing PAHs.
F. Tran, B. Almeddine, T.A. Jenny, and T.A. Wesolowski,
J. Phys. Chem. A 108 (2004) 9155-9160
Application of the density functional theory derived orbital-free embedding
potential to calculate the splitting energies of lanthanide cations in
chloroelpasolite crystals.
M. Zbiri, M. Atanasov, C. Daul, J.-M. Garcia Lastra, and T.A. Wesolowski,
Chem. Phys. Lett. 397 (2004) 441-446
Hydrogen-bonding induced shifts of the excitation energies in nucleic acid bases:
an interplay between electrostatic- and electron density overlap effects.
T.A. Wesolowski,
J. Am. Chem. Soc. 126 (2004) 11444-11445.
Comparative Infra-Red, Raman, and Natural Bond Orbital Analyses
of King's Sultam.
H. Hagemann, M. Dulak, C. Chapuis, T.A. Wesolowski, and J. Jurczak,
Helv. Chim. Acta 87 (2004) 1748-1766.
Theoretical Investigation of the Anion Binding Affinities of the Uranyl Salophene Complexes
M. Brynda, T.A. Wesolowski, and K. Wojciechowski,
J. Phys. Chem. A 108 (2004) 5091-5099.
Applications of the orbital-free embedding formalism to study
the environment-induced changes in the electronic structure of
molecules in condensed phase.
T.A. Wesolowski,
Lecture Series in Computer and Computational Studies 1 (2004) 1046-1050.
Quantum Chemistry "Without Orbitals" - An Old Idea and Recent Developments.
T.A. Wesolowski,
CHIMIA 58 (2004) 311-315.
Generalization of the Kohn-Sham Equations with Constrained Electron Density
(KSCED) Formalism and its Time-Dependent Response Theory Formulation.
M. Casida and T.A. Wesolowski,
Int. J. Quantum Chem. 96 (2004) 577-588.
2003
Exact inequality involving the kinetic energy functional Ts[rho]
and pairs of electron densities.
T.A. Wesolowski,
Journal of Physics A: Mathematical and General: 36 (2003) 10607-10613.
A Highly Configurationally Stable [4]Heterohelicenium Cation
C. Herse, D. Bas, F.C. Krebs, T. Burgi, J. Weber, T.A. Wesolowski,
B.W. Laursen, J. Lacour,
Angewandte Chimie Intl. Ed. 42 (2003) 3162-3166.
Density Functional Study of a Helical Organic Cation
D. Bas, P.-Y. Morgantini, J. Weber, T.A. Wesolowski,
CHIMIA 87 (2003) 173-174.
Density functional theory study of homologous organometallic molecules of
the [RhXL2]2 (X=Cl, Br, or I); L=CO, PH3, or PF3) type.
P. Seuret, J. Weber, and T.A. Wesolowski,
Molecular Physics 101 (2003) 2537-2543.
Gradient-free and gradient-dependent
approximations in the total energy bi-functional
for weakly overlapping electron densities.
T.A. Wesolowski and F. Tran,
J. Chem. Phys. 118 (2003) 2072-2080.
An experimental and theoretical study of [RhCl(PF3)2]2 fragmentation.
P. Seuret, F. Cicora, T. Ohta, P. Doppelt, P. Hoffmann, J. Weber, and T.A. Wesolowski,
Phys. Chem. Chem. Phys. 5 (2003) 268-274.
2002
Development of Novel Computational Strategies to Match the Challenges
of Supramolecular Chemistry, Biochemistry, and Materials Science
T.A. Wesolowski,
CHIMIA 56 (2002) 707-711.
Physisorption of Molecular Hydrogen on Polycyclic Aromatic Hydrocarbons: A Theoretical Study.
F. Tran, J. Weber, T.A. Wesolowski,
F. Cheikh, Y. Ellinger, and F. Pauzat,
J. Phys. Chem. B. 106 (2002) 8689-8696.
Introduction of the explicit long-range nonlocality as an alternative
to the gradient expansion approximation for the kinetic energy functional.
F. Tran and T.A. Wesolowski,
Chem.Phys.Lett. 360 (2002) 209-216.
Link between the kinetic- and exchange-energy functionals in the generalized gradient approximation.
F. Tran and T.A. Wesolowski,
Int. J. Quantum Chem. 89 (2002) 441-446.
Comment on: "Prediction of Electronic Excited States of Adsorbates on Metal Surfaces from First Principles"
Phys. Rev. Lett., 86 (2001) p.5954 by Kluener et al.
T.A. Wesolowski,
Phys. Rev. Lett. 88 (2002) 209701.
Intermolecular interaction energies from the total energy bi-functional.
A case
study of carbazole complexes.
T.A. Wesolowski, P.-Y. Morgantini, and J. Weber,
J. Chem. Phys. 116 (2002) 6411.
Spin-densities in charge-transfer complexes
derived from DFT calculations using an orbital-free embedding scheme
for interacting subsystems.
T.A. Wesolowski and J. Weber,
In: Recent Advances in Density Functional Methods, Vol. I, Part III. V. Barone, A. Bencini, and P. Fantucci, Eds. Proceedings of the DFT99
Conference, Rome, Italy, September 6-10th, 1999, World Scientific, 2002, pp. 371-386
2001
Properties of CO adsorbed in ZSM5 Zeolite. Density Functional Theory Study Using the Embedding Scheme Based on Electron Density Partitioning.
T.A. Wesolowski, A. Goursot, and J. Weber, J. Chem. Phys. 115 (2001) 4791.
Theoretical Study of the Benzene Dimer Using the Density Functional Theory Formalism Based on Electron
Density Partitioning.
F. Tran., J. Weber, and T.A. Wesolowski, Helvetica Chimica Acta 84 (2001) 1489.
Theoretical prediction of IR spectra of guest molecules in zeolites: the
stretching frequency of CO adsorbed at various cationic sites in ZSM-5.
T.A. Wesolowski, A. Goursot, and J. Weber, In "Studies in surface science and catalysis vol. 135", Zeolites and Mesoporous materials at the Dawn of 21st Century Al. Galarneau, F. Di Renzo, F. Fujala, and J. Vedrine Eds.
Elsevier 2001
2000
Constraining the Electron Densities in DFT Method as an Effective Way for
Ab Initio Studies of Metal-Catalyzed reactions.
G. Hong, M. Strajbl, T.A. Wesolowski, and A. Warshel, J. Comput. Chem., 21
(2000) 1554.
Comment on "Anisotropic intermolecuar interactions in van der Waals
and hydrogen-bonded complexes: What can we get from density-functional
calculations?" [J. Chem. Phys. 111, 7727 (1999)]
T.A. Wesolowski, J. Chem. Phys. 113, (2000) 1666.
1999
Application of the DFT based embedding scheme using explicit functional of the
kinetic energy to determine the spin-density of Mg+ embedded in Ne and
Ar matrices.
T.A. Wesolowski, Chem. Phys. Lett. 311 (1999) 87.
Study of the physisorption of CO on the MgO(100) surface
using the approach of Kohn-Sham equations with constrained electron density.
T.A. Wesolowski, N. Vulliermet, and J. Weber, J. Mol. Structure (THEOCHEM) 458 (1999) 151.
1998
Density Functional Theory with an approximate kinetic energy functional applied to
study structure and stability of weak
van der Waals complexes.
T.A. Wesolowski, Y. Ellinger, and J. Weber, J. Chem. Phys. 108 (1998) 6078.
Theoretical study of the physisorption of CO
on metal oxide surfaces using the KSCED-DFT approach.
N. Vulliermet, T.A. Wesolowski, and J. Weber, Coll. Czech. Acad. Sci. 63 (1998) 1447.
Applications of Density Functional Theory to Biological Systems.
T.A. Wesolowski and J. Weber,
In: Molecular Orbital Calculations Applied to Biochemical Systems, A.-M. Sapse ed., pp.85-132
Oxford University Press (1998)
1997
Calculations of chemical processes in solution by density functional and other
quantum mechanical techniques.
R.P. Muller, T. Wesolowski, and A. Warshel,
In:
Density functional methods: Applications in chemistry and
materials science., M. Springborg, ed. John Wiley and Sons, Ltd. (1997) pp.189-206
Density Functional Theory with
approximate kinetic energy functionals applied to hydrogen bonds.
T.A. Wesolowski, J. Chem. Phys. 106 (1997) 8516.
Kohn-Sham equations with constrained electron density: The effect of various kinetic
energy functional parametrizations on the ground-state molecular properties.
T.A. Wesolowski and J. Weber, Intl. J. Quant. Chem. 61 (1997) 303.
A comparative study of weak van der Waals complexes
using Density Functional Theory:
The importance of an accurate exchange-correlation density
at high density gradients.
T.A. Wesolowski, O. Parisel, Y. Ellinger, and J. Weber,
J. Phys. Chem. A, 101 (1997) 7818.
1996
Ab-initio Frozen Density Functional Calculations
of Proton Transfer Reactions in Solution.
T.A. Wesolowski, R. Muller, and A. Warshel, J. Phys. Chem. 100 (1996) 15444.
Kohn-Sham equations with constrained electron density: an iterative evaluation
of the ground-state electron density of interacting molecules.
T.A. Wesolowski and J. Weber, Chem. Phys. Lett., 248 (1996) 71.
Accuracy of Approximate Kinetic Energy Functionals
in the Model of Kohn-Sham Equations with Constrained Electron Density:
the FH...NCH complex as a Test Case.
T.A. Wesolowski, H. Chermette, and J. Weber, J. Chem. Phys. 105 (1996) 9182.
1994
Free Energy Perturbation Calculations of Solvation Free Energy
Using Frozen Density Functional Approach.
T.A. Wesolowski and A. Warshel, J. Phys. Chem. 98 (1994) 5183.
1993
Frozen Density Functional Approach for ab-initio Calculations
of Solvated Molecules.
T.A. Wesolowski and A. Warshel J. Phys. Chem. 97 (1993) 8050.
1992
Quantum-mechanical calculations of solvation free energies. A combined ab initio pseudopotential free-energy perturbation approach.
N. Vaidehi, T.A. Wesolowski, and A. Warshel, J. Chem. Phys. 97 (1992) 4264.
1991
A Discrete vs. Continuum Model of Electronic Polarization in Proteins.
T.A. Wesolowski Intl. J. Modern Physics C, 2 (1991) 531.
Estimation of free energy systematic errors of globular proteins surrounded by finite water clusters.
T.A. Wesolowski Molecular Simulation 6 (1991) 175.
1990
Organization of polar groups of 9kd calbindin around Ca2+ ions bound to the protein: a microdielectric study.
T.A. Wesolowski, G. Boguta, and A. Bierzynski Protein Engineering, 4 (1990) 121.
List of Publications
Back to Tomasz Wesolowski's Page