DOSY Processing with Mnova 14.0

- Open the DOSY spectrum
- Open the following Tables: Stacked items ; Peaks ; Data Analysis
- Select all spectra in *Stacked items* table > Processing > autobaseline correction

Pseudo-2D DOSY spectrum: peak by peak analysis

- Analysis > Peak by Peak: Perform a peak picking manually by selecting, on the stacked spectra (first one of the series), the signals to be considered for the DOSY transform.
 In the Peaks table: delete every existing peak (if there are peaks) before selecting the right ones.
 Note: If we do not select manually the peaks before the DOSY processing, then Mnova applies an automatic peak peaking over the full spectrum.
- NMR > Stacked > DOSY Transform

	DOSY Tra	nsform				
Method:	Peak Fit		•	ОК		
Peak Fit Options		Canaal				
Decay components:	Single		-	Cancel		
✓ Use existing peaks	✓ Use existing peaks					
GSD analysis		More >>				
Autocorrect peak pos						
DOSY Spectrum						
Units: m^2/sec			•			
Minimum: 1.00e-11	Maximum:	1.00e-08	*			
Points in diffusion dimen	128	÷				

>> Values of D in m²/s

Integration mode with curves

Data Analysis:

 Edit Model Options > select « Best fit » Function (or from the Data Analysis table : screwdriver)

Replace Act	ive Column				
Auto Adjust					
Number of Handlers:		4			
Automatic Y'-Fi	lling Policy				
Fit Function:	Best Fit		•		
Peak Intensities					
Parabolic Int	erpolation				
f1 +/-:		0.00	* *		

- New > Integrals Graph
- Integration of the corresponding signals (select "integration" in the Data Analysis table)
- Click on the [Y'(X)] column to open the Y'-Column model function window and choose Three Parameter Exponantial Fit.
- Click on Report
- From the equation, G gives the diffusion coefficient value and the error.

	Name	Function	Initialization	Report	Description
1	Linear Fit	A+B*x	A= 0, B= 0		Zero Order Reaction Rate
2	Mono-exponential Fit	B*exp(-x*F)			Exponential Decay, First Order Reaction Rate
3	Three Parameter Exponential Fit	B+F*exp(-x*G)			Exponential Decay, First Order Reaction Rate With Offse
4	Inverse Linear Fit	1/(A+B*x)	A= 1, B= 0		Second Order Reaction Rate
5					
_	18				
tt	ed Parameters				
	Calculate				

>> Values of D in cm²/s

Note: the plot is also possible with peaks (rather than integrations)