VAAC London operational developments following the recent Icelandic eruptions

Claire Witham, Anton Muscat, Rachel Pelley, Matthew Hort, Susan Leadbetter, Peter Francis, Michael Cooke, Sarah Millington, Ian Lisk
New linkages since 2010

- UK Gov CCS
- VAORG
- VAAG
- ICELAND MoU
- ICAO & WMO
- VAAC Best Practice
- VASAG
- IVATF
- PROJETS
- UK Government & industry
Operational system developments

- New forecaster interface to NAME with ESP options
- New forecaster tool for VAA/VAG and concentration charts
- New observation summaries and 16:30 briefing
Satellite developments

Quantitative ash retrievals

Simulated ash products

SO2 retrievals
Observation developments

- **ATDnet** stroke density April–May 2010

- **MOCCA**

- **LIDAR**

- **Aerosol sonde**

- **European ‘LidarNet’**

- **New UK network**
Model developments

- Validation, analysis and publication
- Ash resuspension scheme and forecast
- Improved wet deposition scheme
- Eulerian-Lagrangian hybrid scheme
- Inversion system for real-time use
 - Ash mass retrievals from SEVIRI

Inversion work conducted primarily by Rachel Pelley and Michael Cooke, UK Met Office

NAME run for use with InTEM

- Particles are released from the volcano at a rate of 1g/s within each height block.
- 3-hour time-steps
- Model and satellite compared hourly
- Sensitivity tests have been conducted for different time-steps and height ranges
Inversion Modelling

Example of modelled plume from 1g/s release

Inversion system

\[M_e \approx o_a \]

New source term profile

Gives a new modelled plume closer to satellite observations

Observational Data
Grimsvötn 2011 results

Inversion with clear sky retrievals

Inversion without clear sky retrievals

a priori
Eyjafjallajökull 2010 results

a priori source term profile

inversion source term profile using observations until 25/05/2010 00:00
Using the Solution in Operations

- How reliable is the inversion vertical distribution?

Per time-step:

- Calculate the total mass released

- Estimate a bottom height for from the location of the 5th mass percentile

- Estimate a top height from the location of the 95th percentile

- Guidance values provided to forecasters to use with complimentary data
Operational Challenges

• Computational resource limitations
 • Real-time requirement
• Forecaster familiarity with new data streams and their limitations
 • Training courses & competency testing
• EUR/NAT requirement for a contoured Safety Risk Assessment product
• Over-reliance on radar height data as ESP
• Understanding and conveying uncertainty