ASSIGNMENT 04

Exercise 1

Consider the general form of the ARIMA (AutoRegressive Integrated Moving Average):

$$
\nabla^{d} y_{t}=\phi_{1} \nabla^{d} y_{t-1}+\ldots+\phi_{p} \nabla^{d} y_{t-p}+a_{t}-\theta_{1} a_{t-1}-\ldots-\theta_{q} a_{t-q}
$$

where $\left\{a_{t}\right\}$ are iid with expectation 0 and variance σ^{2} and $\nabla^{d} y_{t}$ represents the differenced series of order d.

We can rewrite the model in terms of the backshift operator B as follows:

$$
\underbrace{\left(I-\phi_{1} B-\ldots-\phi_{p} B^{p}\right)}_{A R(p)} \underbrace{(1-B)^{d}}_{d \text { differences }} y_{t}=\underbrace{\left(I-\theta_{1} B-\ldots-\theta_{q} B^{q}\right)}_{M A(q)} a_{t}
$$

The R function below allows to simulate trajectories of a certain length for models $A R I M A(p, 0, q)$ for $p \leq 2$ and $q \leq 2$ with a_{t} being iid observations either drawn from the Gaussian or the t-distribution.

```
ARMAsim <- function(phi,theta,first,serieslength,distribution)
{
    # phi: AR parameters, vector of size 2
    # theta: MA parameters, vector of size 2
    # first: fixed first elements for computation of AR part, vector of size 2
    if(distribution=="t"){a <- rt(serieslength,3)}
    else {a <- rnorm(serieslength,0,1)}
    Y <- first
    for (i in (length(phi)+1):serieslength){
        Y[i] <- phi[1]*Y[i-1]+phi[2]*Y[i-2]+a[i]-theta[1]*a[i-1]-theta[2]*a[i-2]
    }
    return(Y)
}
```

Example of simulation:

```
ts <- ARMAsim(phi=c(0.9,-0.1),theta=c(0.2,0.5),first=c(0,0),
serieslength=1000,distribution="normal")
```

a) Assume $a_{t} \sim \mathcal{N}(0,1)$ and simulate a trajectory of length 100 for $\operatorname{ARIMA}(0,0,0)$. What is this process?
b) Simulate ARIMA(1,0,0) for the following values of the parameter $\phi=\{-0.9,-0.3,0.5,0.9,1\}$. Plot Y_{t} vs. t, Y_{t} vs. Y_{t-1}, and Y_{t} vs. Y_{t-2}. Investigate the plots of ACF and PACF of the obtained series and interpret the results. What is the process corresponding to $\phi=1$?
c) Simulate $\operatorname{ARIMA}(0,0,1)$ for the following values of the parameter $\theta=\{1.9,0.5,-0.5,-1\}$. Plot Y_{t} vs. t, Y_{t} vs. Y_{t-1}, and Y_{t} vs. Y_{t-2}. Investigate the plots of ACF and PACF of the obtained series and interpret the results.
d) Repeat (b) and (c) when $a_{t} \sim t_{3}$, a Student's t distribution with 3 degrees of freedom and compare the results with respect to the Gaussian case.
e) Simulate from an $\operatorname{ARIMA}(1,0,1)$ process for $\phi=0.7$ and $\theta=-0.3$ and obtain the necessary plots as in points (b) or (c).

Exercise 2

Show that the autocorrelation function of a $\operatorname{ARMA}(1,1)$ process

$$
\operatorname{ARMA}(1,1): \quad y_{t}=\phi y_{t-1}+a_{t}-\theta a_{t-1}
$$

is given by

$$
\begin{array}{ll}
\rho_{1}=\frac{(1-\theta \phi)(\phi-\theta)}{1-2 \phi \theta+\theta^{2}} & \\
\rho_{k}=\rho_{1} \phi^{k-1} & k \geq 2 .
\end{array}
$$

Interpret the result.

Exercise 3

Show that the AR(2) process

$$
\operatorname{AR}(2): y_{t}=\phi_{1} y_{t-1}+\phi_{2} y_{t-2}+a_{t}
$$

is stationary under the following conditions:

$$
\begin{array}{rc}
-1<\phi_{2} & <1 \\
\phi_{1}+\phi_{2} & <1 \\
\phi_{2}-\phi_{1} & <1 .
\end{array}
$$

