A Switching Regression Model to Assess the Policy Consequences of Direct Legislation *

Simon Hug†
CIS, IPZ, Universität Zürich

December 6, 2007

Abstract

Most theoretical models predict that institutions allowing for direct legislation should lead, on average, to policies more closely reflecting the wishes of the voters. While some agreement exists at the theoretical level about the expected policy consequences of direct legislation, empirical evidence has been scant so far. In this paper I discuss the reasons for this scantiness of empirical evidence, namely the intricacies of the adequate empirical model to test the theoretical proposition, and suggest possible solutions to this problem. Re-analyzing a dataset with which some authors have found no evidence in support of the theoretical claim, I show that with a better adapted empirical model we find results in synch with our theoretical expectations. Thus, policies in states that allow for direct legislation reflect on average more closely the voters’ wishes. Using Monte-Carlo simulations I also demonstrate the properties of the proposed estimator and suggest that it could be used in other contexts, like when assessing the responsiveness of legislators.

* Earlier versions of this paper was presented at the Annual meeting of the Public Choice Society, San Antonio, March 8-11, 2001 and at seminars at Texas A& M University, Ohio State University, the University of St. Gallen and the University of Montreal. Thanks are due to participants at these events and Chris Achen, Sven Feldmann, Mel Hinich, Tse-Min Lin, John Matsusaka, Phil Paolino, and George Tsebelis for enlightening discussions on the intricacies of the statistical issues in this paper, and Ted Lascher for sharing his dataset. Partial financial support by the Swiss National Science Foundation (Grants No. 8210-046545, No. 5004-0487882/1, and No. 100012-108179) is gratefully acknowledged. I assume responsibility for all remaining flaws and errors.

† Center for Comparative and International Studies; Institut für Politikwissenschaft; Universität Zürich; Hirschengraben 56; 8001 Zürich; Switzerland; phone +41 (0)44 634 50 90/1; fax: +41 (0)44 634 5098; email: simon.hug@access.unizh.ch
1 Introduction

Most research on direct legislation suggests that allowing voters to vote directly on policies should affect policy outcomes (see Lupia and Matsusaka (2004) for an incisive review of the literature). Scholars employing game-theoretic models to assess these effects have mostly found that the policy outcomes should reflect more closely the median voter’s preferences.\(^1\) Empirical studies have so far, however, had difficulty demonstrating this effect convincingly. The reason for this is that many empirical studies employ model specifications which either yield biased estimates of the effect of direct legislation and/or do not allow for assessing whether the policy is affected in the direction of the median voter’s preferences (see Matsusaka’s (2001) discussion).

Consequently, I propose in this paper an empirical model, which derives directly from the theoretically implied predictions on the effect of direct legislation. While the model is based on a simplifying assumption, its empirical evaluation yields largely results in support of the theoretical implications on the effect of direct legislation. In Monte Carlo simulations I also demonstrate that except under very specific conditions, the proposed empirical model yields improved estimates than a simple OLS regression with a dummy indicator for direct legislation states.

The paper proceeds as follows. In the next section I briefly review the literature on the policy effects of direct legislation. In section three I present first the theoretically implied empirical model, before discussing specifications that have been employed in the literature. I demonstrate that almost all of these specifications are based on erroneous assumptions which inevitably result in biases in the estimated coefficients of relevance. In section four I present the results of Monte Carlo simulations of the proposed empirical model for two setups. These simulations demonstrate that the proposed empirical model provides better estimates and more information on the effect of direct legislation. In section five I employ the proposed empirical model to assess the effect of direct legislation using a dataset on the US states used by Lascher, Hagen and Rochlin (1996). I demonstrate that with a more appropriate empirical model we find, contrary to these authors, direct legislation effects for several policies, which are in accordance with predictions from theoretical models. Section six summarizes these results and suggests that the proposed empirical model is also applicable in other research areas, for instance when studying the responsiveness of legislators in
different institutional contexts.

2 The policy effects of direct legislation

There is a large consensus in the literature that institutions for direct legislation affect policy outcomes. Only few authors, like for instance Cronin (1989, 232), argue that policies do not differ between political entities allowing for direct legislation and those that do not. From the early incisive writings of Key and Crouch (1939), which were largely ignored by subsequent authors, it also seemed clear that the policy effects of direct legislation may be of two different sorts. First, the policy effects may be direct, in the sense that policies are adopted by voters, which would have failed in the normal legislative process. Second, institutions allowing for direct legislation may have indirect effects when the legislature adopts policies which it would not have adopted without the presence these institutions. Often such indirect effects emerge when interested groups threaten legislatures with their own proposals, which they might try to realize through direct legislation.

These two types of effects appear especially clearly in recent theoretical work. Steunenberg (1992), Gerber (1996 and 1999), Moser (1996), Besley and Coate (2001), Matsusaka and McCarty (2001), Hug and Tsebelis (2002), and Hug (2004) all show that the overall consequences of direct legislation comprise both direct and indirect effects. From these theoretical models two other important elements transpire. First, based on their theoretical implications it appears clearly that sorting out direct from indirect effects empirically is difficult. This, because these two effects interact and thus form the result of a strategic interplay among various actors. Second, the theoretical models also demonstrate that the policy effect of direct legislation, whether direct or indirect, is dependent on at least the preferences of the legislature and the voters. The general thrust of the theoretical results is that under most conditions, policies adopted under direct legislation will be biased toward the preferences of the median voter. For example, if the legislature would like to spend $1 million on a school building but the voters prefer spending $2 million, then direct legislation will, on average, lead to higher expenditures. Conversely, if the same legislature is on a spending spree and wishes to construct a school-palace for $10 million, direct legislation will lead to policies closer to the preferred spending level of the frugal voters. Consequently,
in one case direct legislation will lead to higher expenditures, while in the other expenditures will be lower, due to direct citizen-lawmaking. This shows that the effect of direct legislation is contingent on the preference configurations of the most important actors, namely voters and the legislature.

In summary, the theoretical literature suggests that institutions for direct legislation have both direct and indirect effects, but that these two types of effects are difficult to separate empirically. In addition, the direction of these effects is dependent on the voters’ preferences, in the sense that policies will reflect more closely these preferences under direct legislation than in the absence of these institutions.

3 Theory and empirical models

Strictly speaking the theoretical models mentioned above imply an empirical model of the following type:

\[|Y_i - X_{m_i}| = f(X_i) \] (1)

where \(Y_i \) is a measure of a particular policy adopted in entity \(i \), \(X_{m_i} \) is the median voter’s preferred policy in this area, and \(X_i \) contains an indicator variable for the presence of direct legislation \(dl_i \) and possibly additional control variables. If we had direct measures for both \(Y \) and \(X_m \) on the same scale, for instance how much money is being spent for schools and how much money the median voter wants to spend on schools, we could directly estimate equation 1. With the possible exception of Gerber’s (1996) study on teenage abortions, we almost never have data on the median voter’s preferences on the same scale as our measure for the policy outcome. To see this problem it is useful to reformulate equation 1 in the following way:

\[
\begin{align*}
if Y_i - X_{m_i} > 0 \\
Y_i &= f(X_i) + X_{m_i} \\
if Y_i - X_{m_i} \leq 0 \\
Y_i &= -f(X_i) + X_{m_i}
\end{align*}
\] (2)
In this setting it becomes clear that in the absence of a perfect measure of what the median voter wants (e.g., what amount of money) we cannot estimate equation 1 (or the system of equation 2 for that matter). Thus, if we have to estimate X_{m_i} with proxies (like the often used conservative-liberal scale), we cannot derive equation 2 directly from equation 1. We may presume that X_{m_i} is related to an array of variables P_i presumably linked to the preferences of the median voter:

$$X_{m_i} = g(P_i) \quad (3)$$

Assuming (falsely) linear relationships for both equations 1 and 3 we get the following system of equations:

$$X_{m_i} = P_i \beta + \epsilon_i$$

$$|Y_i - X_{m_i}| = X_i \gamma + \theta_i \quad (4)$$

Our theoretical models would lead us to expect a negative value for the component of γ measuring the effect of direct legislation. Assuming further that $\epsilon_i \sim N(0, \sigma^2_\epsilon)$ and $\theta_i \sim N(0, \sigma^2_\theta)$ we may use equation 4 to derive the following two equations:

if $Y_i - X_{m_i} > 0$

$$Y_i = P_i \beta + X_i \gamma + \epsilon_i + \theta_i$$

if $Y_i - X_{m_i} \leq 0$

$$Y_i = P_i \beta - X_i \gamma + \epsilon_i - \theta_i \quad (5)$$

This system of equation can be rewritten in such a way that it becomes a switching regression model with endogenous switching (Maddala 1983, 283), where the superscript for Y indicates the regime.\(^{11}\)
\[Y_i^1 = P_i\beta + X_i\gamma + \epsilon_i + \theta_i \]
\[Y_i^2 = P_i\beta - X_i\gamma + \epsilon_i - \theta_i \]
\[I_i = Y_i - P_i\beta - \epsilon_i \]
\[Y_i = Y_i^1 \text{ if } I_i > 0 \]
\[Y_i = Y_i^2 \text{ if } I_i \leq 0 \]

\[
(\epsilon_i + \theta_i, \epsilon_i - \theta_i, -\epsilon_i) \sim N(0, \Sigma) \tag{6}
\]

Here it becomes possible to compare the theoretically implied empirical model as specified by equation 6 with other empirical models used in the literature.\(^\text{12}\)

First, one predominantly used model attempts to assess the effect of direct legislation with a simple dummy indicator in a linear regression model (see for instance Matsusaka 1995, 2000, 2004, Santoro and McGuire 1997, Kirchgässner, Feld, Savioz, 1999, Santoro 1999). This traditionally used empirical model supposes that the effect of \(X_i\), i.e. the policy bias in non-direct legislation, is always either positive or negative. If this is not the case, estimating a simple OLS model with a dichotomous indicator for direct legislation states yields estimates biased toward zero. Lascher, Hagen and Rochlin (1996) by adding in addition to the previous model an interaction between the direct legislation indicator and a preference measure probably attempted to allow for the conditional effect of preferences as specified in equation 6. The system of equation, however, suggests that the effect of preferences should not vary, but that the effect of the direct legislation dummy is contingent on preferences. Finally, equation 6 also shows that Pommerehne’s (1978a and 1978b) test based on the error variances between direct and non-direct legislation states is not accurate, since the variances differ in a more complex way between the two sets of states, except if we can assume that \(\theta = 0\).\(^\text{13}\)

While the system of equation 6 provides a close approximation of the theoretical models, a complication appears, however, in the estimation of the switching regression model since the switching indicator \(I_i\) in equation 6 is not observed. More specifically, given that policy outcome (\(Y\)) and preferences (\(P\)) are measured in different scales, we do not observe whether a direct legislation state is in regime 1 or regime 2 (see equation 6). As Lee and Trost (1978) and Maddala (1983) show, the corresponding log-likelihood function (equation 8) is unbounded. In the original switching regression model with endogenous switching,
three distinct error terms appear in the first three equations of the system of equation 6 (Maddala 1983, 283). Hence, the variance-covariance matrix in the original switching regression models contains six different terms. As Lee and Trost (1978) and Maddala (1983) demonstrate, not all six variance-covariance terms can be estimated, given that they are not identified. Hence, restrictions have to be imposed. The derivation of the model from theoretical implications proposed here, however, leads only to two error terms, and thus three distinct terms in the variance-covariance matrix:

\[
\Sigma = \begin{bmatrix}
\sigma^2_{\epsilon} + \sigma^2_{\theta} + 2\sigma_{\epsilon,\theta} & \sigma^2_{\epsilon} - \sigma^2_{\theta} \\
\sigma^2_{\epsilon} - \sigma^2_{\theta} & \sigma^2_{\epsilon} + \sigma^2_{\theta} - 2\sigma_{\epsilon,\theta} & -\sigma^2_{\epsilon} + \sigma_{\epsilon,\theta}
\end{bmatrix}
\] (7)

Hence the theoretical model from which the switching regression model here is derived automatically leads to the restrictions on the variance-covariance matrix necessary to estimate all the parameters of interest. The likelihood function under the assumption of a normal bivariate distribution of the error terms \(\epsilon\) and \(\theta\) with mean 0, variances \(\sigma^2_{\epsilon}\) and \(\sigma^2_{\theta}\) and covariance \(\sigma_{\epsilon,\theta}\) (possibly 0) is the following:

\[
llik = \ln \Pi_i \left[F(Y_i - X_{m_i}, \sigma^2_{\epsilon}) \times
\begin{array}{1}
\times f_N(Y - P_j\beta - X_i\gamma, \sigma^2_{\epsilon,\theta} | Y_i - X_{m_i} > \epsilon_i) \\
+ (1 - F(Y_i - X_{m_i}, \sigma^2_{\epsilon})) \times
\times f_N(Y - P_j\beta + X_i\gamma, \sigma^2_{\epsilon,\theta} | Y_i - X_{m_i} \leq \epsilon_i)
\end{array}
\right]
\] (8)

The estimation through maximization of equation 8 is simplified by the fact that the variance-covariance matrix \(\Sigma\) (equation 7) only contains three distinct elements, namely \(\sigma^2_{\epsilon}\), \(\sigma^2_{\theta}\) and \(\sigma_{\epsilon,\theta}\).

4 Monte Carlo simulations

To assess the properties of the proposed switching regression model I carried out a series of Monte Carlo simulations. To generate the datasets I used two

1. This variance-covariance matrix follows directly from the error terms appearing in equation 6 for \(Y^1\), \(Y^2\) and \(D\).
2. These simulations have two main objectives. First, given that the proposed empirical model is based on a simplification, the simulations should show under what conditions this
setups. The first one was designed to correspond as closely as possible to the empirical model, while the second one modeled the effect of direct legislation in a more challenging way. In the first setup the data were generated in the following way:16

\begin{align*}
P &= 5 + 2 * X_1 + \epsilon \\
Y &= 2 + 5 * P + \theta
\end{align*}

(9)

The independent variable \(X_1 \) was generated as a random draw from a uniform distribution over the unit-interval. To allow for correlation among the error terms \(\epsilon \) and \(\theta \) were constructed in the following way:

\begin{align*}
\epsilon &= (1 - j) \times \alpha_1 + j \times \alpha_2 \\
\theta &= \begin{cases}
\alpha_2 + 2 \times \alpha_3 & \text{if } dl = 0 \\
\alpha_2 + 1 \times \alpha_3 & \text{if } dl = 1
\end{cases}
\end{align*}

(10)

where \(\alpha_1, \alpha_2, \) and \(\alpha_3 \) are drawn from three independent normal distributions \(N(0, 1) \). If \(j = 0 \) \(\epsilon \) and \(\theta \) are uncorrelated. Letting \(j \) vary from 0 to 1, induces increasing correlations in the error terms. In addition the proportion of states with direct legislation \((dl = 1) \) was varied from 0, to 0.25 and 0.5.17

This setup obviously quite closely reflects the empirical model proposed. Hence, to carry out a more challenging test of the empirical model I also performed Monte Carlo simulations with a second setup. In this latter setup, the following relationships related the exogenous \(X_1 \) to preferences and policy outcome:

\begin{align*}
P &= 5 + 2 * X_1 + \epsilon \\
Y &= \begin{cases}
P + 0 + \theta & \text{if } dl = 1 \\
P + 1 + \theta & \text{if } dl = 0 \text{ and } \alpha > p \\
P - 1 + \theta & \text{if } dl = 0 \text{ and } \alpha \leq p
\end{cases}
\end{align*}

(11)

\(\alpha \) is drawn from a uniform distribution over the unit-interval and \(p \) was varied from 0 to 0.25 and 0.5. In this setup policy deviates by 1 from the preferences simplification still allows for correctly estimating the effect of direct legislation. Second, given that most studies assessing the effect of direct legislation rely on a small set of observations, the simulations should assess the small sample properties of the proposed estimator.
of the voters either in a positive or a negative direction in non direct-legislation states. The value of p determines the proportion of states for which the effect is in a negative direction. The frequently used model testing the effect of direct legislation by simply estimating the effect for a dichotomous indicator implicitly assumes that $p = 0$ (or $p = 1$). As p diverges from these extreme values, the estimates from that traditional empirical model are biased toward zero. The structure of the error terms was set up in the same way as in the first setup.18

In both setups 1000 samples for different sizes (i.e., 20, 50, 100, 200, . . . 1000) were drawn. As Lee and Trost (1978), Maddala (1983) and Wilde (1998) note, however, the performance of this estimator is quite sensitive to starting values. In the Monte Carlo simulations this led to failures to reach convergence, especially in runs with small sample sizes. Consequently for some combinations of sample sizes, parameter values etc., only a small numbers of runs converged. Instead of playing around with starting values,19 I report the results for these runs as well, but by highlighting that they are based on smaller number of replications.

\textit{Figure 1 about here}

The first results depicted in the eleven panels of figure 1 are based on the first setup for the generation of the data. I report the mean estimate for the direct legislation coefficient obtained from the switching regression ($b_{\text{mle sr}}$) as well as the one obtained from a simple linear regression (b_{ols}) as a function of the sample size.20 For each mean estimate I also report confidence intervals based on the distribution of the estimated coefficients. Finally, each panel corresponds to a different degree of correlation among the errors, going from values for j from 0 to 1 (see equation 10).

The results depicted in table 1 demonstrate essentially two things. First, the OLS estimate is on average zero and thus suggests that direct legislation has no impact on policy, while the estimate from the switching regression yields a mean estimate very close to the true value, namely 1. Second, the confidence intervals around these mean estimates shrink quite quickly from their large values for small sample sizes when moving to larger samples. Only in the small samples do the confidence intervals around the mean estimate of the switching regression include the value 0. Both of these results are largely unaffected by increasing the correlation between the error terms.21 Consequently, the switching regression estimates give on average unbiased estimates of the main quantity of interest,
namely the coefficient for the direct legislation dummy. OLS regressions in this particular setup of the Monte Carlo simulations are unable to detect the effect of direct legislation, since the policy is not biased in the same direction in all states.

In the second setup, the switching regression model is more thoroughly tested by varying the degree to which policy is biased in the same direction in non-direct legislation states. In a first set of Monte Carlo simulations I set the proportion of non-direct legislation states to 0.5, and in half of them policy is biased in a negative direction, and in half in a positive one. The size of this effect is equal to 1 again, however, given the way in which the data is generated, the coefficient from the switching regression depends on the variances of the other components.

For this reason I depict in figure 2 apart the confidence intervals for the OLS and switching regression result only a line at 0, illustrating whether the estimates on average show a significant effect for direct legislation.22 As for the previous Monte Carlo simulations, the mean of the estimated OLS coefficients is approximately 0, independent of the size of the sample or the correlation in the error terms. In addition, the confidence intervals are again rather wide, implying that we would systematically reject the hypothesis that direct legislation has an effect on policy. The estimates from the switching regression model, on the other hand, are systematically negative and for almost all sample sizes the confidence intervals fail to include 0. Only for small sample sizes, i.e. 20, 50, 100 and 200, is this not the case.23

Again this setup of the Monte Carlo simulations indirectly played in favor of the switching regression model. Clearly if among the non-direct legislation states the policy bias goes more frequently in the same direction, the switching regression model will have a harder time detecting this effect. For this purpose I designed two further Monte Carlo simulations. In the first a quarter of the non-direct legislation states have a positive policy bias, while in the second this proportion drops to zero.24

Figure 3 reports the result for the simulations where a quarter of the non-direct legislation states have a positive policy bias.25 For small samples, neither the OLS nor the switching regression estimates are accurate. The confidence intervals for both estimators include the value of 0. With sample sizes of 300 or more, largely independent of the correlation between the error terms, both estimators clearly
indicate an effect for direct legislation. Interestingly, the sample sizes starting
with which confidence intervals fail to include the value of 0 are largely the
same, though with a small advantage for the OLS estimator. The advantage of
the switching regression estimator, however, is that it gives clearly support to
the theoretically derived hypothesis, while the OLS estimator fails to yield this
information.

Finally, when the bias to policy is in the same direction in all non-direct
legislation states the results of the Monte Carlo simulations look as depicted in
figure 4. Not surprisingly in this case the tables are turned for the OLS and the
switching regression models. Since the policy bias goes in the same direction in
all non-direct legislation states, the OLS model with a simple dummy variable is
able to pick up this effect very well. Hence, the estimated coefficient is for all
sample sizes and correlations of the error terms approximately equal to 1. The
confidence intervals with increasing sample sizes diminish quickly and exclude
0 for most parameter combinations. The switching regression model, however,
yields mean estimates close to zero and also decreasing confidence intervals. The
reason for this is obviously that in the data there is no hint whatsoever that biases
go in opposite directions. In the absence of such information, the switching
regression model is unable to detect this difference.

Figure 3 about here
Figure 4 about here

The Monte Carlo simulations of the switching regression model compared to
the simple OLS model clearly illustrated the strengths of the former. Provided
that the policy biases in non-direct legislation states are not systematically in the
same direction, the switching regression model gives us accurate estimates of the
policy bias that direct legislation allows to correct for. Only when the policy bias
in the non-direct legislation states is always or almost always in the same direction
does the OLS model with a simple dichotomous indicator give us a better answer.
While in such situations the OLS model is preferable, the estimates provided do
not allow us to draw any conclusions on whether the correction of the policy
bias due to direct legislation goes in the direction of the median voter or not.
Only information external to the model, like for instance the information that
Matsusaka (2000, 2004) has collected on contents of direct legislation proposals
and other information allow us to gain some insights in the direction of the policy
bias.

5 Policy consequences of direct legislation

While the Monte Carlo simulations already showed that the switching regression model yields more information on the effect of direct legislation and also provides better estimates except under very specific conditions, concrete examples may better illustrate the advantages of this estimator. To do so I use the data employed by Lascher, Hagen and Rochlin (1996) (see table 1 for the policies employed26 to assess the effect of direct legislation in the US states. The basic specification (see table 2) uses as independent variables the percentage of high school graduates, the state per capita income, the percent of urban residents and the ideology scale proposed by Erikson, Wright and McIver (1993). Lascher, Hagen and Rochlin (1996) in addition use a dichotomous indicator for direct legislation and an interaction term between this variable and the ideology scale. As Matsusaka (2001) demonstrates, these authors erroneously interpret the coefficient for this interaction term as evidence for the effect of direct legislation and essentially find no effect.

\begin{table}[h]
\centering
\caption{Table 1 about here}
\end{table}

As in Lascher, Hagen and Rochlin (1996) these analyses only cover 47 states, since according to Erikson, Wright and McIver (1993) the ideology measure for Nevada, Hawaii and Alaska is unreliable, and these states are thus omitted.27 I report in table 2 for each of the seven selected policies first the result of a simple linear regression with a dichotomous indicator for direct legislation states28 (columns OLS in table 2).29 The estimates for this variable vary from positive to negative values and only for the policy of legalizing gambling is the estimated coefficient statistically significant. Consequently, based on this empirical model we would conclude that direct legislation only affects this particular policy in a statistically significant way.

If we estimate the switching regression model (column MLE in table 2),30 we find for four out of the seven policies, namely AFDC, educational expenditures, gambling and Medicaid, negative coefficients for the direct legislation variable, as expected by the theoretical model. Three out of these four negative estimated coefficients are also statistically significant and thus provide clear support for the hypothesis that direct legislation biases policy toward the preferences of the
voters. The three policies for which we find positive estimated coefficients are the consumer and the criminal justice policy, as well as tax progressivity. Among these three estimated coefficients, only the one for criminal justice policy reaches statistical significance. This result suggests that in direct legislation states policy outcomes differ more strongly from the voters’ wishes than in non-direct legislation states. Obviously this contradictory result is counterintuitive. Interestingly enough, however, it is exactly for this policy and the tax policy where the preference measures are most loosely related to policy outcomes. Hence, the negative results are more likely to be related to the rather poor proxies for the voters’ preferences than to inherent problems with the proposed empirical model.

Nevertheless, the results reported in table 2 demonstrate that the proposed switching regression model yields improved estimates for the effect of direct legislation. Contrary to the results presented by Lascher, Hagen and Rochlin (1996) we find for four of their policies effects for direct legislation as predicted by the theoretical models. A frequently used model, namely the one estimating a coefficient for a dichotomous direct legislation indicator, on the other hand, would suggest policy effects only for one of these policies. Hence, the switching regression model is a clear improvement over existing models to test for the effect of direct legislation. As the Monte Carlo simulations suggest, however, it should be used in conjunction with the traditional models.

Table 2 about here

6 Discussion and conclusion

In the current discussion of the merits and drawbacks of direct legislation both in the American states and around the world misguided generalizations often lead to erroneous statements about the effect of direct legislation. Systematic studies of the effect of direct legislation on policy outcomes (e.g., Matsusaka 1995, 2000 and 2004, Gerber 1996 and 1999, Gerber and Hug 1999, Kirchgässner, Feld and Saviz 1999, Besley and Case 2003, Feld and Matsusaka 2003) come to more nuanced conclusions than journalistic assessments (e.g., Schrag 1998 and Broder 2000) or analyses relying on case studies (e.g. Smith 1998).

But even among the more systematic studies it has often proved elusive to find demonstrable effects of direct legislation on policy outcomes of the type we would expect from theory. In this paper I argued that the reason for this elusive
quest is largely attributable to questionable empirical models. Based on the ba-
sic implication of most theoretical models, I derived an empirical model which
improves on the models currently used by researchers trying to show that direct
legislation has policy consequences. More precisely, this model directly acknowl-
edges the fact that the effect of direct legislation is contingent on the preferences
of at least the voters. Taking this into consideration in the empirical model I
employed in this paper, I was able to show that results obtained by Lascher, Ha-
gen and Rochlin (1996) are problematic and do not allow for the rejection of the
theoretically derived hypothesis. More precisely, using their dataset and using
both a simple empirical model testing for systematic policy biases in non-direct
legislation states and the one proposed here, I demonstrated that the improved
empirical model yields results largely in synch with theory and outperforms the
simple model.

This empirical investigation, however, is hardly sufficient to demonstrate the
merits of the empirical model proposed here. In Monte Carlo simulations I
also demonstrated that under most conditions, the proposed switching regres-
sion model provides more accurate estimates than a simple OLS regression. Only
under very specific conditions is the latter empirical model preferable. This sug-
gests that both models should be used simultaneously in order to assess the effect
of direct legislation. If a simple model with only a dummy indicator for the pres-
ence institutions for direct legislation yields a statistically significant coefficient,
we can reject the null-hypothesis that direct legislation fails to affect policy out-
comes. The size of the effect may, however, be biased toward zero and, in the
absence of additional information, we cannot be sure that the bias is toward the
median voter’s preferences.\footnote{More specifically, when only estimating a model with a dummy indicator for direct legisla-
tion, extraneous information like in Matsusaka’s (2000, 2004) study comparing the fiscal effects
of direct legislation in two time periods has to be relied on to make arguments for the direction
of these effects with regard to citizen preferences.} If the effect of direct legislation is not significant,
this may be due to the bias related to the empirical model or to a real absence of
an effect. In both cases, however, estimating the proposed switching regression
model would yield additional information. In the first case it might yield inform-
ation on whether policy is biased toward the voters’ preferences, while in the
second it might show whether the null-result is due to the misspecified model or
the real absence of an effect of direct legislation.
The use of the proposed empirical model is, however, not limited to assessing the effect of direct legislation. In very diverse research areas similar questions are raised and could be assessed with the same empirical model. Two areas may be most prominent for this. First, and most closely related to the topic of the present paper, the question whether in majoritarian political systems the preferences of the median voter are more closely reflected in government (see for a discussion Powell 2000) should lead to exactly the same empirical model. Second, the literature on the responsiveness and representativeness of legislators is quite clearly also dealing with the same effects. If we wish to assess the legislators’ responsiveness on particular policies the model proposed here may yield improved insights. Hence, future research first of all on the effects of direct legislation, but also in other research areas should assess the applicability of the empirical model proposed here.
7 Appendix

Table 3 reports the descriptive statistics of the variables employed in this paper as well as their source. Table 4 reports the predicted probabilities for being in regime 1 in the switching regression models (see equation 6).\(^{33}\)

Table 3 about here

Table 4 about here
References

Tables and figures

Table 1: Policies and their measurement

<table>
<thead>
<tr>
<th>variable</th>
<th>policy*a</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFDC</td>
<td>“scope of Aid to Families with Dependent Children”</td>
</tr>
<tr>
<td>criminal justice policy</td>
<td>“enactment of various consumer protection laws”</td>
</tr>
<tr>
<td>educational expenditures</td>
<td>“use of different approaches to criminal justice”</td>
</tr>
<tr>
<td>gambling policy</td>
<td>“educational spending per pupil”</td>
</tr>
<tr>
<td>tax policy</td>
<td>“extent to which legalized gambling is allowed”</td>
</tr>
<tr>
<td>Medicaid policy</td>
<td>“tax progressivity”</td>
</tr>
<tr>
<td></td>
<td>“scope of the Medicaid program”</td>
</tr>
</tbody>
</table>

*aSource: Erikson, Wright and McIver 1993, 75-78, and Lascher, Hagen and Rochlin 1996, 765
Table 2: Explaining policy outcomes

<table>
<thead>
<tr>
<th></th>
<th>AFDC</th>
<th>consumer</th>
<th>criminal</th>
<th>education</th>
<th>legalized</th>
<th>tax</th>
<th>Medicaid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OLS</td>
<td>MLE</td>
<td>OLS</td>
<td>MLE</td>
<td>OLS</td>
<td>MLE</td>
<td>OLS</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>(s.e.)</td>
<td>(s.e.)</td>
<td>(s.e.)</td>
<td>(s.e.)</td>
<td>(s.e.)</td>
<td>(s.e.)</td>
<td>(s.e.)</td>
<td>(s.e.)</td>
</tr>
<tr>
<td>direct legislation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>constant</td>
<td>(18.467)</td>
<td>(8.748)</td>
<td>(1.058)</td>
<td>(0.513)</td>
<td>(4.092)</td>
<td>(0.418)</td>
<td>(3.975)</td>
</tr>
<tr>
<td>high school graduates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>income</td>
<td>4.022**</td>
<td>2.96**</td>
<td>0.192**</td>
<td>0.120**</td>
<td>3.29**</td>
<td>1.35**</td>
<td>0.142**</td>
</tr>
<tr>
<td></td>
<td>(6.558)</td>
<td>(4.18)</td>
<td>(0.088)</td>
<td>(0.044)</td>
<td>(3.486)</td>
<td>(2.384)</td>
<td>(0.317)</td>
</tr>
<tr>
<td>percent urban</td>
<td>-6.331</td>
<td>-15.956</td>
<td>2.636</td>
<td>2.505**</td>
<td>57.797</td>
<td>-99.52**</td>
<td>5.413*</td>
</tr>
<tr>
<td>ideology scale</td>
<td>(40.669)</td>
<td>(19.922)</td>
<td>(2.330)</td>
<td>(1.327)</td>
<td>(92.32)</td>
<td>(40.445)</td>
<td>(3.214)</td>
</tr>
<tr>
<td>constant</td>
<td>-124.27</td>
<td>55.573**</td>
<td>0.901</td>
<td>4.335**</td>
<td>-25.12**</td>
<td>1.320**</td>
<td>-7.98**</td>
</tr>
<tr>
<td>(103.262)</td>
<td>(3.686)</td>
<td>(5.915)</td>
<td>(3.152)</td>
<td>(2.343)</td>
<td>(254.45)</td>
<td>(85.101)</td>
<td>(3.152)</td>
</tr>
<tr>
<td>$\sigma^2_{p} + \delta_{p}$</td>
<td>738.734</td>
<td>3.019</td>
<td>3799.611</td>
<td>245.202</td>
<td>2968.234</td>
<td>5.399</td>
<td>46.275</td>
</tr>
<tr>
<td>$\sigma^2_{p} + 2\sigma_{p}$</td>
<td>738.734</td>
<td>3.019</td>
<td>3799.611</td>
<td>245.202</td>
<td>2968.234</td>
<td>5.399</td>
<td>46.275</td>
</tr>
<tr>
<td>$\sigma^2_{p} - 2\sigma_{p}$</td>
<td>738.734</td>
<td>3.019</td>
<td>3799.611</td>
<td>245.202</td>
<td>2968.234</td>
<td>5.399</td>
<td>46.275</td>
</tr>
<tr>
<td>σ^2</td>
<td>705.092</td>
<td>2.948</td>
<td>3752.021</td>
<td>226.678</td>
<td>2901.144</td>
<td>5.664</td>
<td>40.831</td>
</tr>
</tbody>
</table>

*Legend: * indicates $p < 0.10$ and ** $p < 0.05$.
Table 3: Descriptive statistics

<table>
<thead>
<tr>
<th>variable</th>
<th>source</th>
<th>min</th>
<th>mean</th>
<th>max</th>
<th>std dev</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>direct legislation dummy (Mageby 1984)</td>
<td>source</td>
<td>0</td>
<td>0.45</td>
<td>1</td>
<td>0.50</td>
<td>47</td>
</tr>
<tr>
<td>ideology scale</td>
<td>state ideology measure</td>
<td>-28</td>
<td>-14.60</td>
<td>-0.81</td>
<td>7.30</td>
<td>47</td>
</tr>
<tr>
<td>mean income 1980</td>
<td></td>
<td>6.68</td>
<td>9.01</td>
<td>11.54</td>
<td>1.17</td>
<td>47</td>
</tr>
<tr>
<td>percent</td>
<td></td>
<td>53</td>
<td>66.40</td>
<td>80</td>
<td>7.32</td>
<td>47</td>
</tr>
<tr>
<td>percent of urban population</td>
<td></td>
<td>0</td>
<td>0.53</td>
<td>0.93</td>
<td>0.25</td>
<td>47</td>
</tr>
<tr>
<td>AFDC</td>
<td>Lascher, Rochlin and Hagen (1996)</td>
<td>87</td>
<td>241.36</td>
<td>400</td>
<td>83.45</td>
<td>47</td>
</tr>
<tr>
<td>consumer policy</td>
<td></td>
<td>4</td>
<td>13.57</td>
<td>21</td>
<td>3.85</td>
<td>47</td>
</tr>
<tr>
<td>“</td>
<td></td>
<td>-100</td>
<td>153.19</td>
<td>400</td>
<td>131.63</td>
<td>47</td>
</tr>
<tr>
<td>“</td>
<td></td>
<td>168</td>
<td>237.85</td>
<td>376</td>
<td>47.99</td>
<td>47</td>
</tr>
<tr>
<td>“</td>
<td></td>
<td>0</td>
<td>257.45</td>
<td>600</td>
<td>171.62</td>
<td>47</td>
</tr>
<tr>
<td>criminal justice policy</td>
<td></td>
<td>-13</td>
<td>-3.45</td>
<td>7</td>
<td>4.67</td>
<td>47</td>
</tr>
<tr>
<td>“</td>
<td></td>
<td>100</td>
<td>125.94</td>
<td>159</td>
<td>17.70</td>
<td>47</td>
</tr>
<tr>
<td>educational expenditures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>legalized gambling policy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tax policy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medicaid policy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4: Predicted probabilities for regime 1

<table>
<thead>
<tr>
<th>state</th>
<th>policy</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Arizona</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Arkansas</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.92</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>California</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Colorado</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.04</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Connecticut</td>
<td>0.91</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Delaware</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Florida</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Georgia</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Idaho</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Idaho</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.13</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Illinois</td>
<td>0.05</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Indiana</td>
<td>0.00</td>
<td>0.00</td>
<td>0.86</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Iowa</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Kansas</td>
<td>0.02</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Kentucky</td>
<td>0.00</td>
<td>0.00</td>
<td>0.23</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Louisiana</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.99</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Maine</td>
<td>0.03</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Maryland</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>0.03</td>
<td>0.00</td>
<td>1.00</td>
<td>0.87</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Michigan</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.09</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Minnesota</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.74</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Mississippi</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Missouri</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Montana</td>
<td>0.00</td>
<td>0.00</td>
<td>0.99</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Nebraska</td>
<td>0.89</td>
<td>1.00</td>
<td>1.00</td>
<td>0.22</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>New Jersey</td>
<td>0.00</td>
<td>0.00</td>
<td>0.98</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>New Mexico</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>New York</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>North Carolina</td>
<td>0.01</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>North Dakota</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Ohio</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.11</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Oregon</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>South Carolina</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>South Dakota</td>
<td>0.84</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Tennessee</td>
<td>0.00</td>
<td>0.00</td>
<td>0.93</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Texas</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Utah</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Vermont</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Virginia</td>
<td>0.00</td>
<td>1.00</td>
<td>0.98</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Washington</td>
<td>0.98</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.99</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>West Virginia</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.99</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Wyoming</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.99</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Figure 1: Monte Carlo simulations based on variance specification
Figure 2: Monte Carlo simulations based on dummy effect with $p = 0.5$.
Figure 3: Monte Carlo simulations based on dummy effect with $p = 0.25$.

Each graph shows the distribution of estimates for different values of j from 0 to 1.
Figure 4: Monte Carlo simulations based on dummy effect with $p = 0$, $j = 0$, $j = 0.1$, $j = 0.2$, $j = 0.3$, $j = 0.4$, $j = 0.5$, $j = 0.7$, $j = 0.8$, $j = 0.9$, and $j = 1$. The plots compare the maximum likelihood estimates (MLE) and ordinary least squares (OLS) under different values of j. The simulations demonstrate the impact of the dummy effect parameter on the model's performance.
Notes

1 Obviously, the notion of median voter only applies in contexts where the policy outcome reflects a one-dimensional policy space. Tsebelis (2000) and Hug and Tsebelis (2002) propose ways in which the general theoretical ideas discussed in this paper apply in multidimensional spaces.

2 Gerber and Hug (2001) discuss in much more detail the issues involved in this question.

3 Matsusaka (2000, 658) adds a possible signaling effect, namely when “... election returns from initiative contests... convey information to representatives about citizen preferences that they later incorporate into policy.”

4 Strictly speaking, the complete information models of Steunenberg (1992) and Gerber (1996 and 1999) do not cover both types of effects. In Steunenberg’s (1992) model initiatives always occur if the status quo is different from the voters’ preferences, which implies that only direct effects are considered. In Gerber’s (1996 and 1999) model votes never occur in equilibrium, since the legislature anticipates voter and interest group reactions. Thus, the predicted policy effects are only of the indirect nature.

5 Most models comprise also an interest group or an opposition, which triggers direct legislation. Given that various such groups may fulfill this role, their preferences will empirically be of less relevance.

6 It has to be noted that two models find that under very specific conditions, voters may be worse off under direct legislation. Matsusaka and McCarty (2001) show that if the legislature attempts to be a perfect agent of the voters, without knowing the latter’s preferences, it may try to preempt ballot measures by adopting policies, which are detrimental for the voters. This occurs, however, only if the legislature wishes to buy off an extreme interest group. Similarly, Hug (2004) also finds that if the legislature’s and the voters’ interest are close, direct legislation may lead to policies less preferred by the voters, because the legislature wishes to avoid ballot measures. In both models, however, this detrimental effect is dependent on the voters’ preferences. For instance proposition 3 in Matsusaka and McCarty (2001) states that policy outcomes may be more extreme under direct legislation, where “extremeness” is implicitly defined by the distance between the adopted policy and the expected value of the voters’ preferences. Thus, both positive and negative effects of direct legislation from the perspective of voters are contingent on the latter’s preferences.

7 Matsusaka (2001) suggests using the square of the differences, which would make deriving an estimator more complicated. The gist of the argument is, however, the same.

8 It is interesting to note that exactly the same setup and discussions about the appropriate empirical models occurred in the literature on the representation and responsiveness of legislators to their constituencies’ preferences (see especially Achen 1977). I will come back to this parallel later in this paper.

9 Again, this point is already made in Achen’s (1977) incisive critique of the literature on responsiveness.

10 Hagen, Lascher, and Camobreco (2001), in their response to Matsusaka’s (2001) critique of their approach suggest a very similar setup. They ignore, however, that even if the median voter’s preferences could be directly measured, there would still be measurement error. In the presence of measurement error, as Achen (1977) clearly demonstrates in the related field of studies on representation and responsiveness, even a simple regression approach is not feasible in this context. It may help to illustrate this point by the strategy used by some scholars of representation. If both the voters’ and legislators’ preferences were measured without error (especially the former) we would expect under the assumption of perfect representation a slope coefficient of 1. Any deviation from this value of the estimated slope coefficient would suggest less representation. This implies in the context of studies on the effect of direct legislation, that the estimated coefficient for an interaction effect between the presence of these institutions and
the voters’ preferences may be positive or negative and lead to less representation. Hence, this slope estimate provides no information on the question whether policy is more responsive in direct legislation states when used in a linear regression model. The empirical results reported below demonstrate this point.

11It has to be noted that the two regimes refer to whether in a state with direct legislation voters want more or less of a specific policy output than the legislator. Hence, implicitly there is a third regime corresponding to the states without direct legislation. I wish to thank Sven Feldmann for alerting me to this parallel and for catching a crucial error in a previous version of my argument. In the notation I follow as closely as possible Maddala (1983, 283) in order to make the parallels visible.

12Bowler and Donovan (2004) also critically discuss some of these models.

13See Romer and Rosenthal (1979) for a related critique.

14I refrain from deriving in detail this likelihood function since, with the exception of the restrictions on the variance-covariance matrix it is equivalent to the models presented in Maddala (1983, 283) and Wilde (1998).

15Wilde (1998) discusses this model in more detail and provides suggestions for the implementation of the estimation. The estimations carried out for this paper proved rather sensitive to the starting values employed. I systematically used the OLS-estimates as starting values for the estimation for a restricted version of the model, namely with the restrictions that $\sigma_\theta^2 = \sigma_{\epsilon,\theta} = 0$. The estimates for this model were then used as starting values for a model using only restriction that $\sigma_{\epsilon,\theta} = 0$. These estimates were then used as starting values for the unrestricted model.

16Strictly speaking in the second equation the values 2 and 5 could be dropped to correspond perfectly to the theoretical setup. I maintained these values to allow for additional policy biases.

17The dichotomous dl variable was generated by using a draw from a uniform distribution over the unit interval. If the value drawn was below 0.5 (resp. 0.25, 0) the value of dl was set to 0, and to 1 else. I varied this parameter to assess whether the proposed model could also be estimated in a set of observations where very few units have direct legislation.

18I compare in the Monte Carlo simulations only the proposed estimator here and the empirical model where the effect of direct legislation is estimated with a simple dichotomous estimator. The reason for this is that as I have discussed above, in the approach chosen by Lascher, Hagen and Rochlin (1996) and Camobreco (1998) there is no clear expectation what the “correct” estimate for the interaction between voter preferences and the direct legislation variable should be.

19In the empirical illustrations provided in this paper it was clearly evident that when trying different starting values convergence was always obtained.

20In all panels the mean estimated coefficients and confidence intervals are based on 1000 runs, except for the smaller sample sizes of 300 or fewer observations. For these runs, on average a few hundred runs are at the basis of the results. The confidence intervals were approximated in all figures by $\bar{b} \pm 2 \times s_b$.

21Not surprisingly, the estimated coefficient for P in equation 9 is affected by increasing correlation between the two error terms. The bias is, however, largely identical both in the OLS and switching regression estimates. For this reason I refrain from reporting these results here.

22Again, problems of convergence with fixed starting values resulted in numbers of runs differing according to the combinations of parameter values. More specifically, only runs with small correlations between the error terms (i.e., $j \leq 0.6$ in equation 10) and sample sizes of at least 200 resulted in approximately 1000 runs.

23The wide confidence intervals are closely related to the sensitivity of the estimator to starting values. In the empirical examples discussed below, even with data with few observations, quite precise estimates could be obtained, when different starting values were employed.
This corresponds to setting p in equation 10 to 0.25, respectively 0.

Again, the information depicted in the eleven panels is based on 1000 runs only for small degrees of correlations in the error terms and sample sizes of at least 200. For all other combinations of parameter values the results from smaller number of runs are reported.

I refrained from using the policy of the Equal Rights Amendment (ERA) for these analyses. The variable used by Lascher, Hagen and Rochlin (1996) counts the number of years between the ratification of the ERA amendment and 1982 but equals 0 for all states not having ratified this amendment. Thus, this variable is censored and is clearly not appropriate as dependent variable in a linear regression framework. As a consequence I also do not use Lascher, Hagen and Rochlin’s (1996) summary index, which corresponds to the sum of the z-values of the 8 policy measures.

Hence, I use exactly the same data as Lascher, Hagen and Rochlin (1996), including their classification of states as having or not having direct legislation.

In analyses not reported here, I also used as additional independent variable a measure of the difficulty to qualify a direct legislation measure (i.e., signature requirement as a percentage of the voting population). Also the results for this additional independent variable yielded support for the empirical model proposed here, but to simplify the presentation I refrained from reporting these additional results here.

I fail to report the results reported in Lascher, Hagen and Rochlin (1996) since the estimates of their proposed model do not directly address the relevant theoretical implications. It suffices to say that these authors find for none of their policies studied the combination of estimated coefficients for the preference measure and the latter’s interaction with a direct legislation indicator that they would take as evidence for increased policy responsiveness.

In the appendix I also provide predicted probabilities for each state falling into regime 1 in the switching regression model (see equation 6).

This can easily be seen when comparing the root-mean squared error of the regressions and the descriptive statistics of the dependent variables provided in the appendix.

See Achen (1977) for a discussion of problems in this literature related to the issues discussed here. Bartels (1991) proposes a parallel way to address the problem discussed in this paper when studying the representativeness of legislators.

I wish to thank Dan Woods for suggesting to report these probabilities.