# Sponsoring Resolutions on Civil Wars in the UN Security Council * 

Fang-Yi Chiou ${ }^{\dagger} \quad$ Simon Hug ${ }^{\ddagger}$<br>Bjørn Høyland ${ }^{\text {§ }}$<br>Paper prepared for presentation at the conference<br>International Studies Association<br>(San Fransisco, April 4-7, 2018)

March 22, 2018


#### Abstract

The United Nations Security Council alone has the power, under chapter VII, to adopt binding resolutions concerning interventions in civil wars through peacekeeping missions. While some research has focused on the conditions under which such resolutions are adopted or rejected (most often due to a veto by a permanent member), we know little what influences whether such resolutions are introduced for consideration by the UNSC, or put differently, who sponsors such resolutions. This is problematic as the absence of an adopted resolution, for instance for creating a peacekeeping operation might be due to the absence of a sponsor for such a resolution or a negative vote on a resolution introduced. In part as a consequence, sponsorship decisions by the members of the UNSC are quite likely to be affected by the likelihood of winning approval by the fifteen members of the UNSC and the sponsorship decisions of other members. We propose an empirical approach that allows taking these interdependencies into account, and, when evaluating commonly used explanatory variables for the adoption of peacekeeping missions, we find results contradicting previous findings on the adoption of such resolutions.


[^0]
## 1 Introduction

Since the end of the cold war peacekeeping missions by the United Nations (UN) have seen a dramatic increase both in number and in size (e.g., Mullenbach, 2013, 114). Not surprisingly numerous scholars have attempted to understand under what conditions the United Nations' Security Council (UNSC) decides to intervene in armed conflicts (e.g., Gilligan and Stedman, 2001; Mullenbach, 2005; Mullenbach, 2013; Stojek and Tir, 2015; Marbach, 2017 forthcoming), also to understand whether such missions actually do help keeping or enforcing peace (e.g., Gilligan and Sergenti, 2008; Fortna, 2003; Fortna, 2004; Fortna, 2008) and protecting the civilian population (e.g., Hultman, 2010; Hultman, Kathman and Shannon, 2013; Hultman, 2013; Carnegie and Mikulaschek, 2016; Hultman and Johansson, 2017).

The analysis of decisions to deploy UNSC peacekeeping missions has, however, been hampered by a parallel development in the UNSC since the end of the cold war, namely that decisions on such missions are oftentimes reached unanimously. This results from the fact that increasingly UNSC members only sponsor resolutions for which they are close to certain to obtain the necessary support in a meeting (see relatedly Peterson, 2005, 3). Consequently, the voting record on resolutions proposing to adopt peacekeeping missions offers almost no information on whether the UNSC members were divided and how various covariates might have influenced their views. Thus, scholars have attempted to circumvent this problem by only considering the decision to adopt a peacekeeping mission and by relying on more aggregate covariates, for instance whether the conflict country has a colonial tie to any of the permanent UNSC members, or their aggregated trade relations (e.g., Gilligan and Stedman, 2001; Mullenbach, 2005; Mullenbach, 2013; Stojek and Tir, 2015). Marbach (2017 forthcoming) proposes a possible solution to this problem by modeling the UNSC decision as the joint outcome of the individual decisions of each of the fifteen UNSC members with member-specific covariates. He assumes that the absence of a vote is equivalent to an implicit rejection either by veto or the required majority of members of the UNSC.

In the present paper we propose another way to deal with this issue by considering sponsoring decisions by UNSC members. This solution is motivated by the fact that each UNSC member may ensure, by sponsoring a draft resolution, that a topic, in our case a peacekeeping mission for a country in conflict, is debated in
a meeting of the UNSC. By not sponsoring such a draft resolution a member state cannot ensure keeping the issue of the agenda, but can decrease the likelihood of this occurring. This makes the sponsorship decisions by each of the UNSC members highly interdependent, which has not been acknowledged so far in the literature on the adoption of peacekeeping missions by the UNSC. We propose in this paper an approach to address this interdependency in a direct way that is amenable to many similar situations in other areas of research. ${ }^{1}$ In an empirical analysis of sponsorship decisions by UNSC members on peacekeeping missions since the end of the cold war (until the end of 2014) we find that commonly used covariates have quite different effects on individual members of the UNSC. This highlights that much of the important process leading up to peacekeeping missions actually occurs before the voting stage.

In what follows, we first offer an overview over recent work on the adoption of peacekeeping missions by the UNSC and discuss the way in which draft resolutions for such missions are introduced for debate. Based on this overview we develop and present in section three our theoretical approach and the empirical model that derives from this approach. We also discuss alternative approaches to estimate models of interdependent choices, mostly based on spatial econometrics. In section four we present the data on which we draw that extends the data currently used in empirical work on UNSC decisions on peacekeeping missions. We present our empirical results in section five before concluding in section six, where we discuss both the implications of our results for research on UNSC peacekeeping missions and the applicability of our approach to other research areas.

## 2 Peacekeeping missions and the UN Security Council

In an influential study on civil wars Collier, Elliott, Hegre, Hoeffler, ReynalQuerol and Sambanis (2003) popularized the notion of "conflict trap," which describes the fact that countries affected by a civil war are likely to witness violent

[^1]conflicts repeatedly. This empirical finding makes the role of peacekeeping missions in general and those of the UN more specifically all the more important. In an influential study Goldstein (2011) argues that the UN has contributed to "Winning the war on war" (see also Cederman, Gleditsch and Wucherpfennig, 2017). Assessing the effect of peacekeeping missions is, however, far from obvious (for reviews of the literature, see Fortna and Howard, 2008; Dorussen, 2014). Early studies, for instance Doyle and Sambanis (2000), found that under certain conditions, e.g., encompassing mandates, peacekeeping missions could make peace more durable $2^{2}$ More recently, also to take endogeneity concerns more explicitly into account, scholars started to study more directly where peacekeeping missions were deployed (for a nice review of the various explanatory factors used, see Stojek and Tir, 2015). Gilligan and Stedman (2001), for instance, demonstrated convincingly that when deciding on where to deploy peacekeeping mission, the UNSC privileged conflicts in Europe and Latin America, was sensitive to the number of battle deaths and the size of the army. As Mullenbach (2005), who focuses more on international factors, they also found that after the end of the cold war, peacekeeping missions became more likely (see also Mullenbach, 2013). As in the subsequent study by Gilligan and Sergenti (2008) the authors conclude that the UNSC intervenes in the difficult cases, which tends to bias the estimates of their effectiveness generally downwards (for similar assessments and results see, Fortna, 2003, 2004, 2008)

Some scholars have also started to focus on more specific reasons for peacekeeping missions and their effects. Thus, Hultman, Kathman and Shannon (2013) assess whether violence against the civilian population makes an UN intervention more likely and whether such interventions are likely to reduce this violence (see also Hultman, 2010; Hultman, 2013; Carnegie and Mikulaschek, 2016; Hultman and Johansson, 2017). The general finding is that such violence makes an intervention more likely, but that missions reduce only the violence perpetrated by the rebel groups. Stojek and Tir (2015), on the other hand, focus on trade relations between the country in conflict and UNSC members, finding that strong ties make peacekeeping missions more likely. Most recently, Marbach (2016), studying individual decisions by UNSC members, finds that refugee crisis make

[^2]UN peacekeeping missions considerably more likely. Whether a UNSC member is affected directly by refugees, however, appears not to influence its decision.

Marbach's (2016) study draws on his innovative approach to study committee decisions (Marbach, 2017 forthcoming). As in most conflict years no draft resolution is debated and voted upon in the UNSC to deploy a peacekeeping mission and most deployment decisions are reached unanimously Marbach (2017 forthcoming) proposes a partial-observability estimator. More specifically, the absence of a deployment decision in the UNSC can come about either by a veto by one of its permanent members or the failure to obtain the required majority of supporting votes (currently nine). His estimator takes these various ways in which failure to act can come about into account to assess what covariates affect each of the UNSC members' voting decisions. In addition he assumes that the failure to debate a resolution is akin to a negative decision. Doing so allows him to circumvent the problem that many studies have to rely on aggregated information as covariates. For instance Hultman (2013) uses information on whether the country in conflict used to be a colony of any of the five permanent members of the UNSC, while Stojek and Tir (2015) consider an aggregate measure of trade relations as well as aggregated affinity scores based on voting records from the United Nations General Assembly (UNGA) for the five permanent members of the UNSC. It is unlikely, however, that each UNSC member is affected similarly by such factors (as is demonstrated by Marbach, 2016, 2017).

While Marbach's $(2016,2017)$ approach is elegant in dealing with these issues, it ignores important information related to the procedures in the UNSC $]_{3}^{3}$ More specifically, before a draft resolution proposing a peacekeeping mission can be debated in the UNSC, it has to be sponsored by at least one UNSC member ${ }^{4}$

[^3]Thus, a first (and possibly the cheapest) strategy to make a peacekeeping mission less likely, for instance to Syria, is to abstain from sponsoring the necessary draft resolution.

## 3 Theoretical and empirical approach

As mentioned above, much of the work on UNSC decisions to deploy a peacekeeping mission focuses on the outcome and not the individual decisions of UNSC members (for a notable exception Marbach, 2016, 2017). This has to do, presumably, with the fact that most deployment decisions in the UNSC are reached unanimously since the end of the cold war. A reason for this development, which is also observable in the UN's General Assembly, is that much coordination and screening happens even before a resolution is drafted and introduced on the agenda (see, for instance Peterson, 2005, 3).

Marbach's $(2016,2017)$ approach, by considering unobserved implicit voting decisions by UNSC members, is in our view a step in the right direction by adopting a more actor-centered approach to third-party interventions (as championed by, amongst others, Findley and Teo, 2006). Going beyond this approach we take into account a crucial step between a possible crisis situation and the vote on a draft resolution, namely the sponsoring decisions by UNSC members on draft resolutions. As noted above, no draft resolution can be debated in the UNSC if it is not sponsored by at least one of its members. As a consequence, a first (and cheap) way to make a peacekeeping mission less likely is to refrain from sponsoring such a draft resolution. On the other hand, if a UN member is in favor of a peacekeeping mission, it is important that at least one member of the UNSC sponsors such a resolution. Thus, the interactions amongst UNSC members in their sponsoring decisions are akin to a participation or volunteer game, in which a set of actors decides simultaneously on whether to participate in a particular activity (see for instance Diekmann, 1985; Franzen, 1995; Goeree, Holt and Palfrey, 2016, 207ff) ${ }^{5}$

In such simultaneous move games decisions are, however, interdependent,
proposed by Chiou and Yang (2008) for roll call votes whose requester is unknown.
${ }^{5}$ While the sponsorship actions are likely to be sequential, the decisions whether to sponsor a resolution are likely to be taken in a way much more akin to a simultaneous moves game. In addition, as discussed below, the data available on sponsorships does not offer information on the sequence of sponsorship decisions.
which has not been acknowledged in work on UNSC decisions. ${ }^{6}$ We propose the adoption of a framework that allows taking into account this interdependence in a direct way $]^{7}$ More specifically, we assume that a set of actors with $j \in 1, . ., N$ (with $N=15$ for the UNSC since 1966 and 11 before) decides to sponsor ( $s$ ) resolutions $(R)$ with $i \in 1, . ., K$ reflecting $K$ conflict-years, our unit of analysis. As a single sponsor can guarantee that a resolution will be debated, we assume the following expected utilities for a sponsorship decision $s$ and its absence $\widetilde{s}$ :

$$
\begin{aligned}
& E U_{i j}(s)=U_{i j}(R) \\
& E U_{i j}(\widetilde{s})=U_{i j}(R)\left(1-\prod_{h \neq j}\left(1-s_{i h}\right)\right)
\end{aligned}
$$

While the expected utility of a sponsorship decision simply corresponds to the utility of a draft resolution $\left(U_{i j}(R)\right)$, the one of not sponsoring a draft resolution is equal to the same utility, but multiplied by the probability that at least one other UNSC member sponsors a draft resolution (with $s_{i h}$ being the probability of $h$ sponsoring a resolution in conflict-year $i$ ) $]^{8}$ This means that player $j$ 's net expected payoff of sponsoring a draft resolution in the $i^{\text {th }}$ time of play is

$$
\begin{equation*}
E U_{i j}(s)-E U_{i j}(\widetilde{s})=U_{i j}(R) \prod_{h \neq j}\left(1-s_{i h}\right), i=1, \ldots, K, j=1, \ldots, N \tag{1}
\end{equation*}
$$

From this it follows that the sponsorship decisions, assuming that utility differences affect the choice probabilities through a logistic function (and thus assuming a type 1 extreme-value distribution for the errors) 9 are determined by the following:

[^4]\[

$$
\begin{align*}
s_{i j} & =\frac{1}{1+\exp \left(-\left(E U_{i j}(s)-E U_{i j}(\widetilde{s})\right)\right)} \\
& =\frac{1}{1+\exp \left(-\left(U_{i j}(R) \prod_{h \neq j}\left(1-s_{i h}\right)\right)\right)} \tag{2}
\end{align*}
$$
\]

As equation 2 has to hold for each $j \in 1, \ldots N$, this defines an N-dimensional system of equations that can be solved for best response probabilities $s_{i j}^{*}$. These then allow us to formulate the following likelihood function:

$$
\begin{equation*}
L\left(\beta, \lambda \mid x_{1}, \ldots, x_{N}, Y\right)=\prod_{i=1}^{K} \prod_{j=1}^{N}\left(s_{i j}^{*}\right)^{y_{i j}}\left(1-s_{i j}^{*}\right)^{1-y_{i j}} \tag{3}
\end{equation*}
$$

Maximizing this likelihood function yields estimates akin to the Quantal Response Equilibrium (QRE) estimator as championed by McKelvey and Palfrey $(1995,1996,1998)$ and discussed in detail by Goeree, Holt and Palfrey (2016) ${ }^{10}$

This estimator tackles directly the interdependencies of sponsorship decisions and also allows for extensions. Following Goeree, Holt and Palfrey (2016) we consider the possibility that the actors involved in a strategic decision are affected differently by the utility differences between their two actions. Goeree, Holt and Palfrey (2016) propose to do this by introducing $\lambda_{j}$ into equation 2 to capture these differences, which leads to the following equation:

$$
\begin{align*}
r_{i j} & =\frac{1}{1+\exp \left(-\lambda_{j}\left(E U_{i j}(r)-E U_{i j}(\tilde{r})\right)\right)} \\
& =\frac{1}{1+\exp \left(-\lambda_{j}\left(U_{i j}(R) \prod_{h \neq j}\left(1-r_{i h}\right)\right)\right)} \tag{4}
\end{align*}
$$

$\lambda_{j}(\geq 0)$ reflects the steepness of the best-response correspondence, which may differ across the $N$ players ${ }^{11]}$ This setup, as proposed by Goeree, Holt and Palfrey (2016), is perfectly adequate for the analysis of experimental data, but problematic for observational data as Chiou, Hug and Høyland (2017) show. More specifically, when a $\lambda_{j}$ tends toward zero, then the predicted probability of choosing

[^5]either action approach $\frac{1}{2}$ and becomes equal in the limit. In a lab-experiment, where the two actions almost often only differ in their induced payoffs that are part of the utility differences, this is a logical consequence. In observational data, however, if an actor does not respond to utility differences, it is unlikely that she flips a coin to decide whether or not to sponsor a UNSC resolution. As Chiou, Hug and Høyland (2017) show, this unrealistic implication of equation 4, can be circumvented by introducing another parameter, namely $\tau$ which may be actor specific or subsume the same value for all actors (which is reflected in the following equation):
\[

$$
\begin{equation*}
r_{i j}=\frac{1}{1+\exp \left(\tau-\lambda_{j}\left(U_{i j}(R) \prod_{h \neq j}\left(1-r_{i h}\right)\right)\right)} \tag{5}
\end{equation*}
$$

\]

This formulation has as consequence that when $\lambda_{j}$ approaches $0 r_{i j}$ tends towards $1 /(1+\exp (\tau))$. As this effect is independent of any of the other players' action it also reflects non-strategic elements, like, for instance, the relative costs of the actions involved. $\sqrt{12}$

Other ways to deal with these problems for traditional estimators due to strategic interdependencies exist as well. A first way is to estimate a multivariate probit model of sponsorship decisions, which relegates the interdependencies into the error terms and estimates the correlations amongst these errors. ${ }^{[13}$ Building on the idea that interdependent decisions have many parallels in models with spatial dependencies, spatial regression approaches (e.g., Franzese, Hays and Cook, 2016) have also been proposed. ${ }^{14}$ We will start our empirical explorations with some of these commonly used approaches before presenting initial results based on our proposed estimator.

[^6]
## 4 Data

To construct the dataset for our empirical analysis we follow closely Hultman's (2013) approach, extend it, however, both along the temporal and substantive dimension. Regarding the temporal dimension we extend the time period covered to the post cold war period until 2014. In terms of the substantive coverage we do not only consider resolutions that establish a peacekeeping mission, but also subsequent ones that extend or change their mandate or even propose to abolish it ${ }^{15}$

As Hultman (2013) we use the UCDP/PRIO conflict data (restricted to intrastate and internationalized intrastate wars, see Gleditsch, Wallensteen, Eriksson, Sollenberg and Strand, 2002; Allansson, Melander and Themnér, 2017), and identified with Mullenbach's (2013) data which conflicts were the object of UNSC resolutions on UN peacekeeping missions. As Hultman (2013) we consider not only conflict years (as defined by the UCDP/PRIO conflict data Gleditsch et al., 2002; Allansson, Melander and Themnér, 2017), but also the three next years after the end of the conflict. For all retained resolutions $s^{16}$ we used Cockayne, Mikulaschek and Perry's (2010) data to identify their sponsors. ${ }^{17}$ In addition we consulted Dreher and Vreeland's (2011) complete list of resolutions debated in the UNSC to check whether any resolution had been introduced but failed to be adopted ${ }^{18}$

[^7]We use, as Hultman (2013), information on one-sided violence victim numbers and battle deaths from Eck and Hultman (2007) and Fjelde, Hultman, Schubiger, Cederman and Hug (2016), resp. Allansson, Melander and Themnér (2017). Following Stojek and Tir (2015) we use updated trade data from Barbieri, Keshk and Pollins (2009) and added information on colonial ties from Hensel (2014). The information on non-UN peacekeeping missions during the conflict years covered were gleaned from Mullenbach (2013). Figure 1 depicts the distribution of country-years as a function of how many UNSC members sponsored a resolution. Not surprisingly, the model category is a conflict-year with no sponsoring of a resolution. Two thirds of the conflict-years that see at least one resolution are of the "presidential" type, i.e. those that are implicitly sponsored by all UNSC members. The remaining third of resolutions is sponsored by between one and nine members of the UNSC.

## 5 Empirical results

We start our empirical analyses by first assessing how the various selected covariates affect sponsorship decisions without taking into account the interdependencies among UNSC members that are likely to exist. Consequently, we report in table 1 the results of fifteen logit models, each assessing what affects the sponsorship decisions of each of the fifteen members. ${ }^{19}$ We use commonly employed covariates, render them, however, more specific as we focus on explaining sponsor-

Sweden, the United Kingdom of Great Britain and Northern Ireland, the United States of America and Venezuela) vetoed by China (http://undocs.org/s/PV.3730); iii) draft resolution S/1999/201 on the extension of UNPREDEP (sponsored by Canada, France, Germany, Italy, the Netherlands, Slovenia, the United Kingdom of Great Britain and Northern Ireland and the United States of America) vetoed by China (http://undocs.org/s/PV.3982); iv) draft resolution S/2004/313 demanding to terminamte UNFICYP (sponsored by the United Kingdom of Great Britain and Northern Ireland and the United States of America) vetoed by Russia (http://undocs.org/S/PV.4947); v) draft resolution S/2009/310 demanding the extension of UNOMIG established in 1993 (sponsored by Austria, Croatia, France, Germany, Turkey, the United Kingdom of Great Britain and Northern Ireland and the United States of America) vetoed by Russia (http://undocs.org/S/PV.6143). None of these draft resolutions were voted upon, while a conflict was ongoing or in the three years after the end of the conflict.
${ }^{19}$ Regarding the non-permanent members we consider them as representatives of their regional groups (for a discussion of this see Scharioth, 2010; Dreher, Gould, Rablen and Vreeland, 2014; Vreeland and Dreher, 2014). We have coded in our data the information which country occupied a particular seat for non-permanent members, but refrain from using this information in our empirical analysis so far.

Figure 1: Sponsoring resolutions on civil wars

ship decisions of specific countries. ${ }^{20}$ As Hultman (2013) we find strong evidence that one-sided violence against the civilian population plays a significant role. For each member of the UNSC, an increasing number of victims increases the chances that it will sponsor a resolution. This effect is statistically significant for 6 members, three of which are permanent members. Similar identical effects we find for former colonies of Russia and the United Kingdom. All UNSC members are more likely to sponsor resolutions dealing with conflicts in the former countries, while the latter, i.e., former British colonies, are much less likely to see resolutions concerning them sponsored. While the former set of effects is statistically significant for all members, the latter are only significant for five of the fifteen members.

[^8]Table 1: Logit models

|  | permanent |  |  |  |  | AFR |  |  | ASIA |  | GRULAC |  | WEOG |  | CEIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | CHN | FRN | RUS | UKG | USA | 1 | 2 | 3 | 1 | 2 | 1 | 2 | 1 | 2 |  |
| (Intercept) | $\begin{gathered} 5.486 \\ (45.723) \end{gathered}$ | $\begin{gathered} -71.683 \\ (40.645) \end{gathered}$ | $\begin{gathered} 29.052 \\ (47.821) \end{gathered}$ | $\begin{gathered} -39.149 \\ (40.733) \end{gathered}$ | $\begin{array}{r} -64.912 \\ (42.413) \end{array}$ | $\begin{gathered} -24.429 \\ (42.711) \end{gathered}$ | $\begin{gathered} 5.633 \\ (44.458) \end{gathered}$ | $\begin{aligned} & -3.435 \\ & (44.019) \end{aligned}$ | $\begin{gathered} 6.120 \\ (44.169) \end{gathered}$ | $\begin{gathered} 19.096 \\ (44.946) \end{gathered}$ | $\begin{gathered} 20.013 \\ (44.774) \end{gathered}$ | $\begin{gathered} -19.526 \\ (45.925) \end{gathered}$ | $\begin{gathered} -9.093 \\ (40.293) \end{gathered}$ | $\begin{aligned} & -5.665 \\ & (41.780) \end{aligned}$ | $\begin{gathered} 15.042 \\ (42.819) \end{gathered}$ |
| $\log$ (victims one-sided violence +1 ) | $\begin{gathered} 0.115 \\ (0.063) \end{gathered}$ | $\begin{gathered} 0.130^{*} \\ (0.055) \end{gathered}$ | $\begin{gathered} 0.127^{*} \\ (0.059) \end{gathered}$ | $\begin{gathered} 0.112^{*} \\ (0.057) \end{gathered}$ | $\begin{gathered} 0.098 \\ (0.056) \end{gathered}$ | $\begin{gathered} 0.073 \\ (0.061) \end{gathered}$ | $\begin{gathered} 0.114 \\ (0.062) \end{gathered}$ | $\begin{gathered} 0.108 \\ (0.061) \end{gathered}$ | $\begin{gathered} 0.102 \\ (0.062) \end{gathered}$ | $\begin{gathered} 0.096 \\ (0.061) \end{gathered}$ | $\begin{gathered} 0.138^{*} \\ (0.061) \end{gathered}$ | $\begin{gathered} 0.129^{*} \\ (0.061) \end{gathered}$ | $\begin{gathered} 0.117^{*} \\ (0.057) \end{gathered}$ | $\begin{gathered} 0.092 \\ (0.058) \end{gathered}$ | $\begin{gathered} 0.109 \\ (0.059) \end{gathered}$ |
| victims one-sided violence missing | $\begin{array}{r} -0.676 \\ (0.663) \end{array}$ | $\begin{gathered} 0.195 \\ (0.426) \end{gathered}$ | $\begin{gathered} -0.777 \\ (0.667) \end{gathered}$ | $\begin{array}{r} -0.328 \\ (0.504) \end{array}$ | $\begin{gathered} -0.021 \\ (0.460) \end{gathered}$ | $\begin{gathered} -0.651 \\ (0.590) \end{gathered}$ | $\begin{gathered} -0.477 \\ (0.598) \end{gathered}$ | $\begin{gathered} -0.449 \\ (0.589) \end{gathered}$ | $\begin{array}{r} -0.098 \\ (0.554) \end{array}$ | $\begin{gathered} -0.615 \\ (0.613) \end{gathered}$ | $\begin{gathered} -0.093 \\ (0.551) \end{gathered}$ | $\begin{array}{r} -0.287 \\ (0.589) \end{array}$ | $\begin{gathered} -0.006 \\ (0.490) \end{gathered}$ | $\begin{array}{r} -0.246 \\ (0.527) \end{array}$ | $\begin{gathered} 0.078 \\ (0.513) \end{gathered}$ |
| $\log$ (imports +1 ) | $\begin{gathered} 0.458 \\ (0.457) \end{gathered}$ | $\begin{array}{r} -0.056 \\ (0.130) \end{array}$ | $\begin{gathered} -0.261 \\ (0.136) \end{gathered}$ | $\begin{gathered} -0.320^{*} \\ (0.132) \end{gathered}$ | $\begin{gathered} 0.240^{*} \\ (0.087) \end{gathered}$ | $\begin{array}{r} -0.198 \\ (0.235) \end{array}$ | $\begin{gathered} 0.196 \\ (0.203) \end{gathered}$ | $\begin{gathered} -0.074 \\ (0.285) \end{gathered}$ | $\begin{gathered} 0.384 \\ (0.345) \end{gathered}$ | $\begin{gathered} 0.224 \\ (0.522) \end{gathered}$ | $\begin{gathered} 0.037 \\ (0.137) \end{gathered}$ | $\begin{array}{r} -0.064 \\ (0.187) \end{array}$ | $\begin{array}{r} -0.014 \\ (0.115) \end{array}$ | $\begin{array}{r} -0.166 \\ (0.125) \end{array}$ | $\begin{gathered} 0.125 \\ (0.178) \end{gathered}$ |
| $\log$ (exports +1 ) | $\begin{array}{r} -0.674 \\ (0.435) \end{array}$ | $\begin{gathered} -0.032 \\ (0.170) \end{gathered}$ | $\begin{gathered} 0.076 \\ (0.109) \end{gathered}$ | $\begin{gathered} 0.153 \\ (0.158) \end{gathered}$ | $\begin{gathered} -0.481^{*} \\ (0.124) \end{gathered}$ | $\begin{gathered} 0.379^{*} \\ (0.182) \end{gathered}$ | $\begin{gathered} -0.261 \\ (0.264) \end{gathered}$ | $\begin{gathered} -0.127 \\ (0.247) \end{gathered}$ | $\begin{gathered} -0.450 \\ (0.400) \end{gathered}$ | $\begin{array}{r} -0.206 \\ (0.448) \end{array}$ | $\begin{array}{r} -0.079 \\ (0.134) \end{array}$ | $\begin{gathered} -0.099 \\ (0.163) \end{gathered}$ | $\begin{gathered} 0.087 \\ (0.128) \end{gathered}$ | $\begin{gathered} 0.087 \\ (0.139) \end{gathered}$ | $\begin{gathered} -0.517^{*} \\ (0.201) \end{gathered}$ |
| imports missing | $\begin{gathered} -1.286 \\ (1.878) \end{gathered}$ | $\begin{gathered} -0.220 \\ (0.940) \end{gathered}$ | $\begin{gathered} -1.270 \\ (0.929) \end{gathered}$ | $\begin{gathered} -0.521 \\ (0.958) \end{gathered}$ | $\begin{gathered} 0.523 \\ (0.947) \end{gathered}$ | $\begin{gathered} 1.507 \\ (0.847) \end{gathered}$ | $\begin{gathered} -0.698 \\ (0.673) \end{gathered}$ | $\begin{gathered} 0.676 \\ (1.026) \end{gathered}$ | $\begin{gathered} 3.264 \\ (1.974) \end{gathered}$ | $\begin{array}{r} -1.487 \\ (1.810) \end{array}$ | $\begin{gathered} 0.293 \\ (0.741) \end{gathered}$ | $\begin{gathered} 0.220 \\ (0.596) \end{gathered}$ | $\begin{gathered} 0.393 \\ (0.426) \end{gathered}$ | $\begin{array}{r} -0.714 \\ (0.653) \end{array}$ | $\begin{gathered} -2.629 \\ (2.938) \end{gathered}$ |
| exports missing |  |  | $\begin{gathered} 0.124 \\ (0.797) \end{gathered}$ |  |  | $\begin{gathered} -0.919 \\ (0.833) \end{gathered}$ | $\begin{gathered} 0.272 \\ (0.656) \end{gathered}$ | $\begin{gathered} -0.621 \\ (1.021) \end{gathered}$ | $\begin{gathered} -3.881^{*} \\ (1.890) \end{gathered}$ |  | $\begin{gathered} 0.114 \\ (0.792) \end{gathered}$ | $\begin{gathered} 0.425 \\ (0.554) \end{gathered}$ |  |  | $\begin{gathered} 1.735 \\ (2.951) \end{gathered}$ |
| FRA colony | $\begin{gathered} -0.383 \\ (0.428) \end{gathered}$ | $\begin{gathered} -0.176 \\ (0.376) \end{gathered}$ | $\begin{array}{r} -0.328 \\ (0.427) \end{array}$ | $\begin{gathered} -0.634 \\ (0.396) \end{gathered}$ | $\begin{gathered} -0.477 \\ (0.381) \end{gathered}$ | $\begin{array}{r} -0.584 \\ (0.417) \end{array}$ | $\begin{gathered} -0.246 \\ (0.417) \end{gathered}$ | $\begin{array}{r} -0.452 \\ (0.413) \end{array}$ | $\begin{gathered} -0.172 \\ (0.401) \end{gathered}$ | $\begin{gathered} -0.319 \\ (0.412) \end{gathered}$ | $\begin{gathered} -0.398 \\ (0.421) \end{gathered}$ | $\begin{array}{r} -0.266 \\ (0.411) \end{array}$ | $\begin{gathered} -0.310 \\ (0.379) \end{gathered}$ | $\begin{gathered} -0.263 \\ (0.396) \end{gathered}$ | $\begin{array}{r} -0.339 \\ (0.410) \end{array}$ |
| RUS colony | $\begin{gathered} 2.637^{*} \\ (0.925) \end{gathered}$ | $\begin{gathered} 1.842^{*} \\ (0.667) \end{gathered}$ | $\begin{gathered} 2.684^{*} \\ (0.728) \end{gathered}$ | $\begin{gathered} 1.866^{*} \\ (0.690) \end{gathered}$ | $\begin{gathered} 2.119^{*} \\ (0.688) \end{gathered}$ | $\begin{aligned} & 2.329^{*} \\ & (0.753) \end{aligned}$ | $\begin{aligned} & 3.260^{*} \\ & (0.784) \end{aligned}$ | $\begin{gathered} 2.398^{*} \\ (0.780) \end{gathered}$ | $\begin{gathered} 2.750^{*} \\ (0.832) \end{gathered}$ | $\begin{gathered} 3.640^{*} \\ (0.988) \end{gathered}$ | $\begin{gathered} 2.613^{*} \\ (0.737) \end{gathered}$ | $\begin{gathered} 2.136^{*} \\ (0.716) \end{gathered}$ | $\begin{gathered} 2.187^{*} \\ (0.671) \end{gathered}$ | $\begin{aligned} & 2.139^{*} \\ & (0.696) \end{aligned}$ | $\begin{gathered} 2.709^{*} \\ (0.722) \end{gathered}$ |
| UKG colony | $\begin{array}{r} -0.743 \\ (0.451) \end{array}$ | $\begin{gathered} -1.103^{*} \\ (0.413) \end{gathered}$ | $\begin{gathered} -0.910^{*} \\ (0.450) \end{gathered}$ | $\begin{gathered} -0.890^{*} \\ (0.437) \end{gathered}$ | $\begin{gathered} -0.789 \\ (0.405) \end{gathered}$ | $\begin{array}{r} -0.955^{*} \\ (0.448) \end{array}$ | $\begin{gathered} -0.507 \\ (0.431) \end{gathered}$ | $\begin{gathered} -0.790 \\ (0.440) \end{gathered}$ | $\begin{array}{r} -0.770 \\ (0.445) \end{array}$ | $\begin{gathered} -0.641 \\ (0.443) \end{gathered}$ | $\begin{gathered} -0.580 \\ (0.431) \end{gathered}$ | $\begin{array}{r} -0.853 \\ (0.446) \end{array}$ | $\begin{gathered} -0.958^{*} \\ (0.416) \end{gathered}$ | $\begin{array}{r} -0.695 \\ (0.427) \end{array}$ | $\begin{gathered} -0.572 \\ (0.430) \end{gathered}$ |
| year | $\begin{array}{r} -0.003 \\ (0.023) \end{array}$ | $\begin{gathered} 0.035 \\ (0.020) \end{gathered}$ | $\begin{array}{r} -0.016 \\ (0.024) \end{array}$ | $\begin{gathered} 0.019 \\ (0.020) \end{gathered}$ | $\begin{gathered} 0.032 \\ (0.021) \end{gathered}$ | $\begin{gathered} 0.011 \\ (0.021) \end{gathered}$ | $\begin{array}{r} -0.004 \\ (0.022) \end{array}$ | $\begin{gathered} 0.000 \\ (0.022) \end{gathered}$ | $\begin{gathered} -0.004 \\ (0.022) \end{gathered}$ | $\begin{gathered} -0.010 \\ (0.022) \end{gathered}$ | $\begin{array}{r} -0.011 \\ (0.022) \end{array}$ | $\begin{gathered} 0.008 \\ (0.023) \end{gathered}$ | $\begin{gathered} 0.003 \\ (0.020) \end{gathered}$ | $\begin{gathered} 0.001 \\ (0.021) \end{gathered}$ | $\begin{gathered} -0.009 \\ (0.021) \end{gathered}$ |
| $\log$ (number of battle deaths (best est.) +1 ) | $\begin{gathered} 0.148 \\ (0.124) \end{gathered}$ | $\begin{gathered} 0.167 \\ (0.111) \end{gathered}$ | $\begin{gathered} 0.137 \\ (0.117) \end{gathered}$ | $\begin{gathered} 0.106 \\ (0.115) \end{gathered}$ | $\begin{gathered} 0.049 \\ (0.117) \end{gathered}$ | $\begin{gathered} 0.216 \\ (0.122) \end{gathered}$ | $\begin{gathered} 0.079 \\ (0.121) \end{gathered}$ | $\begin{gathered} 0.099 \\ (0.122) \end{gathered}$ | $\begin{gathered} 0.156 \\ (0.123) \end{gathered}$ | $\begin{gathered} 0.110 \\ (0.124) \end{gathered}$ | $\begin{gathered} 0.041 \\ (0.121) \end{gathered}$ | $\begin{gathered} 0.150 \\ (0.121) \end{gathered}$ | $\begin{gathered} 0.114 \\ (0.112) \end{gathered}$ | $\begin{gathered} 0.128 \\ (0.115) \end{gathered}$ | $\begin{gathered} 0.053 \\ (0.121) \end{gathered}$ |
| number of battle deaths (best est.) missing | $\begin{gathered} 0.386 \\ (1.225) \end{gathered}$ | $\begin{gathered} 0.301 \\ (0.967) \end{gathered}$ | $\begin{gathered} -0.290 \\ (0.996) \end{gathered}$ | $\begin{gathered} -0.085 \\ (0.984) \end{gathered}$ | $\begin{array}{r} -0.301 \\ (0.992) \end{array}$ | $\begin{gathered} 0.671 \\ (1.216) \end{gathered}$ | $\begin{gathered} 0.124 \\ (1.214) \end{gathered}$ | $\begin{gathered} 0.292 \\ (1.219) \end{gathered}$ | $\begin{gathered} 0.416 \\ (1.219) \end{gathered}$ | $\begin{gathered} 0.383 \\ (1.218) \end{gathered}$ | $\begin{gathered} 0.032 \\ (1.219) \end{gathered}$ | $\begin{gathered} 0.536 \\ (1.246) \end{gathered}$ | $\begin{gathered} 0.651 \\ (1.199) \end{gathered}$ | $\begin{gathered} 0.595 \\ (1.208) \end{gathered}$ | $\begin{gathered} 0.075 \\ (1.224) \end{gathered}$ |
| conflict ongoing | $\begin{array}{r} -0.591 \\ (1.094) \end{array}$ | $\begin{array}{r} -0.945 \\ (0.825) \end{array}$ | $\begin{array}{r} -1.169 \\ (0.836) \end{array}$ | $\begin{array}{r} -0.922 \\ (0.829) \end{array}$ | $\begin{array}{r} -0.746 \\ (0.832) \\ \hline \end{array}$ | $\begin{gathered} -0.558 \\ (1.090) \end{gathered}$ | $\begin{gathered} -0.469 \\ (1.094) \end{gathered}$ | $\begin{array}{r} -0.447 \\ (1.087) \end{array}$ | $\begin{array}{r} -0.460 \\ (1.089) \end{array}$ | $\begin{gathered} -0.453 \\ (1.088) \end{gathered}$ | $\begin{gathered} -0.374 \\ (1.098) \end{gathered}$ | $\begin{array}{r} -0.436 \\ (1.104) \end{array}$ | $\begin{array}{r} -0.049 \\ (1.082) \end{array}$ | $\begin{array}{r} -0.165 \\ (1.082) \end{array}$ | $\begin{array}{r} -0.190 \\ (1.087) \end{array}$ |
| other third party intervention | $\begin{array}{r} -0.021 \\ (0.103) \end{array}$ | $\begin{gathered} 0.007 \\ (0.081) \end{gathered}$ | $\begin{gathered} -0.038 \\ (0.104) \end{gathered}$ | $\begin{gathered} -0.002 \\ (0.086) \end{gathered}$ | $\begin{gathered} -0.035 \\ (0.088) \end{gathered}$ | $\begin{gathered} 0.017 \\ (0.088) \end{gathered}$ | $\begin{array}{r} -0.026 \\ (0.103) \end{array}$ | $\begin{gathered} 0.036 \\ (0.086) \end{gathered}$ | $\begin{array}{r} -0.022 \\ (0.103) \end{array}$ | $\begin{array}{r} -0.029 \\ (0.103) \end{array}$ | $\begin{gathered} -0.017 \\ (0.103) \end{gathered}$ | $\begin{array}{r} -0.023 \\ (0.102) \end{array}$ | $\begin{array}{r} -0.052 \\ (0.103) \end{array}$ | $\begin{gathered} -0.037 \\ (0.104) \end{gathered}$ | $\begin{array}{r} -0.045 \\ (0.104) \end{array}$ |
| number of PKO resolutions | $\begin{gathered} -0.007 \\ (0.057) \end{gathered}$ | $\begin{gathered} -0.041 \\ (0.050) \end{gathered}$ | $\begin{array}{r} -0.000 \\ (0.055) \end{array}$ | $\begin{array}{r} -0.051 \\ (0.053) \end{array}$ | $\begin{array}{r} -0.029 \\ (0.052) \end{array}$ | $\begin{array}{r} -0.020 \\ (0.055) \end{array}$ | $\begin{array}{r} -0.020 \\ (0.057) \end{array}$ | $\begin{array}{r} -0.012 \\ (0.056) \end{array}$ | $\begin{array}{r} -0.010 \\ (0.056) \end{array}$ | $\begin{array}{r} -0.000 \\ (0.056) \end{array}$ | $\begin{gathered} 0.013 \\ (0.055) \end{gathered}$ | $\begin{array}{r} -0.012 \\ (0.055) \end{array}$ | $\begin{array}{r} -0.008 \\ (0.050) \end{array}$ | $\begin{gathered} -0.005 \\ (0.053) \end{gathered}$ | $\begin{array}{r} -0.002 \\ (0.054) \end{array}$ |
| Americas | $\begin{array}{r} -0.301 \\ (0.495) \end{array}$ | $\begin{array}{r} -0.507 \\ (0.930) \end{array}$ | $\begin{gathered} 0.697 \\ (1.016) \end{gathered}$ | $\begin{array}{r} -0.238 \\ (0.967) \end{array}$ | $\begin{gathered} 0.402 \\ (0.524) \end{gathered}$ | $\begin{gathered} -0.630 \\ (0.511) \end{gathered}$ | $\begin{gathered} -0.074 \\ (0.540) \end{gathered}$ | $\begin{array}{r} -0.456 \\ (0.497) \end{array}$ | $\begin{gathered} -0.369 \\ (0.490) \end{gathered}$ | $\begin{array}{r} -0.397 \\ (0.489) \end{array}$ | $\begin{gathered} -0.402 \\ (0.558) \end{gathered}$ | $\begin{array}{r} -0.492 \\ (0.576) \end{array}$ | $\begin{gathered} -0.704 \\ (0.530) \end{gathered}$ | $\begin{gathered} 0.176 \\ (0.752) \end{gathered}$ | $\begin{gathered} 0.202 \\ (0.784) \end{gathered}$ |
| Asia | $\begin{gathered} -2.276^{*} \\ (0.842) \end{gathered}$ | $\begin{array}{r} -2.089^{*} \\ (0.461) \end{array}$ | $\begin{gathered} -1.649^{*} \\ (0.538) \end{gathered}$ | $\begin{array}{r} -1.967^{*} \\ (0.520) \end{array}$ | $\begin{gathered} -2.384^{*} \\ (0.510) \end{gathered}$ | $\begin{array}{r} -2.335^{*} \\ (0.583) \end{array}$ | $\begin{gathered} -2.830^{*} \\ (0.596) \end{gathered}$ | $\begin{gathered} -2.211^{*} \\ (0.621) \end{gathered}$ | $\begin{gathered} -2.806^{*} \\ (0.780) \end{gathered}$ | $\begin{gathered} -3.537^{*} \\ (0.936) \end{gathered}$ | $\begin{gathered} -2.402^{*} \\ (0.550) \end{gathered}$ | $\begin{gathered} -1.918^{*} \\ (0.521) \end{gathered}$ | $\begin{array}{r} -2.283^{*} \\ (0.480) \end{array}$ | $\begin{gathered} -2.071^{*} \\ (0.505) \end{gathered}$ | $\begin{gathered} -2.141^{*} \\ (0.547) \end{gathered}$ |
| Europe | $\begin{gathered} -1.655^{*} \\ (0.779) \end{gathered}$ | $\begin{array}{r} -0.647 \\ (0.572) \end{array}$ | $\begin{gathered} 0.611 \\ (0.994) \end{gathered}$ | $\begin{gathered} -0.065 \\ (0.591) \end{gathered}$ | $\begin{gathered} -0.203 \\ (0.568) \end{gathered}$ | $\begin{gathered} -1.578^{*} \\ (0.666) \end{gathered}$ | $\begin{array}{r} -1.538 \\ (0.819) \end{array}$ | $\begin{gathered} -1.803^{*} \\ (0.771) \end{gathered}$ | $\begin{gathered} -1.800^{*} \\ (0.798) \end{gathered}$ | $\begin{gathered} -1.460^{*} \\ (0.694) \end{gathered}$ | $\begin{array}{r} -1.176 \\ (0.692) \end{array}$ | $\begin{gathered} -1.358 \\ (0.823) \end{gathered}$ | $\begin{gathered} -0.933 \\ (0.545) \end{gathered}$ | $\begin{array}{r} -0.113 \\ (0.591) \end{array}$ | $\begin{gathered} 0.395 \\ (0.739) \end{gathered}$ |
| Oceania | $\begin{gathered} -14.311 \\ (742.946) \\ \hline \end{gathered}$ | $\begin{array}{r} -13.263 \\ (750.677) \end{array}$ | $\begin{aligned} & -13.213 \\ & (754.392) \end{aligned}$ | $\begin{array}{r} -12.686 \\ (756.510) \\ \hline \end{array}$ | $\begin{aligned} & -13.429 \\ & (752.226) \\ & \hline \end{aligned}$ | $\begin{array}{r} -12.939 \\ (754.315) \end{array}$ | $\begin{aligned} & -13.295 \\ & (751.288) \\ & \hline \end{aligned}$ | $\begin{gathered} -13.478 \\ (756.356) \end{gathered}$ | $\begin{array}{r} -15.061 \\ (658.581) \\ \hline \end{array}$ | $\begin{gathered} -15.086 \\ (750.320) \end{gathered}$ | $\begin{gathered} -13.645 \\ (756.103) \end{gathered}$ | $\begin{array}{r} -13.119 \\ (754.698) \\ \hline \end{array}$ | $\begin{gathered} -13.287 \\ (757.035) \end{gathered}$ | $\begin{gathered} -13.521 \\ (757.026) \\ \hline \end{gathered}$ | $\begin{array}{r} -13.981 \\ (755.917) \end{array}$ |
| $N$ | 1175 | 1175 | 1175 | 1175 | 1175 | 1175 | 1175 | 1175 | 1175 | 1175 | 1175 | 1175 | 1175 | 1175 | 1175 |
| AIC | 411.879 | 507.657 | 442.974 | 470.135 | 478.595 | 433.236 | 420.441 | 429.991 | 422.866 | 421.832 | 434.239 | 425.496 | 484.016 | 458.252 | 441.204 |
| BIC | 797.125 | 892.903 | 848.496 | 855.381 | 863.841 | 838.758 | 825.962 | 835.513 | 828.388 | 807.078 | 839.760 | 831.018 | 869.262 | 843.498 | 846.725 |
| $\log L$ | -129.939 | -177.829 | -141.487 | -159.068 | -163.298 | -136.618 | -130.220 | -134.996 | -131.433 | -134.916 | -137.119 | -132.748 | -166.008 | -153.126 | -140.602 |

Regarding trade relations we fail to find any statistically significant effects, with only few exceptions. The United Kingdom is much less likely to sponsor a resolution on countries from which it imports a large amount of goods. For the United States, to the contrary, this effect is positive. This same country also sponsors significantly less frequently resolutions on countries towards which it exports a large amount of goods. A similar negative effect for exports also appears for the Central European member of the UNSC, while the same effect is significantly positive for the first representative for Africa. Contrary to much of the literature we do not find any effects for the number of battle deaths, whether a conflict is ongoing or has attracted other third party interventions. Also, while almost systematically an increaseing number of resolutons dealing with a conflict decreases the chances of another sponsorship decision, this effect fails to reach statistical significance. As much of the literature, however, we find that sponsoring decisions are heavily affected by the continent on which the conflict occurs. Compared to Africa (base category), conflicts in Asia and to some extent Europe, see much fewer resolutions being sponsored.

Consequently, these initial results based on a set of logit models underline the importance of taking member-specific variations into account. When doing so some results reported in the literature fail to materialize, while others appear to have different effects for different members 21

[^9]|  |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

## Accounting for interdependencies

A simple way to take into account the interdependencies of sponsoring decisions, though theoretically uninformed as discussed above, is to estimate models that allow for correlations in the error terms. Table 2 reports on the results of a multivariate probit model. ${ }^{22}$ The results from this model echo some of those obtained based on simple logit models (table 1), render them, however, also more specific. Hence, the extent of one-sided violence appears still to increase the chances of a sponsoring decision, but only for few members do we find a statistically significant effect. Similarly, the effects of trade relations appear less important, as only the exports of the USA to a conflict country significantly decrease the chances of this UNSC member to sponsor a resolution. Similarly, while we still find positive effects for former Russian colonies, and negative ones for the British colonies, fewer of these effects reach statistical significance. And as before we find no effect for the number of battle deaths and other conflict-related variables, while the differences across continents largely survive. ${ }^{23}$

## Results from the strategic estimator

Finally, in table 3 we report the results from a reduced specification of the previous empirical models but as estimated with our proposed QRE-estimator. More specifically we focus on three sets of variables that, according to our previously reported results, appear to consistently affect the likelihood of a sponsoring decision, namely the trade relations with the country in conflict, the latter's colonial heritage and the continent on which the conflict takes place..$^{24}$

[^10]Table 3: Strategic QRE estimator with bootstrapped errors

Table 3 reports our results. Starting with the differences across continents (which we assume to have identical effects on all UNSC members, given the empirical results discussed above), we find the well-established results from the literature. Compared to conflicts in Africa, those in Asia are much less likely to see a resolution for a peace-keeping mission sponsored by a UNSC member. We also find a strong negative and significant coefficient for conflicts in Oceania, but this is likely to be the consequence of an issue of quasi-complete separation in the data ${ }^{25}$

Regarding the effects of trade relations between a UNSC member and the country in conflict, we find much more nuanced results. While the multivariate probit model (see table 2), which takes the interdependencies naively into account, suggested only a marginal negative effect of exports on the USA's sponsoring decision, we now find much more varied effects. Hence, increasing imports from a country in conflict appears to diminish the chances that China or France sponsors a resolution, while at the same time increasing these chances for the occupant of the third African seat. Regarding exports, France is affected positively in its sponsoring decision, while the two Asian UNSC members, the representative from Central Europe and the occupants of the second and third African seat are less likely to sponsor a resolution when the conflict country is an important export market.

Finally, regarding the effect of the colonial history of the country in conflict we find again more nuanced results. While former Russian colonies in conflict are much more likely to be subject of a sponsoring decision by almost all UNSC members, our estimator suggests that at least the United States is much less likely to do so. Similarly, while former British colonies appear overall less frequently the object of a sponsoring decision, it is important to note that the coefficient for the United Kingdom now is positive and statistically significant.

## 6 Conclusion

Peacekeeping missions by the United Nations have become more prominent and their consequences the object of various research efforts. A conundrum in such studies is that the UNSC chooses in which conflicts to intervene, and our under-

[^11]standing of these decisions is still scant. The effort to understand better when the UNSC intervenes is hampered by the fact that resolutions establishing peacekeeping missions are often adopted unanimously, which is the consequence of an increasing vetting effort before a draft resolution is even submitted. Thus, the literature has steered away from the question who supports particular peacekeeping missions to studying more broadly what characteristics of conflicts affect the establishment of peacekeeping missions.

A consequence of this is also that explanatory variables are often quite aggregate like the colonial ties with any permanent member of the UNSC or their aggregate trade relations. Following other forays in the literature we argue that an actor-specific perspective is warranted to gain a better understanding of the adoption of peacekeeping missions. To do so we innovate along two dimensions. First, given the development in the operation of the UNSC we take a step back and consider sponsoring decisions to gain an understanding of what affects the support of peacekeeping missions. Second, as such sponsorship decisions are highly interdependent, we propose empirical strategies that take these interdependencies into account.

This allows us to highlight that commonly used strategies that mostly rely on relegating interdependencies in sponsorship decisions into the error term (like hierarchical models with random effects or multivariate probit and seemingly unrelated regression models) come to quite different results than those obtained from approaches that explicitly model these interdependencies. Substantively, and quite contrary to the findings in the extant literature, we find that colonial ties matter for resolutions on peacekeeping missions. They matter, however, differently, namely such that former British colonies almost uniformly much less likely attract sponsorships, while former Russian colonies increase the chances of a sponsorship decision only for some countries. Similarly, we find that trade relations affect only some countries in their sponsorship decisions, even among the permanent members. Finally, as other studies we find that the continent on which a conflict takes place is systematically related to sponsoring decisions.

Our initial results vindicate our two-pronged research strategy to better understand the adoption of peacekeeping missions. As sponsorship decisions are the first step, information on which UNSC members support a resolution is a valuable piece of information. As our results on the effect of one-sided violence
shows, these sponsorship decisions are similarly affected as the adoption of a resolution on the establishment of a peacekeeping mission. Using this more disaggregated and actor-specific approach, and taking the implied interdependencies into account allows us also to resolve some puzzles in the literature. While many scholars argue that colonial ties should mattter, few find empirical evidence for this claim. Our results nicely show that not all colonial ties matter in the same way for all UNSC members. While former British colonies are generally less likely to be the object of a resolution establishing a peacekeeping mission, only some members sponsor with higher probability resolutions dealing with former Russian colonies. Similarly, trade relations have different effects with some permanent UNSC members appearing to take into account this element in their sponsorship decisions.

Consequently, we believe that much headway in understanding UN peacekeeping missions can be achieved by taking sponsorship decisions into account and by addressing the implied interdependencies among these decisions. We still need to demonstrate more fully that our proposed empirical approach is viable and leads to the correct answers. We are confident, however, that this is the case and that our approach is amenable to many other situations in which actors take simultaneous decisions in an interdependent fashion.

## Appendix

In table 4 we list all the peacekeeping missions covered in our analysis, while table 5 provides a list of all conflicts. Table 6 offers descriptive statistics of the variables used in our analyses. Table 7 reports the results based on commonly used hierarchical logit models with random effects either at the conflict (1st model) or the conflict and conflict location level (2nd model). Tables 8 and 9 report the results from an implementation of (e Marshall, 2013)stimator to take spatial interdependencies into account. Table 10 reports the variance-covariance matrix of the error terms from the model reported in table 2. Table 11 reports the results of a replication of this multivariate model, under the assumption that all independent variables have the same effects for all UNSC members, while allowing the intercepts to vary. The corresponding variance-covariance matrix of the error terms appears in table 12 Finally in tables 13 and 14 we report the results first of the same model as the one reported in table 3, however, with standard errors derived from the Hessian. We report the same standard errors also in table 14 , where we allow the effects of the continents to vary across UNSC members.

| ID | ConflictID | Location | Side A | Side(s) B | Start year |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 46 | 205 | Iran | Government of Iran | KDPI | 1946 |
| 224 | 209 | Philippines | Government of Philippines | CPP | 1946 |
| 70 | 218 | India, Pakistan | Government of India | Government of Pakistan | 1948 |
| 502 | 220 | Paraguay | Government of Paraguay | Military faction (forces of Andres Rodriguez) | 1947 |
| 95 | 221 | Myanmar (Burma) | Government of Myanmar (Burma) | KNU | 1948 |
| 206 | 222 | Myanmar (Burma) | Government of Myanmar (Burma) | ABSDF | 1948 |
| 330 | 223 | Myanmar (Burma) | Government of Myanmar (Burma) | RSO | 1948 |
| 84 | 224 | Myanmar (Burma) | Government of Myanmar (Burma) | BMA / NMSP | 1948 |
| 68 | 227 | India | Government of India | PWG / CPI-Maoist / MCC, PWG / CPI-ML-J, MCC, PWG | 1948 |
| 464 | 230 | Yemen (North Yemen) | Government of Yemen (North Yemen) | AQAP | 1948 |
| 205 | 231 | Myanmar (Burma) | Government of Myanmar (Burma) | KIO | 1949 |
| 230 | 233 | Guatemala | Government of Guatemala | URNG | 1949 |
| 55 | 234 | Israel | Government of Israel | PNA / Fatah / Hamas / Fatah, Hamas, PIJ, PRC /Fatah, Hamas, PIJ <br> Hamas, PIJ / PIJ | 1948 |
| 189 | 251 | India | Government of India | NSCN-IM | 1955 |
| 85 | 253 | Myanmar (Burma) | Government of Myanmar (Burma) | KNPP | 1957 |
| 51 | 259 | Iraq | Government of Iraq | SCIRI / Ansar al-Islam, IS, RJF, al-Mahdi Army / IS, al-Mahdi Army / IS / Ansar al-Islam, IS / Ansar al-Islam, IS, alMahdi Army / Ansar alIslam, IS, RJF | 1958 |
| 524 | 260 | Lebanon | Government of Lebanon | Forces of Michel Aoun, Lebanese Forces / Forces of Michel Aoun | 1958 |
| 539 | 262 | Laos | Government of Laos | LRM | 1959 |
| 87 | 264 | Myanmar (Burma) | Government of Myanmar (Burma) | RCSS / MTA / RCSS, SSPP | 1959 |
| 821 | 265 | DR Congo (Zaire) | Government of DR Congo (Zaire) | Kata Katanga | 1961 |


| 513 | 267 | Ethiopia | Government of Ethiopia | EPRDF, Military faction (forces of Amsha Desta and Merid Negusie) / EPRDF, Military faction (Harar garrison) | 1960 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 100 | 269 | Nepal | Government of Nepal | CPN-M | 1960 |
| 173 | 271 | Iraq | Government of Iraq | PUK / KDP, PUK | 1961 |
| 514 | 275 | Ethiopia | Government of Ethiopia | EPLF | 1961 |
| 27 | 283 | DR Congo (Zaire) | Government of DR Congo (Zaire) | AFDL / CNDP / PARCFAAL / MLC, RCD / APCLS, PARC-FAAL / RCD / M23, PARC-FAAL | 1964 |
| 31 | 287 | Burundi | Government of Burundi | CNDD / CNDD, Frolina, Palipehutu-FNL / Palipehutu / PalipehutuFNL / CNDD, CNDDFDD, Palipehutu-FNL / CNDD-FDD, PalipehutuFNL | 1965 |
| 26 | 288 | Chad | Government of Chad | FARF, MDD / CNR, CSNPD, FNT, MDD / CNR, CSNPD, FNT / FUCD, RAFD, UFDD / UFR / Islamic Legion, MOSANAT, Revolutionary Forces of 1 April / FARF / MDJT / Islamic Legion, MPS / MDD, Military faction (forces of Maldoum Bada Abbas) / FUCD | 1966 |
| 1 | 289 | Colombia | Government of Colombia | ELN, FARC / FARC / ELN, EPL, FARC | 1964 |
| 5 | 292 | Peru | Government of Peru | Sendero Luminoso / MRTA, Sendero Luminoso | 1963 |
| 615 | 294 | Cambodia (Kampuchea), Thailand | Government of Cambodia (Kampuchea) | Government of Thailand | 1975 |
| 432 | 297 | Nigeria | Government of Nigeria | Jama'atu Ahlis Sunna Lidda'awati wal-Jihad | 1966 |
| 517 | 298 | South Africa | Government of South Africa |  | 1966 |
| 987 | 299 | Syria | Government of Syria | Syrian insurgents | 1966 |
| 102 | 300 | Cambodia (Kampuchea) | Government of Cambodia (Kampuchea) | KR / FUNCINPEC, KR / FUNCINPEC, KPNLF, KR / KPNLF, KR | 1967 |
| 869 | 307 | Guinea | Government of Guinea | RFDG | 2000 |
| 104 | 308 | Philippines | Government of Philippines | ASG, MILF / ASG, MNLF / ASG / ASG, MILF, MNLF - HM / MNLF / MILF / ASG, MILF, MNLF - NM / ASG, BIFM / ASG, BIFM, MNLF NM / MILF, MNLF | 1970 |
| 44 | 309 | Sudan | Government of Sudan | NDA, SPLM/A / SPLM/A / NRF, SLM/A, SLM/A MM / JEM, SLM/A-Unity / JEM, SLM/A, SPLM/A / Darfur Joint Resistance Forces, SARC, SRF / SRF / SLM/A / JVP | 1971 |
| 29 | 314 | Uganda | Government of Uganda | ADF, LRA, WNBF / ADF, LRA, UNRF II / UPA / LRA / ADF / LRA, UPA / ADF, LRA | 1971 |
| 503 | 315 | United Kingdom | Government of United Kingdom | PIRA / RIRA | 1970 |
| 543 | 316 | El Salvador | Government of El Salvador | FMLN | 1972 |
| 530 | 322 | Bangladesh | Government of Bangladesh | JSS/SB | 1975 |
| 520 | 324 | Iran, Iraq | Government of Iran | ???? | 1972 |
| 405 | 325 | Pakistan | Government of Pakistan | BLA, Baloch Ittehad / BLA / BLA, BRA / BLA, BLF, BRA | 1973 |
| 39 | 326 | Eritrea | Government of Eritrea | EIJM - AS | 1993 |
| 154 | 327 | Angola | Government of Angola | UNITA | 1975 |
| 37 | 329 | Ethiopia | Government of Ethiopia | AIAI, ONLF / ONLF | 1964 |
| 227 | 330 | Indonesia | Government of Indonesia | Fretilin | 1975 |
| 518 | 331 | Morocco | Government of Morocco | POLISARIO | 1975 |
| 157 | 332 | Mozambique | Government of Mozambique | Renamo | 1977 |
| 63 | 333 | Afghanistan | Government of Afghanistan | Jam'iyyat-i $\quad$ Islami-yi Afghanistan, Taleban, UIFSA / UIFSA / Hizb-i Islami-yi Afghanistan, Hizb-i Wahdat, Junbish-i Milli-yi Islami / Hizb-i Islami-yi Afghanistan, Hizb-i Wahdat, Junbish-i Milli-yi Islami, Taleban | 1975 |


| 394 | 333 | Afghanistan | Government of Afghanistan | Hizb-i Islami-yi <br> Afghanistan, Taleban <br> / Taleban Hizb-i <br> Islami-yi Afghanistan <br> / Hizb-i Islami-yi <br> Afghanistan, Hizb-i <br> Islami-yi Afghanistan <br> - Khalis faction, Hizb-  <br> i Wahdat, Jam'iyyat-i <br> Islami-yi Afghanistan, <br> Military faction (forces of  <br> Shahnawaz Tanay)  | 1975 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 76 | 335 | India | Government of India | ATTF, NLFT / ATTF / NLFT | 1979 |
| 544 | 336 | Nicaragua | Government of Nicaragua | Contras/FDN | 1974 |
| 33 | 337 | Somalia | Government of Somalia | USC/SNA / ARS/UIC ARS/UIC, Al-Shabaab Al-Shabaab, Hizbul Islam / SNM, SPM / Al-Shabaab / SRRC / SNM, SPM, USC/SSA / SNM, SPM, USC/SNA, USC/SSA | 1982 |
| 48 | 338 | Iran | Government of Iran | $\begin{aligned} & \text { MEK / Jondullah, PJAK / } \\ & \text { PJAK } \end{aligned}$ | 1972 |
| 739 | 341 | Liberia | Government of Liberia | LURD / LURD, MODEL / INPFL, NPFL | 1980 |
| 516 | 345 | South Africa | Government of South Africa |  | 1978 |
| 71 | 347 | India | Government of India | PLA / UNLF / PLA, UNLF / KCP, PREPAK / KCP, PREPAK, UNLF | 1979 |
| 191 | 351 | India | Government of India | Sikh insurgents | 1981 |
| 99 | 352 | Sri Lanka | Government of Sri Lanka | LTTE / EPRLF, LTTE | 1975 |
| 50 | 354 | Turkey | Government of Turkey | PKK | 1983 |
| 538 | 356 | Laos, Thailand | Government of Laos | ???? | 1982 |
| 501 | 357 | Suriname | Government of Suriname | ???? | 1986 |
| 507 | 358 | Togo | Government of Togo | ???? | 1986 |
| 525 | 359 | South Yemen | Government of South Yemen | ???? | 1986 |
| 506 | 360 | Burkina Faso | Government of Burkina Faso | ???? | 1987 |
| 509 | 361 | Chad, Libya | Government of Chad | ???? | 1987 |
| 73 | 364 | India | Government of India | Kashmir insurgents | 1984 |
| 69 | 365 | India | Government of India | ULFA | 1983 |
| 719 | 366 | Indonesia | Government of Indonesia | GAM | 1989 |
| 546 | 367 | Panama | Government of Panama | Military faction (forces of Mois's Giroldi) | 1989 |
| 545 | 368 | Panama, United States of America | Government of Panama | Government of United States of America | 1989 |
| 108 | 369 | Papua New Guinea | Government of Papua New Guinea | BRA | 1989 |
| 504 | 370 | Rumania | Government of Rumania | Military faction (forces of Nicolae Ceausescu), NSF | 1989 |
| 1136 | 371 | Iraq, Kuwait | Government of Iraq | Government of Kuwait | 1990 |
| 260 | 372 | Mali | Government of Mali | FIAA / ATNMC / CMA / MPA | 1990 |
| 264 | 373 | Niger | Government of Niger | CRA | 1994 |
| 444 | 374 | Rwanda | Government of Rwanda | FDLR / ALiR / FPR | 1990 |
| 19 | 375 | Senegal | Government of Senegal | MFDC | 1988 |
| 1040 | 376 | Russia (Soviet Union) | Government of Russia (Soviet Union) | Republic of Armenia | 1990 |
| 1039 | 377 | Russia (Soviet Union) | Government of Russia (Soviet Union) | APF | 1990 |
| 1089 | 378 | Trinidad and Tobago | Government of Trinidad and Tobago | Jamaat al-Muslimeen | 1990 |
| 146 | 379 | Djibouti | Government of Djibouti | FRUD / FRUD - AD | 1991 |
| 1045 | 380 | Georgia | Government of Georgia | National Guard and Mkhedrioni | 1991 |
| 505 | 381 | Haiti | Government of Haiti | Military faction (forces of Himmler Rebu and Guy Francois) / Military faction (forces of Raol Cedras) / FLRN, OP Lavalas (Chimares) | 1989 |
| 23 | 382 | Sierra Leone | Government of Sierra Leone | RUF / AFRC, Kamajors, RUF / AFRC, RUF / RUF, WSB | 1991 |
| 168 | 383 | Turkey | Government of Turkey | Devrimci Sol | 1987 |
| 116 | 385 | Serbia (Yugoslavia) | Government of Serbia (Yugoslavia) | Republic of Croatia / Croatian irregulars, Republic of Croatia | 1991 |
| 160 | 386 | Algeria | Government of Algeria | AIS / AIS, GIA / AQIM / AQIM, GIA / Takfir wa'l Hijra | 1985 |
| 40 | 387 | Angola | Government of Angola | FLEC-FAC / FLEC-FAC, FLEC-R / FLEC-R | 1991 |
| 15 | 388 | Azerbaijan | Government of Azerbaijan | Republic of NagornoKarabakh | 1991 |


| 118 | 389 |
| :--- | :--- |
|  |  |
| 115 | 390 |
| 53 | 391 |
| 124 | 392 |
| 65 | 395 |
| 66 | 395 |


| Bosnia-Herzegovina | Government of Bosnia- <br> Herzegovina |
| :--- | :--- |
| Croatia | Government of Croatia |
| Egypt | Government of Egypt |
| Georgia | Government of Georgia |
| Tajikistan | Government of Tajikistan |
| Tajikistan | Government of Tajikistan |


| Serbian Republic <br> Bosnia-Herzegovina, <br> bian irregulars | of <br> Ser- | 1992 |
| :--- | :--- | :--- |
| Serbian Republic of Kra- <br> jina | 1992 |  |
| al-Gama'a al-Islamiyya | 1981 |  |
| Republic of Abkhazia | 1992 |  |
| UTO |  |  |
| Forces of Khudoberdiyev | 1992 |  |
| / PFT, UTO / Forces |  |  | of Mullo Abdullo, IMU / IMU / Forces of Khudoberdiyev, UTO / Forces of Mullo Abdullo

OPON Forces 1993

| Croatian Republic of | 1993 |
| :--- | :--- | :--- |

Bosnia-Herzegovina, Croatian irregulars
EPR / EZLN
eria
Democratic Republic of 1994
Yemen

Yemen
Government of Peru 1995

| MQM / TTP / Lashkar-e- | 1990 |  |
| :--- | ---: | ---: |
| Islam, TTP |  |  |
| Cocoyes, | Ninjas, | 1993 |


| Ntsiloulous / Ntsiloulous |  |
| :--- | :--- |
| Government of Ethiopia | 1998 |

Military Junta for the 1998

Consolidation of Democ-

| racy, Peace and Justice |  |
| :--- | :--- |
| Military faction | 1998 |


| Military faction | 1998 |
| :--- | :--- |
| UCK | 1996 |
| OLF | 1974 |
| Wahhabi movement of the | 1999 |


| Wahhabi movement of the | 1999 |
| :--- | :--- |
| Buinaksk district |  |
| IMU |  |


| IMU |  |
| :--- | :--- |
| UFDR / CPJP / Forces of | 2099 |

Francois Bozize / Seleka /
Seleka, anti-Balaka
UCK
2000
MPCI, MPIGO / MJP, 2002
MPIGO
MPIGO / FRCI
NDFB / NDFB - RD / 1989
NDFB-S
UWSA

| Patani insurgents | 1965 |
| :--- | :--- |
| NDPVF | 2004 |
| Hezbollah | 1986 |
| BDK | 1998 |

UFRA of the Caucasus 1991
Forces of the Caucasus 2007
Emirate
PULF

|  | 2000 |
| :--- | :--- |
| Government of Eritrea | 2008 |
| KNF | 1993 |
| MNDAA | 2009 |
|  |  |
| GNLA | 2010 |
| Republic of South Sudan | 2011 |
| SPLM/A In Opposition / | 2011 |
| SSLM/A |  |
| Forces of Muammar | 2011 |

the House of Representa-
tives, Zintan Brigades
AQIM $/$ AQIM, al- 2009

Murabitun / Ansar Dine
Murabitun
Military faction (Red
Military faction (Red
Berets) / AQIM, Ansar
Berets) AQIM, Ansar
Dine, MUJAO, Signed-in-
Blood Battalion

|  | Blood Battalion |  |
| :---: | :---: | :---: |
| Government of South Sudan | Government of Sudan | 2012 |
| Government of China | ETIM | 1990 |
| Government of Bangladesh | PBCP-J / PBCP, PBCP-J | 1994 |
| Government of Myanmar (Burma) | NSCN-K | 1991 |
| Government of Malaysia | Sultanate of Sulu | 2013 |
| Government of Ukraine | Maidan | 2014 |
| Government of Ukraine | DPR | 2014 |
| Government of Ukraine | LPR | 2014 |


| 1013 | 13349 | Myanmar (Burma) | Government of Myanmar (Burma) | PSLF | 1994 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 835 | 13604 | Syria | Government of Syria | IS | 2013 |
| 836 | 13675 | Lebanon | Government of Lebanon | IS | 2014 |
| 909 | 13692 | Afghanistan, United Kingdom, United States of America | Government of Afghanistan | Government of United Kingdom, Government of United States of America | 2001 |

Table 6: Descriptive statistics

|  | N | Mean | St. Dev. | Min | Max |
| :---: | :---: | :---: | :---: | :---: | :---: |
| year | 1,175 | 2,000.235 | 7.429 | 1,989 | 2,014 |
| ConflictID | 1,175 | 823.096 | 2,307.740 | 205 | 13,675 |
| ongoing | 1,175 | 0.625 | 0.484 | 0 | 1 |
| sponsor USA | 1,175 | 0.060 | 0.237 | 0 | 1 |
| sponsor UKG | 1,175 | 0.057 | 0.232 | 0 | 1 |
| sponsor RUS | 1,175 | 0.051 | 0.220 | 0 | 1 |
| sponsor CHN | 1,175 | 0.046 | 0.209 | 0 | 1 |
| sponsor FRN | 1,175 | 0.063 | 0.243 | 0 | 1 |
| sponsor GRULAC2 | 1,175 | 0.048 | 0.213 | 0 | 1 |
| sponsor GRULAC1 | 1,175 | 0.049 | 0.215 | 0 | 1 |
| sponsor CEIT | 1,175 | 0.051 | 0.220 | 0 | 1 |
| sponsor AFR3 | 1,175 | 0.049 | 0.215 | 0 | 1 |
| sponsor AFR2 | 1,175 | 0.048 | 0.213 | 0 | 1 |
| sponsor AFR1 | 1,175 | 0.050 | 0.218 | 0 | 1 |
| sponsor WEOG2 | 1,175 | 0.053 | 0.224 | 0 | 1 |
| sponsor WEOG1 | 1,175 | 0.057 | 0.232 | 0 | 1 |
| sponsor ASIA2 | 1,175 | 0.048 | 0.213 | 0 | 1 |
| sponsor ASIA1 | 1,175 | 0.048 | 0.213 | 0 | 1 |
| number of PKO resolutions | 1,175 | 0.581 | 2.138 | 0 | 21 |
| number of OSV victims | 834 | 116.155 | 429.806 | 0 | 6,743 |
| FRN colony | 1,175 | 0.137 | 0.344 | 0 | 1 |
| UKG colony | 1,175 | 0.406 | 0.491 | 0 | 1 |
| RUS colony | 1,175 | 0.037 | 0.188 | 0 | 1 |
| number of battle deaths (best estimate) | 1,175 | 605.459 | 2,761.681 | 0 | 68,503 |
| number of battle deaths (best estimate) missing | 1,175 | 0.362 | 0.481 | 0 | 1 |
| number of OSV victims | 834 | 116.155 | 429.806 | 0 | 6,743 |
| number of OSV victims missing | 1,175 | 0.091 | 0.288 | 0 | 1 |
| flow1_USA | 1,175 | 5,650.306 | 22,381.150 | 0.000 | 387,579.900 |
| flow2_USA | 1,175 | 3,037.722 | 9,347.933 | 0.000 | 125,610.400 |
| flow1_FRN | 1,175 | 824.164 | 2,362.269 | 0.000 | 30,810.260 |
| flow2_FRN | 1,175 | 700.636 | 1,699.247 | 0.000 | 21,504.470 |
| flow1_UKG | 1,175 | 1,034.581 | 3,575.294 | 0.000 | 57,228.380 |
| flow2_UKG | 1,175 | 727.598 | 1,533.975 | 0.000 | 16,530.190 |
| flow1_CHN | 1,175 | 1,929.796 | 6,943.193 | 0.000 | 71,431.130 |
| flow2_CHN | 1,175 | 2,232.815 | 8,813.754 | 0.000 | 67,152.480 |
| flow1_RUS | 1,175 | 375.654 | 2,069.396 | 0.000 | 39,123.770 |
| flow2_RUS | 1,175 | 600.255 | 2,700.954 | 0.000 | 31,364.480 |
| flow1_AFR1 | 1,175 | 23.150 | 106.245 | 0.000 | 1,155.611 |
| flow2__AFR1 | 1,175 | 29.648 | 162.037 | 0.000 | 1,490.848 |
| flow1_AFR2 | 1,175 | 49.248 | 370.560 | 0.000 | 7,587.722 |
| flow2_AFR2 | 1,175 | 128.292 | 995.350 | 0.000 | 12,850.630 |
| flow1_AFR3 | 1,175 | 107.870 | 670.728 | 0.000 | 12,948.210 |
| flow2_AFR3 | 1,175 | 136.035 | 959.959 | 0.000 | 12,113.010 |
| flow1_ASIA1 | 1,175 | 108.201 | 780.642 | 0.000 | 12,782.850 |
| flow2_ASIA1 | 1,175 | 87.081 | 450.595 | 0.000 | 6,326.888 |
| flow1_ASIA2 | 1,175 | 387.198 | 1,735.547 | 0.000 | 20,814.680 |
| flow2_ASIA2 | 1,175 | 448.169 | 2,122.583 | 0.000 | 33,535.250 |
| flow1__GRULAC1 | 1,175 | 149.597 | 1,109.053 | 0.000 | 28,956.480 |
| flow2_GRULAC1 | 1,175 | 158.901 | 1,517.606 | 0.000 | 39,838.230 |
| flow1_GRULAC2 | 1,175 | 131.531 | 1,567.696 | 0.000 | 38,786.690 |
| flow2__GRULAC2 | 1,175 | 85.386 | 297.690 | 0.000 | 4,237.402 |
| flow1_WEOG1 | 1,175 | 567.736 | 3,417.309 | 0.000 | 84,318.250 |
| flow2_WEOG1 | 1,175 | 572.720 | 3,151.958 | 0.000 | 81,970.060 |
| flow1_WWEOG2 | 1,175 | 340.017 | 1,480.738 | 0.000 | 30,462.770 |
| flow2_WEOG2 | 1,175 | 219.653 | 795.573 | 0.000 | 14,421.400 |
| flow1_CEIT | 1,175 | 70.854 | 358.887 | 0.000 | 5,041.380 |
| flow2_CEIT | 1,175 | 47.141 | 194.704 | 0.000 | 2,611.950 |
| flow1__USA_m | 1,175 | 0.017 | 0.129 | 0 | 1 |
| flow2__USA_m | 1,175 | 0.017 | 0.129 | 0 | 1 |
| flow1__FRN_m | 1,175 | 0.101 | 0.302 | 0 | 1 |
| flow2__FRN_m | 1,175 | 0.101 | 0.302 | 0 | 1 |
| flow1__UKG_m | 1,175 | 0.101 | 0.302 | 0 | 1 |
| flow2__UKG_m | 1,175 | 0.101 | 0.302 | 0 | 1 |
| flow1_CCHN_m | 1,175 | 0.651 | 0.477 | 0 | 1 |
| flow2_CHN_m | 1,175 | 0.651 | 0.477 | 0 | 1 |
| flow1__RUS_m | 1,175 | 0.169 | 0.375 | 0 | 1 |
| flow2__RUS_m | 1,175 | 0.188 | 0.391 | 0 | 1 |
| flow1_AFR1_m | 1,175 | 0.432 | 0.496 | 0 | 1 |
| flow2_AFR1_m | 1,175 | 0.458 | 0.498 | 0 | 1 |
| flow1_AFR2_m | 1,175 | 0.361 | 0.480 | 0 | 1 |
| flow2_AFR2_m | 1,175 | 0.369 | 0.483 | 0 | 1 |
| flow1__AFR3_m | 1,175 | 0.475 | 0.500 | 0 | 1 |
| flow2__AFR3_m | 1,175 | 0.499 | 0.500 | 0 | 1 |


| flow1_ASIA1_m | 1,175 | 0.727 | 0.446 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| flow2_ASIA1_m | 1,175 | 0.732 | 0.443 | 0 | 1 |
| flow1_ASSA2_m | 1,175 | 0.807 | 0.395 | 0 | 1 |
| flow2_ASIA2_m | 1,175 | 0.807 | 0.395 | 0 | 1 |
| flow1_GRULAC1_m | 1,175 | 0.096 | 0.295 | 0 | 1 |
| flow2_GRULAC1_m | 1,175 | 0.100 | 0.300 | 0 | 1 |
| flow1_GRULAC2_m | 1,175 | 0.129 | 0.335 | 0 | 1 |
| flow2_GRULAC2_m | 1,175 | 0.151 | 0.358 | 0 | 1 |
| flow1_WWEOG1_m | 1,175 | 0.229 | 0.420 | 0 | 1 |
| flow2_WEOG1_m | 1,175 | 0.229 | 0.420 | 0 | 1 |
| flow1_WWOG2_m | 1,175 | 0.141 | 0.348 | 0 | 1 |
| flow2_WEOG2_m | 1,175 | 0.141 | 0.348 | 0 | 1 |
| flow1_CEIT_m | 1,175 | 0.157 | 0.364 | 0 | 1 |
| flow2_CEIT_m | 1,175 | 0.151 | 0.358 | 0 | 1 |
| number of third party interventions | 1,175 | 0.243 | 1.198 | 0 | 1 |

In table 7 we report on a hierarchical logit model. Focusing on model 2, which comprises random effects both at the conflict and the country level, we find quite different results from those focusing on individual UNSC members. More specifically, the extent of one-sided violence and the colonial heritage no longer play any significant role in explaining sponsorship decisions. On the other hand, the number of battled deaths and other third-party interventions decrease the likelihood of sponsorship decisions, while this likelihood is much more likely while a conflict is still ongoing. If we control for whether a resolution establishing a peacekeeping mission has already been adopted, we find that the USA and France are significantly more likely than the first African representative to sponsor subsequent resolutions. Similarly, we find now that the number of victims of one-sided violence increases the chances of a sponsorship decisions, while the remaining significant effects found for model 2 remain the same, except for ongoing conflicts. The coefficient for this indicator variable becomes positive, suggesting, quite logically, that when controlling for situations where a peacekeeping mission has already been adopted, subsequent resolutions are more likely if the conflict is still ongoing.

In table 8 and 9 we report on a logit model proposed by Marshall (2013) that takes the interdependencies into account. More specifically, this estimator relies on estimating first an auxiliary regression in which all covariates for a particular country are interacted with those of all other countries. The predicted values of this regression reflect the contribution of the other countries effects and are added as additional regressor to the main equation. As tables 8 and 9 show taking these interdependencies into account affects some of the results. While in all previous analyses the extent of one-sided violence increased the chances of all members of the UNSC to sponsor a resolution, controlling for the theoretically expected dependencies makes this effect go away for the United Kingdom, as well as for the

Table 4: Peacekeeping missions covered (adopted between 1989-2014)

first representatives from Latin America and Western Europe. Note that for the West European representatives, the effect just marginally fails to reach statistical significance.

Table 7: Hierarchical logit models

| random effects | Dependent variable: |  |
| :---: | :---: | :---: |
|  | conflict ID <br> (1) | sponsor conflict ID and Side A (2) |
| sponsor (AFR1 omitted) |  |  |
| AFR2 | $\begin{aligned} & -0.073 \\ & (0.229) \end{aligned}$ | $\begin{aligned} & -0.064 \\ & (0.231) \end{aligned}$ |
| AFR3 | $\begin{aligned} & -0.079 \\ & (0.230) \end{aligned}$ | $\begin{gathered} 0.031 \\ (0.230) \end{gathered}$ |
| ASIA1 | $\begin{aligned} & -0.074 \\ & (0.234) \end{aligned}$ | $\begin{gathered} 0.017 \\ (0.235) \end{gathered}$ |
| ASIA2 | $\begin{aligned} & -0.029 \\ & (0.234) \end{aligned}$ | $\begin{gathered} 0.001 \\ (0.236) \end{gathered}$ |
| CEIT | $\begin{aligned} & -0.091 \\ & (0.233) \end{aligned}$ | $\begin{aligned} & -0.005 \\ & (0.233) \end{aligned}$ |
| CHN | $\begin{aligned} & -0.093 \\ & (0.235) \end{aligned}$ | $\begin{aligned} & -0.034 \\ & (0.237) \end{aligned}$ |
| FRN | $\begin{gathered} 0.172 \\ (0.242) \end{gathered}$ | $\begin{gathered} 0.156 \\ (0.244) \end{gathered}$ |
| GRULAC1 | $\begin{aligned} & -0.177 \\ & (0.236) \end{aligned}$ | $\begin{aligned} & -0.210 \\ & (0.239) \end{aligned}$ |
| GRULAC2 | $\begin{aligned} & -0.202 \\ & (0.234) \end{aligned}$ | $\begin{aligned} & -0.105 \\ & (0.234) \end{aligned}$ |
| RUS | $\begin{aligned} & -0.147 \\ & (0.233) \end{aligned}$ | $\begin{aligned} & -0.093 \\ & (0.234) \end{aligned}$ |
| UKG | $\begin{aligned} & -0.023 \\ & (0.240) \end{aligned}$ | $\begin{gathered} 0.032 \\ (0.240) \end{gathered}$ |
| USA | $\begin{gathered} 0.079 \\ (0.259) \end{gathered}$ | $\begin{gathered} 0.103 \\ (0.261) \end{gathered}$ |
| WEOG1 | $\begin{gathered} 0.063 \\ (0.231) \end{gathered}$ | $\begin{gathered} 0.105 \\ (0.233) \end{gathered}$ |
| WEOG2 | $\begin{aligned} & -0.061 \\ & (0.234) \end{aligned}$ | $\begin{aligned} & -0.045 \\ & (0.236) \end{aligned}$ |
| $\log ($ imports +1$)$ | $\begin{aligned} & -0.052 \\ & (0.045) \end{aligned}$ | $\begin{aligned} & -0.060 \\ & (0.045) \end{aligned}$ |
| $\log ($ exports +1$)$ | $\begin{gathered} 0.067 \\ (0.046) \end{gathered}$ | $\begin{aligned} & 0.081^{*} \\ & (0.046) \end{aligned}$ |
| imports missing | $\begin{aligned} & -0.136 \\ & (0.294) \end{aligned}$ | $\begin{aligned} & -0.121 \\ & (0.295) \end{aligned}$ |
| exports missing | $\begin{aligned} & -0.058 \\ & (0.297) \end{aligned}$ | $\begin{aligned} & -0.090 \\ & (0.297) \end{aligned}$ |
| $\log ($ victims of one-sided violence +1$)$ | $\begin{aligned} & -0.031 \\ & (0.020) \end{aligned}$ | $\begin{aligned} & -0.027 \\ & (0.020) \end{aligned}$ |
| victims of one-sided violence missing | $\begin{gathered} -0.314^{*} \\ (0.169) \end{gathered}$ | $\begin{gathered} -0.302^{*} \\ (0.169) \end{gathered}$ |
| $\log$ (number of battle deaths (best estimate) +1 ) | $\begin{gathered} -0.229^{* * *} \\ (0.047) \end{gathered}$ | $\begin{gathered} -0.230^{* * *} \\ (0.047) \end{gathered}$ |
| number of battle deaths (best estimate) missing | $\begin{gathered} -2.503^{* * *} \\ (0.412) \end{gathered}$ | $\begin{gathered} -2.597^{* * *} \\ (0.410) \end{gathered}$ |
| ongoing conflict | $\begin{gathered} -1.241^{* * *} \\ (0.333) \end{gathered}$ | $\begin{gathered} -1.331^{* * *} \\ (0.331) \end{gathered}$ |
| third part intervention | $\begin{gathered} -0.106^{* * *} \\ (0.030) \end{gathered}$ | $\begin{gathered} -0.089^{* * *} \\ (0.030) \end{gathered}$ |
| number of previous PKO resolutions | $\begin{gathered} -0.376^{* * *} \\ (0.035) \end{gathered}$ | $\begin{gathered} -0.370^{* * *} \\ (0.035) \end{gathered}$ |
| FRA colony | $\begin{aligned} & -0.160 \\ & (1.773) \end{aligned}$ | $\begin{aligned} & -0.281 \\ & (2.336) \end{aligned}$ |
| RUS colony | $\begin{gathered} 0.470 \\ (2.019) \end{gathered}$ | $\begin{gathered} 0.675 \\ (4.295) \end{gathered}$ |
| UKG colony | $\begin{gathered} -2.605^{*} \\ (1.578) \end{gathered}$ | $\begin{aligned} & -2.825 \\ & (3.723) \end{aligned}$ |
| continent (Africa omitted) |  |  |
| Americas | $\begin{aligned} & -0.730 \\ & (2.045) \end{aligned}$ | $\begin{aligned} & -0.994 \\ & (2.890) \end{aligned}$ |
| Asia | $\begin{gathered} -2.785^{* *} \\ (1.420) \end{gathered}$ | $\begin{aligned} & -3.153 \\ & (2.902) \end{aligned}$ |
| Europe | $\begin{aligned} & -0.647 \\ & (1.832) \end{aligned}$ | $\begin{aligned} & -0.587 \\ & (3.019) \end{aligned}$ |
| Oceania | $\begin{gathered} -9.992 \\ (128.001) \end{gathered}$ | $\begin{gathered} -66.336 \\ (5,479,416.000) \end{gathered}$ |
| Constant | $\begin{gathered} -4.626^{* * *} \\ (1.499) \\ \hline \end{gathered}$ | $\begin{gathered} -4.632^{* * *} \\ (1.738) \\ \hline \end{gathered}$ |
| Observations | 17,625 | 17,625 |
| Log Likelihood | -1,941.939 | -1,939.752 |
| Akaike Inf. Crit. | 3,951.878 | 3,949.504 |
| Bayesian Inf. Crit. | 4,216.298 | 4,221.701 |
| Note: |  | ${ }^{* *} \mathrm{p}<0.05 ;^{* * *} \mathrm{p}<0.01$ |

Table 8: Sponsorship decisions controlled for dependencies I



Regarding colonial ties we find again that former British colonies are less likely to be the object of a sponsorship decision by any of the UNSC members. Interesting, again, is the fact that by controlling for the interdependencies this colonial tie fails to significantly affect sponsoring decisions by the United Kingdom and the first representative of Latin America. Former Russian colonies, however, are much more likely to be the object of a sponsorship decision by China, Russia, the first represenative of Africa and the Central European representative.

Equally interesting is the fact that imports from a conflict country decrease the likelihood of a sponsorship decision by France, Russia, the United Kingdom, the first representative of Africa and the second for western Europe. When controlling for the interdependencies the effect for France marginally fails to reach statistical significance. Exports, on the other hand, diminish the likelihood of such sponsorship decision for the USA and the representative of Central Europe, but increases it for the first representative from Africa. These latter effects are largely unaffected by the interdependencies that exist among sponsorship decisions.


Table 11: Bayesian multivariate probit with common effects

|  | b | s.e. |
| :---: | :---: | :---: |
| CHN | -0.743 | 2.545 |
| FRN | -0.221 | 2.541 |
| RUS | -0.589 | 2.542 |
| UKG | -0.378 | 2.542 |
| USA | -0.254 | 2.542 |
| WEOG1 | -0.420 | 2.542 |
| WEOG2 | -0.540 | 2.543 |
| AFR1 | -0.647 | 2.543 |
| AFR2 | -0.697 | 2.542 |
| AFR3 | -0.698 | 2.541 |
| CEIT | -0.591 | 2.540 |
| GRULAC1 | -0.662 | 2.542 |
| GRULAC2 | -0.703 | 2.539 |
| ASIA1 | -0.681 | 2.541 |
| ASIA2 | -0.699 | 2.543 |
| imports | -0.017 | 0.036 |
| exports | -0.023 | 0.038 |
| imports missing | -0.065 | 0.286 |
| exports missing | 0.037 | 0.293 |
| one-sided violence | 0.136 | 0.027 |
| one-sided violence missing | -0.075 | 0.146 |
| FRN colony | -0.364 | 0.122 |
| RUS colony | 2.061 | 0.370 |
| UKG colony | -1.028 | 0.192 |
| Number of battle deaths | 0.115 | 0.035 |
| Number of battle deaths missing | 0.647 | 0.331 |
| year | -0.001 | 0.001 |
| ongoing conflict | -0.119 | 0.290 |
| 3rd party interventions | -0.037 | 0.026 |
| number of previous PKO resolutions | 0.011 | 0.016 |
| Americas | -0.173 | 0.146 |
| Asia | -2.110 | 0.351 |
| Europe | -0.978 | 0.228 |
| Oceania | -6.446 | 4.721 |
| N | 1175 |  |

Note: 1000 burnins, 9000 mcmcs
Table 13: Strategic QRE estimator with common effects

Table 14: Strategic QRE estimator

|  | CHN | FRN | RUS | UKG | USA | WEOG1 | WEOG2 | AFR1 | AFR2 | AFR3 | CEIT | GRULAC1 | GRULAC2 | ASIA1 | ASIA2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| constant | -0.146 | -0.045 | -0.083 | -0.055 | 0.169 | -0.042 | -0.28 | 0.121 | -0.212 | -0.113 | 0.119 | -0.578 | 0.265 | 0.057 | 0.109 |
|  | ( NaN ) | (0) | (0.004) | (0.002) | (0.003) | (0) | (0.001) | (0.001) | ( NaN ) | (0.001) | (0.002) | ( NaN ) | (0.003) | (0.002) | (0.003) |
| imports | 0.249 | 0.494 | -0.027 | 0.04 | 0.183 | 0.555 | 0.549 | 0.165 | 1.183 | 0.19 | 0.121 | 0.29 | -0.415 | -0.051 | -0.149 |
|  | (0) | (0.001) | ( NaN ) | (0.001) | (0.003) | (0.001) | (0.001) | (0.001) | (0.003) | (0) | ( NaN ) | (0) | (0.005) | ( NaN ) | (0.003) |
| exports | 0.189 | 0.093 | 0.245 | 0.025 | -0.556 | 0.022 | 0.215 | 0.241 |  | 0.418 | 0.208 | 0.298 | -0.192 | 0.311 | 0.043 |
|  | ( NaN ) | (0) | (0.002) | (0.001) | ( NaN ) | (0) | (0) | (0.003) | (0.001) | ( NaN ) | ( NaN ) | (0.001) | (0.002) | (0.008) | ( NaN ) |
| rus col | 1.057 | 0.911 | 0.977 | 0.933 | 0.995 | 0.915 | 0.951 | 0.967 | 1.04 | 1.039 | 0.981 | 0.976 | 0.931 | 1.065 | 0.932 |
|  | (0.525) | (1.02) | (1.414) | (1.96) | (2.574) | (1.077) | (1.495) | (1.708) | (2.058) | (1.916) | (1.52) | (2.49) | (1.652) | (1.592) | (2.158) |
| ukg col | 0.179 | -0.1 | 0.182 | 0.181 | 0.328 | 0.309 | 0.388 | 0.504 | 0.26 | 0.264 | 0.792 | -0.23 | 0.49 | 0.339 | 0.593 |
|  | (0.001) | (0) | (0.007) | (0.002) | (0.008) | ( NaN ) | (0.001) | (0.001) | ( NaN ) | (0.001) | (0.005) | (0.009) | (0.001) | ( NaN ) | (0.003) |
| Americas | 0.365 | 0.333 | 0.361 | 0.321 | 0.464 | 0.319 | 0.338 | 0.351 | 0.352 | 0.324 | 0.327 | 0.394 | 0.431 | 0.365 | 0.329 |
|  | (0.628) | (0.656) | (1.954) | (1.87) | (4.421) | (0.816) | (0.636) | (1.856) | (1.891) | (1.123) | (1.85) | (1.713) | (2.506) | (1.755) | (2.036) |
| Asia | 0.249 | 0.494 | -0.027 | 0.04 | 0.183 | 0.555 | 0.549 | 0.165 | 1.183 | 0.19 | 0.121 | 0.29 | -0.415 | -0.051 | -0.149 |
|  | (0.001) | (0) | (0.001) | (0.005) | (0.005) | (0) | ( NaN ) | (0) | ( NaN ) | (0.001) | ( NaN ) | ( NaN ) | (0.004) | (0.001) | (0.002) |
| Europe | 0.16 | 0.457 | 0.441 | 0.495 | 0.541 | 0.247 | 0.327 | 0.176 | 0.04 | 0.041 | 0.518 | 0.23 | 0.146 | 0.159 | 0.048 |
|  | (0.644) | (0.352) | (2.807) | (3.076) | ( NaN ) | (0.494) | (NaN) | (3.147) | (1.952) | (1.76) | (2.13) | (2.395) | (4.274) | (2.992) | (3.626) |
| Oceania | $\begin{array}{r} -2.677 \\ (4.034) \end{array}$ | $\begin{array}{r} -2.754 \\ (5.515) \end{array}$ | $\begin{array}{r} -2.652 \\ (7.87) \end{array}$ | $\begin{array}{r} -2.665 \\ (6.985) \end{array}$ | $\begin{array}{r} -2.709 \\ (15.144) \end{array}$ | $\begin{array}{r} -2.671 \\ (3.311) \end{array}$ | $\begin{array}{r} -2.705 \\ (4.706) \end{array}$ | $\begin{array}{r} -2.682 \\ (6.243) \end{array}$ | $\begin{array}{r} -2.754 \\ (4.863) \end{array}$ | $\begin{array}{r} -2.679 \\ (6.771) \end{array}$ | $\begin{array}{r} -2.757 \\ (5.554) \end{array}$ | $\begin{array}{r} -2.721 \\ (11.91) \end{array}$ | $\begin{array}{r} -2.686 \\ (6.063) \end{array}$ | $\begin{array}{r} -2.664 \\ (5.361) \end{array}$ | $\begin{aligned} & -2.693 \\ & (6.719) \end{aligned}$ |
| ${ }^{\tau}$ | $\begin{array}{r} 3.980 \\ (0.003) \end{array}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1175.000 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 lik | -4178.971 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## References

Allansson, Marie, Erik Melander and Lotta Themnér. 2017. "Organized violence, 1989-2016." Journal of Peace Research 54(4):574-587.

Angrist, Joshua D. and Jorn-Steffen Pischke. 2008. Mostly Harmless Econometrics: An Empiricist's Companion. Princeton: Princeton University Press.

Bailey, Sydney Dawson and Sam Daws. 1998. The procedure of the UN Security Council. Oxford: Oxford University Press.

Barbieri, Katherine, Omar M.G. Keshk and Brian M. Pollins. 2009. "Trading data: Evaluating our assumptions and coding rules." Conflict Management and Peace Science 26(5):471-491.

Carnegie, Allison and Christoph Mikulaschek. 2016. "The Promise of Peacekeeping: Protecting Civilians in Civil Wars." Paper prepared for presentation at the 9th Annual Conference on The Political Economy of International Organizations, Salt Lake City, January 7-9, 2016.

Cederman, Lars-Erik, Kristian Gleditsch and Julian Wucherpfennig. 2017. "Predicting the Decline of Ethnic Civil War: Was Gurr Right and For the Right Reasons?" Journal of Peace Research 54(2):262-274.

Chiou, Fang-Yi, Simon Hug and Bjørn Høyland. 2017. "Strategic roll call vote requests." Paper prepared for presentation at the General Conference of the European Political Science Association, (Milano, June 2017).

Chiou, Fang-Yi and Wanying Yang. 2008. "Strategic Choices of Roll Call Requests." Paper presented at the annual meeting of the MPSA Annual National Conference, Palmer House Hotel, Hilton, Chicago, IL.

Cockayne, James, Christoph Mikulaschek and Chris Perry. 2010. United Nations Security Council and Civil War: First Insights from a New Dataset. International Peace Academy (IPI).

Collier, Paul, Lani Elliott, Havard Hegre, Anke Hoeffler, Marta Reynal-Querol and Nicholas Sambanis. 2003. Breaking the Conflict Trap. Civil War and Development Policy. New York: World Bank and Oxford University Press.

Diekmann, Andreas. 1985. "Volunteer's dilemma." Journal of conflict resolution 29(4):605-610.

Dorussen, Han. 2014. "Peacekeeping Works, or Does It?" Peace Economics, Peace Science and Public Policy 20(4):527-537.

Doyle, Michael W. and Nicholas Sambanis. 2000. "International Peacebuilding: A Theoretical and Quantitative Analysis." American Political Science Review 94(4):779-801.

Doyle, Michael W. and Nicholas Sambanis. 2006. Making War and Building Peace: United Nations Peace Operations. Princeton: Princeton University Press.

Dreher, Axel and James Raymond Vreeland. 2011. "Buying Votes and International Organizations." Paper prepared for presentation at the conference The Political Economy of International Organizations, ETH and University Zurich, January 2011.

Dreher, Axel, Matthew Gould, Matthew D. Rablen and James Raymond Vreeland. 2014. "The Determinants of Election to the United Nations Security Council." Public Choice 158(1-2):51-83.

Eck, Kristine and Lisa Hultman. 2007. "One-Sided Violence Against Civilians in War. Insights from New Fatality Data." Journal of Peace Research 44(2):233246.

Findley, Michael G. and Tze Kwang Teo. 2006. "Rethinking third-party interventions into civil wars: An actor-centric approach." The Journal of Politics 68(4):828-837.

Fjelde, Hanne, Lisa Hultman, Livia Schubiger, Lars-Erik Cederman and Simon Hug. 2016. "Wartime Patterns of Civilian Abuse." Paper preparted for presentation at the LSE Workshop on State Violence, May 20.

Fortna, Virginia Page. 2003. "Inside and Out: Peacekeeping and the Duration of Peace After Civil and Interstate Wars." International Studies Review pp. 97114.

Fortna, Virginia Page. 2004. "Does Peacekeeping Keep Peace? International Intervention and the Duration of Peace After Civil War." International Studies Quarterly 48(2):269-269.

Fortna, Virginia Page. 2008. Does Peacekeeping Work? Shaping Belligerent?s Preferences after Civil War. Princeton: Princeton University Press.

Fortna, Virginia Page and Lise Morjé Howard. 2008. "Pitfalls and Prospects in the Peacekeeping Literature*." Annual Review of Political Science 11:283301.

Franzen, Axel. 1995. "Group size and one-shot collective action." Rationality and Society 7(2):183-200.

Franzese, Robert J. Jr., Jude C. Hays and Scott J. Cook. 2016. "Spatialand Spatiotemporal-Autoregressive Probit Models of Interdependent Binary Outcomes." Political Science Research and Methods 4:151-173.

Gilligan, Michael J. and Ernest J. Sergenti. 2008. "Do UN Interventions Cause Peace? Using Matching to Improve Causal Inference." Quarterly Journal of Political Science 3(2):89-122.

Gilligan, Michael J. and Stephen John Stedman. 2001. "Where Do the Peacekeepers Go?" International Studies Review 5(4):37-54.

Gleditsch, Nils Petter, Peter Wallensteen, Mikael Eriksson, Margareta Sollenberg and Håvard Strand. 2002. "Armed Conflict 1946-2001: A New Dataset." Journal of Peace Research 39(5):615-637.

Goeree, Jacob K., Charles A. Holt and Thomas R. Palfrey. 2016. Quantal Response Equilibrium: A Stochastic Theory of Games. Princeton University Press.

Goldstein, Joshua S. 2011. Winning the War on War. New York: Dutton/Plume (Penguin).

Greene, William H. 2003. Econometric Analysis (Fifth Edition). New York: Prentice Hall.

Hensel, Paul R. 2014. "ICOW Colonial History Data Set, version 1.0." Available at http://www.paulhensel.org/icowcol.html.

Hultman, Lisa. 2010. "Keeping peace or spurring violence? Unintended effects of peace operations on violence against civilians." Civil Wars 12(1-2):29-46.

Hultman, Lisa. 2013. "UN peace operations and protection of civilians. Cheap talk or norm implementation?" Journal of Peace Research 50(1):59-73.
Hultman, Lisa, Jacob Kathman and Megan Shannon. 2013. "United Nations Peacekeeping and Civilian Protection in Civil War." American Journal of Political Science 57(4):875-891.

Hultman, Lisa and Karin Johansson. 2017. "Responding to Wartime Sexual Violence: UN Peacekeeping and the Protection Agenda." Global Responsibility to Protect 9(2):129-146.

King, Gary and Margaret E. Roberts. 2015. "How Robust Standard Errors Expose Methodological Problems They Do Not Fix, and What to Do About it." Political Analysis 23(2):159-179.

Leemann, Lucas. 2014. "Strategy and Sample Selection: A Strategic Selection Estimator." Political Analysis 22(3):374-397.

Maddala, G.S. 1977. Econometrics. New York: McGraw Hills.
Marbach, Moritz. 2016. "Refugees and the UN Security Council." University of Mannheim.

Marbach, Moritz. 2017 forthcoming. "Analyzing Decision Records from Committees." Political Science Research and Methods .

Marshall, Jeffrey B. 2013. "Free-Riding and the Montreal Protocol: A New Approach for Directly Estimating Strategic Interdependence." Prepared for presentation at the Annual Meeting of the American Political Science Association, Chicago, August 2013.

McKelvey, Richard D. and Thomas R. Palfrey. 1995. "Quantal Response Equilibria for Normal Form Games." Games and Economic Behavior 10:6-38.

McKelvey, Richard D. and Thomas R. Palfrey. 1996. "A statistical theory of equilibrium in games." Japanese Economic Review 47(2):186?209.

McKelvey, Richard D. and Thomas R. Palfrey. 1998. "Quantal Response Equilibria for Extensive Form Games." Experimental Economics 1:9-41.

Mullenbach, Mark J. 2005. "Deciding to Keep Peace : An Analysis of International Influences on the Establishment of Third-Party Peacekeeping Missions." International Studies Quarterly 49:529-555.

Mullenbach, Mark J. 2013. "Third-party peacekeeping in intrastate disputes, 1946-2012: A new dataset." Midsouth Political Science Review 14(1):10333.

Peterson, M.J. 2005. The United Nations General Assembly. Abingdon, Oxon: Routledge.

Scharioth, Nicolas. 2010. Western Democracies in the UN. Baden-Baden: Nomos Verlagsgesellschaft mbH \& Co. KG.

Sievers, Loraine and Sam Daws. 2014. The procedure of the UN Security Council. Oxford: Oxford University Press.

Signorino, Curtis S. 1999. "Strategic Interaction and the Statistical Analysis of International Conflict." American Political Science Review 93(2):279-297.

Stojek, Szymon M and Jaroslav Tir. 2015. "The supply side of United Nations peacekeeping operations: Trade ties and United Nations-led deployments to civil war states." European Journal of International Relations 21(2):352-376.

Thierse, Stefan. 2016. "Going on record: Revisiting the logic of roll-call vote requests in the European Parliament." European Union Politics 17(2):219241.

Vreeland, James Raymond and Axel Dreher. 2014. The Political Economy of the United Nations Security Council Money and Influence. New York: Cambridge University Press.


[^0]:    *A very partial version of this paper has been presented at a seminar at the University of St. Gallen. Very helpful comments by the participants as well as the partial financial support by the Swiss National Science Foundation (Grant No. 100012-129737) is greatly appreciated.
    $\dagger$ IPSAS, Academia Sinica, Taipei; email: fangyichiou@gmail.com
    $\ddagger$ Département de science politique et relations internationales, Faculté des sciences de la société ; Université de Genève; 40 Bd du Pont d'Arve; 1211 Genève 4; Switzerland; phone +41 2237983 78; email: simon.hug@unige.ch
    § Department of Political Science, University of Oslo, Postbox 1097, Blindern, 0317 Oslo Norway ; phone +4722858598 ; email: bjorn.hoyland@stv.uio.no

[^1]:    ${ }^{1}$ Strictly speaking the approach we propose has been developed to address theoretically and empirically roll call vote requests in parliaments (see Chiou and Yang, 2008; Chiou, Hug and Høyland, 2017). The structure of the strategic interaction amongst players is, however, similar, and this is the reason why we draw on this approach here.

[^2]:    ${ }^{2}$ Only in an appendix did Doyle and Sambanis (2000) consider, with the help of a selection model, whether the fact that destinations for peacekeeping missions are not randomly chosen among the countries in conflict affects the results (see also Doyle and Sambanis, 2006).

[^3]:    ${ }^{3}$ It also ignores the voting information from resolutions on peacekeeping missions, but these could easily be integrated in his approach.
    ${ }^{4}$ Drafts can be submitted by UN members that have no seat in the UNSC, but debate in the UNSC requires a sponsor among the fifteen UNSC members. Sievers and Daws (2014, 267) note that if a resolution is drafted by a non-UNSC member than a UNSC-member has to "move" it, i.e. sponsor it for consideration (Bailey and Daws, 1998, 221). Consequently, all resolutions debated in the UNSC have at least one sponsor amongst UNSC members, So-called "presidential resolutions" have in a strict sense no sponsors or co-sponsors (none are listed, respectively mentioned, in the minutes of the UNSC meetings) (Sievers and Daws, 2014, 268). Bailey and Daws $(1998,553)$ note, however, that such a "text is implicitly sposored by the fifteen members of the Council." In our empirical data collection we follow this suggestion and code "Presidential resolutions" as sponsored by all 15 members of the UNSC. We have also started exploring how this coding decision affects our results, by implementing an approach

[^4]:    ${ }^{6}$ Marbach's $(2016,2017)$ approach relegates the interdependencies into the error terms, and thus considers them as a nuissance.
    ${ }^{7}$ What follows draws in part on similar presentations in Chiou and Yang (2008) and Chiou, Hug and Høyland (2017).
    ${ }^{8}$ This formulation obviously implies that we assume (at least for the derivation for our basic estimator) that there are no costs involved by either of the two actions.
    ${ }^{9}$ This also implies that errors are independently and identically distributed, which is a commonly used assumption in so-called strategic estimators (see McKelvey and Palfrey, 1995; Signorino, 1999; Goeree, Holt and Palfrey, 2016). An exception is Leemann's (2014) strategic estimator, which builds on the assumption that errors across actors are correlated.

[^5]:    ${ }^{10}$ Chiou, Hug and Høyland (2017) provide a more detailed discussion of this estimator in the context of a study on roll vote requests in parliament and present evidence on its performance compared to more traditional estimators.
    ${ }^{11}$ Note that not a full set of $\lambda \mathrm{s}$ is identified so that the $\lambda$ for one actor has to be set to 1 (or any other value).

[^6]:    ${ }^{12}$ In participation or volunteer games this is normally reflected in a cost parameter $(K$, see for instance Diekmann, 1985; Franzen, 1995, 207ff).
    ${ }^{13}$ An even simpler and more common approach is to estimate a hierarchical model on stacked data and calculate clustered standard errors, as does Thierse (2016) in a similar context when studying roll call vote requests by party groups in the European Parliament (see, however, the cautionary remarks by Angrist and Pischke, 2008; King and Roberts, 2015).
    ${ }^{14}$ Most closely related is Marshall's (2013) estimator, which takes into account not only the covariates separately for each actor, but also interacts them to account for mutual influences on decisions. These interactions are, however, not theoretically informed.

[^7]:    ${ }^{15}$ While Hultman (2013), as many other studies, focuses on the initial decision to deploy a peacekeeping mission, many other subsequent decisions affect this deployment as well. In addition, some UNSC members also propose the ending of some missions in draft resolutions. As per conflict year several such resolutions might be sponsored, we only retained the one with the fewest sponsors, under the assumption that this was the most controversial proposal.
    ${ }^{16}$ We adopt a broader definition of peacekeeping missions than Hultman (2013), by using all those identified by Mullenbach (2013) and listed on the UN's website on peacekeeping operations (see http://www.un.org/en/peacekeeping/operations/, consulted September 14, 2017). We list all resolutions putting into place peace keeping missions in table 4 in the appendix.
    ${ }^{17}$ For resolutions not covered by Cockayne, Mikulaschek and Perry (2010) we identified the sponsors in the minutes of the UNSC meetings, see for instance http://undocs.org/s/PV. 6324 for the resolution on the United Nations Organization Mission in the Democratic Republic of the Congo (http://undocs.org/S/RES/1925(2010)).
    ${ }^{18}$ We wish to thank Axel Dreher and Valentin Lang for giving us access to their updated dataset and responding to our queries. The following draft resolutions concerning the renewal or extension of PKOs failed to be adopted: i) draft resolution S/25693 demanding the restructuring of UNFICYP (sponsored by the United Kingdom), vetoed by Russia (http://undocs.org/en/S/PV.3211); ii) draft resolution S/1997/18 extension of MINUGUA (sponsoired by Argentina, Chile, Colombia, Costa Rica, Mexico, Norway, Portugal, Spain,

[^8]:    ${ }^{20}$ As several of our variables have missing data, we code these observations as 0 s and add an indicator variable for whether a particular observation has missing data. This corresponds to a so-called "modified zero-order regression" (Greene, 2003, 60) as proposed by Maddala (1977, 202).

[^9]:    ${ }^{21}$ In the appendix we report the results from a model that is sometimes used to address estimation issues similar to the ones we encounter, namely a hierarchical logit model estimated on a dataset in long format (or stacked, see for instance Thierse, 2016, for an application to roll call vote requests). The results show that when assuming that independent variables have the exact same effect for all UNSC members, some of the results reported in the literature, for instance the positive effect of the number of battle deaths, appear again.

[^10]:    ${ }^{22}$ As a maximum likelihood estimation proved cumbersome, we employed a Bayesian muktivarite probit model as implemented in the bayesm package. As we provide these results only for illustrative purposes, we only report some information on the posterior distribution of the coefficients (similar information on the variance-covariance matrix appears in the appendix).
    ${ }^{23}$ In the appendix we report on an additional multivariate probit model, namely one estimated under the assumption that all independent variables have exactly the same effect for each member country (who differ only in their intercepts). The results come very close to those obtained with a hierarchical logit model (see table 7).
    ${ }^{24}$ Given the complexities in the estimation (i.e., a maximum likelihood function which is not necessarily smooth) we simplify our approach to missing data by imputing missing values with the help of the mice package. Also linked to the estimation complexities and the shape of the likelihood function we estimate the standard errors by boot-strapping and impute for each boot-strap run the missing data afresh. In tables 13 and 14 we report the results from a replication with standard errors derived from the Hessian, as well as from an extension where we allow the effects of the continent to vary across UNSC members.

[^11]:    ${ }^{25}$ In analyses reported above, the coefficient for this continent came normally with large standard errors.

