Multiplexed heralded single-photons toward a periodic and deterministic single-photone source

F. Kaneda, B. Christensen, J. J. Wong, H.-S. Park, K. McCusker, P. Kwiat

1. Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801, USA
2. Korea Research Institute of Standards and Science, Daejeon 305340, South Korea
3. Center for Photonic Communication and Computing, EECS Department, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3118, USA

Single- and multi-photon sources play essential roles in quantum information processing (QIP). Photon-pair generation by spontaneous parametric downconversion (SPDC) has been conventionally and widely used for creating two- and multi-particle entangled states and heralded single-photon states. However, probabilistic generation of the SPDC photon-pair state is a key obstacle to scaling up QIP systems beyond the proof-of-principle experiments. We report on our recent efforts toward a periodic and deterministic single-photone source by use of a temporal multiplexing technique [1-4] with a high-efficiency heralded single-photone source.

The basic idea of the temporal multiplexing scheme is shown in Fig. 1 (a). An optical pulse-train from a laser periodically pumps a χ^2 nonlinear crystal, and generates photon pairs (i.e., signal and idler photons) in one or more time slots. Each signal photon is sent to a single-photone detector (SPD): a detection heralds in which time slot the corresponding idler photon is present. By using an adjustable storage cavity with a high-speed polarization switch, any of the time slots heralded to contain an idler photon can be multiplexed onto a single output time window. Thus, the single-photone probability during the output time window is increased according to the number of pump pulses (time slots) N used for one cycle of the multiplexing. Moreover, if N is large, the probability of generating unwanted multiple pairs in a given time slot can be made arbitrarily small, because the total pump energy through the multiplexing cycle is distributed over the N time slots, and the ratio of the single- and multi-photone probabilities is as low as the one for a single (non-multiplexed) heralded single-photone source. In addition, the temporal multiplexing scheme can be used for generating multi-photone states by moving the nonlinear crystal inside the storage cavity [3]. Note that Migdall and co-workers [5] have proposed a similar technique based on “spatial” multiplexing.

Figure 1 (b) shows our experimental results in the single-photone probability versus N. We clearly observed the enhancement over the non-multiplexed source ($N = 1$): For a photon-pair generation probability per time slot $p = 0.35$, we observed a single-photone probability of 38.6% (see blue dots in Fig. 1 (b)), corresponding to a ~6 times enhancement from the non-multiplexed case. For $p = 0.07$, the multiplexed single-photone probability (see green squares in Fig. 1 (b)) is ~16 times larger than the non-multiplexed case. Moreover, measuring the second-order correlation function of the output photons, we observed that the ratio of single- and multi-photone probabilities is approximately independent of the temporal multiplexing. The enhancement in the single-photone probability and suppression of the multi-photone probability can be further improved incorporating recent state-of-the-art technologies.

![Fig. 1](image-url). (a) Simplified schematic diagram of our temporally multiplexed heralded single-photone source. PC: Pockels cell, SPD: Single-photone detector, PBS: Polarizing beam-splitter. (b) Observed multiplexed single-photone probability versus number of time slots N.

References