Integrated AlGaAs Source of Highly Indistinguishable and Energy-Time Entangled Photons

C. Autebert, N. Bruno, A. Martin, A. Lemaitre, C. Gomez, I. Favero, G. Leo, H. Zbinden and S. Ducci

1. Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Matériaux et Phénomènes Quantiques, CNRS-UMR 7162, Case courrier 7021, 75205 Paris Cedex 13, France
2. Group of Applied Physics, University of Geneva, Switzerland
3. Laboratoire de Photonique et Nanostructures, CNRS-UPR20, Route de Nozay, 91460 Marcoussis, France

Entangled states are key resources for quantum information science. In particular, on-chip fully integrated quantum photonic circuits will play an important role for future quantum technologies. In this domain, the maturity of semiconductor technology offers a huge potential in terms of ultra-compact devices including the generation, manipulation and detection of many quantum bits. Among the different semiconductor platforms AlGaAs present the advantage of a high second order nonlinearity, a mature clean room technology, and a direct band-gap having recently led to the integration of the laser source and the spontaneous parametric down conversion (SPDC) process within the same device [1].

In this paper we report the first demonstration, up to our knowledge, of an AlGaAs source, based on spontaneous parametric down-conversion process, emitting highly indistinguishable and energy-time entangled photon pairs. The device is an AlGaAs Bragg reflection waveguide emitting twin photons at room temperature and telecommunication wavelengths. It is based on a modal phase-matching scheme, in which the velocity mismatch is compensated by multimode waveguide dispersion. The structure includes two Bragg mirrors providing both a photonic band gap confinement for a TE Bragg pump mode at 780 nm and total internal reflection claddings for TE and TM modes at 1560 nm.

The source has a brightness of 7.2 10^6 pairs/s with a signal-to-noise ratio of 141. Indistinguishability between the photons is demonstrated through a Hong-Ou-Mandel experiment displaying a visibility of $89\pm 3\%$ (Fig 1a). The exploitation of a type II SPDC process makes the device able to produce polarization entanglement [2]. In this work we have chosen to test energy-time correlations, since this is a very convenient format of entanglement, as it can be easily manipulated with integrated circuits and can be preserved over long distances in standard optical fibers [3]. The generated photon pairs are sent through a standard Franson interferometer and the resulting fourth order quantum interference is recorded (Fig 1.b); the obtained Bell type curve has a net visibility of $V_{\text{net}} = 95.6 \pm 3.7\%$.

These measurements are a key step for energy-time entanglement and indistinguishable photons generation of electrically driven devices on chip.

References