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Abstract

We consider the set of points visited by the random walk on the discrete torus (Z/NZ)d,
for d ≥ 3, at times of order uNd, for a parameter u > 0 in the large-N limit. We prove
that the vacant set left by the walk undergoes a phase transition across a non-degenerate
critical value u∗ = u∗(d), as follows. For all u < u∗, the vacant set contains a giant connected
component with high probability, which has a non-vanishing asymptotic density and satisfies
a certain local uniqueness property. In stark contrast, for all u > u∗ the vacant set scatters
into tiny connected components. Our results further imply that the threshold u∗ precisely
equals the critical value, introduced by Sznitman in Ann. Math., 171 (2010), 2039–2087,
which characterizes the percolation transition of the corresponding local limit, the vacant
set of random interlacements on Zd. Our findings also yield the analogous infinite-volume
result, i.e. the long purported equality of three critical parameters ū, u∗ and u∗∗ naturally
associated to the vacant set of random interlacements.
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1 Introduction

Geometric properties of random walks display a rich phenomenology. To mention but a few
examples, in planar setups one knows for instance that the outer boundary of a Brownian motion
has Hausdorff dimension 4

3 , see [48, 49], and that several natural ‘observables’ (its occupation
measure, thick points, uncovered set,...) exhibit a (multi-)fractal structure [26, 27]. In higher
dimensions various covering and fragmentation problems relate to an intriguing percolation
phase transition [28, 9, 68], which is the subject of the present work.

Let Z = (Zn)n≥0 denote the symmetric random walk on the d-dimensional discrete torus
T = (Z/NZ)d of side length N ≥ 1, for d ≥ 3, and P be its law when started from the uniform
distribution on T, which is stationary for Z. If u is an arbitrary positive number, one knows
that the walk Z has a probability to hit a given point of T up to time uNd which is bounded
away from 0 and 1 uniformly in N . It is then natural to investigate connectivity properties of
the vacant set of the walk at these time scales, i.e. to study

(1.1) VuN
def.
= T \ Z[0,uNd], u > 0,

where Z[0,t] = {x ∈ T : for some 0 ≤ n ≤ t, Zn = x}, t ≥ 0. Originating in work of Benjamini
and Sznitman [9], who studied the set VuN for small u and exhibited a giant connected component
(i.e., having a positive asymptotic density as N → ∞), it has long been conjectured that VuN
undergoes an abrupt phase transition across a non-trivial value uc = uc(d) ∈ (0,∞), independent
of N , above which VuN scatters into tiny pieces with high probability as N →∞. The same fate
is expected for all but the largest cluster in the regime u < uc.

In a landmark paper [68], which subsequently spurred a lot of activity, Sznitman introduced
an infinite-volume version Vu of the set VuN in (1.1), the so-called vacant set of random inter-
lacements at level u, and along with it a compelling candidate for uc, characterized entirely in
terms of the infinite model. The set Vu is a random subset of Zd, decreasing in u (as is VuN in
(1.1)), its law is invariant under lattice symmetries and characterised by the property that

(1.2) P[Vu ⊃ K] = exp{−ucap(K)},

for all finite K ⊂ Zd, where cap(K) refers to the capacity of K; see (2.5). Informally, the set
Vu is constructed as follows. One introduces under a measure P a Poisson point process on
W ∗ × R+, the space of labeled bi-infinite transient Zd-valued trajectories modulo time-shift.
We refer to Section 2.2 for its precise definition; see in particular (2.11) regarding its intensity
measure. The interlacement set Iu at level u is obtained as the trace of all trajectories in this
Poisson cloud with label at most u and Vu = Zd \ Iu is defined as its complement. Thus u
acts as an intensity parameter: the larger u is, the more trajectories enter the picture. Loosely
speaking, when viewed from a point x, the different interlacement trajectories present near x
correspond to excursions of Z in the neighborhood of its projection on the torus.

As a matter of fact, one knows that Vu is the local limit in law of VuN as N → ∞. That is,
for finite K ⊂ Zd, with π : Zd → T denoting the canonical projection, one has that

(1.3) lim
N
P [VuN ⊃ π(K)] = P[Vu ⊃ K],

see [33, Chap. 3] or [79]; in fact, rather more is true, cf. (2.16) and refs. below. The set Vu
undergoes a non-trivial percolation phase transition: defining for u,R ≥ 0 the function

(1.4) θR(u) = P[0
Vu←→ ∂BR],
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where BR = ([−R,R] ∩ Z)d, ∂BR is its inner (vertex) boundary, see Section 2 for notation,
and the event in question refers to a nearest-neighbor path in Vu connecting 0 and ∂BR, one
introduces the critical parameter for percolation of Vu as

(1.5) u∗ = u∗(d)
def.
= sup

{
u > 0 : θ∞(u) > 0

}
,

where θ∞ = infR θR. As shown in successive works [68, 65], see also [59], this phase transition
is non-trivial, i.e.

(1.6) u∗(d) ∈ (0,∞), for all d ≥ 3.

1.1. Main results. It has long been believed that the conjectured phase transition for the
vacant set VuN of the walk, with the presumed features outlined below (1.1), occurs across the
value uc(d) = u∗(d) given by (1.5). Our first main result confirms these predictions.

For x ∈ T, let Cu(x) ⊂ T denote the connected component (cluster) of x in VuN . The
maximal cluster size is defined as |Cumax| = supx |Cu(x)|, where x ranges over T and |K| denotes
the cardinality of the set K. Let Cu>t denote the collection of clusters in VuN of diameter (with
respect to the graph distance on T) larger than or equal to t.

Theorem 1.1 (d ≥ 3). With u∗ as in (1.5), the following holds.

i) For all u > u∗, there exist c = c(d) and C, λ ∈ (0,∞) depending only on d and u such
that, with tN = logλN , one has

(1.7) P
[
|Cumax| ≥ t

]
≤ Ce−(t/tN )c , for all t,N ≥ 1.

ii) For all u < u∗ and ε > 0 there exist c, C, λ as above but possibly depending on ε such that

lim
N
P

[ ∣∣∣∣ |Cumax|
Nd

− θ∞(u)

∣∣∣∣ > ε

]
= 0, and

P

[
C
Vu(1−ε)
N

6←→ C′ for some C, C′ ∈ Cu>t
]
≤ Ce−(t/tN )c , for all t,N ≥ 1.

(1.8)

In words, Theorem 1.1 asserts that the vacant set VuN of the walk undergoes a percolation
phase transition and that u∗ defined by (1.5) describes the corresponding critical point. For
u < u∗, the vacant set VuN contains a macroscopic (‘giant’) component with asymptotic density
bounded from below by θ∞(u) (which is > 0 in view of (1.5)) in probability. On the contrary,
throughout the subcritical regime u > u∗, this giant component disappears completely and all
clusters of VuN are poly-logarithmically small in N with probability tending (rapidly) to 1 as
N →∞. Moreover, as u drops below the threshold u∗, not only does a giant component emerge,
but upon exceeding diameter t ≥ tN , any two clusters in VuN are actually part of the same cluster

of Vu(1−ε)
N with high probability.
The picture emanating from Theorem 1.1 is reminiscent of various classical results, the best-

known of which is perhaps the famed Erdös-Rényi random graph [43], which in a loose sense
corresponds (locally) to letting d→∞ in the above setup. ‘Low-dimensional’ critical phenomena
however, such as the one studied here, bear very significant differences. We defer a thorough
discussion of these matters to §1.2. One overarching aspect of the problem is the long-range
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dependence induced by the random walk Z. Combining (1.2), (1.3) and [68, (1.68)], one knows
for instance that for all x, y ∈ Zd, as N →∞,

(1.9) CovP
(
1{π(x)∈VuN}, 1{π(y)∈VuN}

)
∼ c(d, u)|x− y|2−d,

with | · | denoting the standard Euclidean distance and where ∼ means that the ratio of both
sides tends to 1 in the limit. The (strong) polynomial correlations implied by (1.9), along with
the inherent (local) transience of the problem, forcing T to be at least three-dimensional, pose
a very significant challenge, cf. §1.4. The transition established in Theorem 1.1 is a benchmark
example with these features, in what is arguably the simplest possible framework.

Our second main result concerns the vacant set Vu of random interlacements defined by (1.2),
which offers an infinite volume version of the problem (cf. (1.3)) and inevitably inherits the
polynomial correlations of (1.9). It expresses a sharpness result for the sets V = (Vu)u>0, thus
addressing an important open problem, see, e.g., [68, Remark 4.4,3)], [69, Remark 4.2] or [70,
Remark 3.1]. In order to state a meaningful theorem, we introduce two events,

Exist(R, u) =

{
there exists a cluster in

Vu ∩BR with diameter at least R
5

}
,(1.10)

Unique(R, u, v) =

{
any two clusters in Vu ∩BR having diameter at

least R
10 are connected to each other in Vv ∩B2R

}
.(1.11)

The events defined by (1.10)-(1.11), which are similar in spirit to those employed in [6] in a
different context, pin down a subset of the percolative phase that is very robust, in the sense
that one has strong quantitative control on the existence and uniqueness of large local clusters,
as discussed further below in §1.3. Recall u∗ = u∗(d) from (1.5) and (1.6).

Theorem 1.2 (d ≥ 3).

i) For all u > u∗, there exist c = c(d) and C = C(u, d) in (0,∞) such that for all R ≥ 1,

(1.12) P[0
Vu←→ ∂BR] ≤ Ce−Rc .

ii) For all 0 < v < u < u∗, V strongly percolates at levels u, v, in the sense that there exist
constants c = c(d) and C = C(u, v, d) in (0,∞) such that for every R ≥ 1,

P[Exist(R, u)] ≥ 1− Ce−Rc ,(1.13)

P [Unique(R, u, v)] ≥ 1− Ce−Rc .(1.14)

1.2. Applications. We first discuss various consequences of Theorems 1.1 and 1.2 and their
links to existing literature, and mention a few open questions. As detailed at the beginning of
Section 1, Theorem 1.1 gives strong answers to the conjectured phase transition for the vacant
set VuN of the random walk. Prior results concerning the different phases of VuN are of one of two
types: either i) valid in (a-priori) perturbative regimes, see e.g. [9] and [78, Theorems 1.3-1.4]
for small u, and [78, Theorem 1.2] for large u; or ii) ‘0− 1-law’ type results, valid without such
an assumption but non-quantitative, see e.g. [56, (1.8)] and [18, Theorem 1.1]. In fact results
of type ii) are immediate consequences of (‘hard’) coupling results such as (2.16) below (and its
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predecessors) but use otherwise rather ‘soft’ properties of the interlacement; namely, whether
θR in (1.4) vanishes in the limit R→∞ or not. All these results are subsumed by Theorem 1.1
with the exception of (1.8), which can be strengthened when u� 1, essentially by removing the
sprinkling ε; see [78, 77]. This is related to the possible strengthening of the notion of “strongly
percolating” from (1.13)-(1.14), see (1.20) and the subsequent discussion in §1.3.

We refer to [19, 17] for results akin to Theorem 1.1 on random regular graphs and expanders
of logarithmic girth; see also [16, 24, 1, 2, 23] for recent related results concerning excursion sets
of the Gaussian free field. These ‘mean-field’ type results include quantitative information in u
and n (the number of vertices) on the size of the critical window, which has width n−1/3. Any
result quantifying the zero-one law describing the transition on T, even for d � 3, would be
novel and interesting.

Theorem 1.2 readily implies that the two-point function of Vu satisfies

(1.15) P[0
Vu←→ x] ≤ Ce−|x|c , x ∈ Zd, u > u∗,

for some constants C, c depending on d and u only, and the bound (1.15) remains valid for

u < u∗ if one includes the truncation {0 6←→ ∞ in Vu′} for any u′ < u, on the left-hand side.

By means of a coupling such as (2.16) these connectivity estimates immediately transfer to the
vacant set VuN of the walk on T. In fact, one obtains using the results of [56] that the decay in
(1.15) is exponential in |x| for d ≥ 4, and sub-exponential when d = 3.

Large-deviation questions in the supercritical regime u < u∗ have also attracted considerable
attraction in recent years. These include disconnection questions of macroscopic ‘regular’ bodies
in the supercritical regime of Vu [51, 70, 55, 21], and the related (but much harder) ‘droplet’
problem, which relates to the possible emergence of a macroscopic shape when an excessive
fraction of sites inside a large box gets disconnected by Iu for u < u∗; see [71, 75, 72, 74]. The
resulting upper and lower bounds on these deviant events can now be propitiously combined
with the knowledge of Theorem 1.2,i) and ii) (which is tantamount to the equality ū = u∗∗
between critical parameters; see (1.21) and the discussion in §1.3 below) to produce precise
matching asymptotics. This is compelling notably because it gives credit to certain ‘scenarios’
used to derive these bounds as identifying the correct phenomenology lurking behind these
large-deviation constraints.

To give but two examples of this, let V denote the complement in Zd of the range of a
simple random walk started at the origin under P0. Owing to [70, Corollary 7.4] on the one
hand and [50, Theorem 0.1] (see also (0.5) therein, as well as [51] for a corresponding result for
interlacements) on the other, one knows that for all d ≥ 3,

lim inf
N

1

Nd−2
logP0[∂BN

V
6←→ ∂B2N ] ≥ −u∗∗

d
capRd

(
[−1, 1]d

)
,

lim sup
N

1

Nd−2
logP0[∂BN

V
6←→ ∂B2N ] ≤ −u

d
capRd

(
[−1, 1]d

)
;

(1.16)

see also [50] and [55, Corollary 4.4] when the disconnected set is not a box, and possibly non-
convex. Here u∗∗ and u (see (1.19) and (1.20) below for their precise definition) refer to the
aforementioned auxiliary critical parameters, which satisfy ū ≤ u∗ ≤ u∗∗, and above (resp. be-
low) which (1.12) (resp. (1.13)-(1.14)) hold by definition. As a consequence of our main result,
these thresholds each coincide with u∗ (cf. (1.21) below), thus yielding, together with (1.16),
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that

(1.17) lim
N

1

Nd−2
logP0[∂BN

V
6←→ ∂B2N ] = −u∗

d
capRd

(
[−1, 1]d

)
.

Importantly, and much in spirit as in the statement of Theorem 1.1, (1.17) exhibits the threshold
u∗ one gains access upon introducing interlacements (see (1.5)) as an intrinsic quantity associated
to the simple random walk on Zd.

In a similar vein, consider now CuN , defined as the union of ∂BN and the connected compo-
nents of Vu intersecting it. By combining Theorem 1.2 with [74, Theorem 5.1], [75, Theorem
6.1] (see also Prop. 6.5 and (6.32) therein) and [73, Theorem 0.2], one obtains that for all u < u∗
and ν ∈ [θ̄∞(u), 1), with θ̄∞ = 1− θ∞, cf. (1.5)),

(1.18) lim
N

1

Nd−2
logP

[
|BN \ CuN | ≥ ν|BN |

]
= −Ju,ν ,

where Ju,ν is a rate function encompassing a certain constrained variational problem for the
Dirichlet energy over a well-chosen class of (non-negative) test functions ϕ, see [75, (6.32)],
for which 2−d

∫
[−1,1]d θ̄∞

(
(
√
u + ϕ)2

)
dz > ν, thus reflecting at the continuous level the density

constraint appearing in (1.18). An intriguing question concerns the nature of the subset (of Rd)
where minimizers, which are known to exist [73], attain their maximal value

√
u∗−

√
u, cf. [74].

We refer to [10, 15, 14] for works on corresponding questions in the context of the Ising model
and Bernoulli percolation for d ≥ 3, which due to their short-range nature, lead to surface order
rather than capacitary problems in analogues of (1.18).

We conclude with a few remarks on the critical regime defined by the transition of Theo-
rems 1.1 and 1.2. Very little is known rigorously about Vu∗ (or Vu∗N ). Recent simulations [20]
on T indicate that the transition is indeed continuous, and (within error bars) that the critical
exponents describing the critical and near-critical behavior of Vu∗ in dimension 3 correspond
to those derived rigorously in [32, 31] for a related bond percolation model involving the GFF,
which exhibits the same type of long-range decay as (1.9). These exponents exhibit both scaling
and hyperscaling, but do not coincide (numerically) with the expected exponents for short-range
percolation models, and thus appear to constitute a different, long-range ‘universality class’. Any
progress on questions aimed at rigorously describing the (scaling) behavior of Vu for u near u∗
would of course be a significant advance.

1.3. Critical parameters for random interlacements. We now discuss how our results
relate to various critical parameters previously introduced in the literature. We refer to [33,
Section 9.3] for pertinent (if slightly outdated) historical background; see also further refs. below.
Two important such parameters, alluded to in §1.2, are

u∗∗(d)
def.
= inf

{
u > 0 : ∃c = c(u, d) > 0 such that lim

R
eR

c
P[0

Vu←→ ∂BR] = 0
}

(1.19)

ū(d)
def.
= sup

{
s > 0 : V strongly percolates at level u, v for all 0 < v < u < s

}
,(1.20)

where strong percolation refers to the occurrence of the events (1.10)-(1.11), cf. also Theo-
rem 1.2,ii). With the help of these, Theorem 1.2 can be rephrased as follows:

(1.21) ū(d) = u∗(d) = u∗∗(d), for all d ≥ 3.

The definitions of u∗∗ and ū given in (1.19) and (1.20) are most useful in applications as they
give strong quantitative information on the different phases of the model. As explained in §1.2,
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there is by now a series of works which are ‘conditional’ on Theorem 1.2, in the sense that
their results become effective with the equality (1.21): a prototypical example is a pair of upper
and lower bounds on a quantity of interest, each involving one of ū or u∗∗, which match as a
consequence of Theorem 1.2; see the above discussion around (1.18) for more on these matters.

In order to establish their equality, it helps to work with the weakest possible definitions of
u∗∗ and ū, thus making them intuitively ‘closer’ to each other. We now introduce these weaker
versions of the critical values u∗∗ and ū, which will be instrumental in our proof. Considerable
effort has been previously devoted to weakening the defining condition in u∗∗. For our purposes,
it will be sufficient to know that (cf. (1.19))

(1.22) u∗∗(d) = inf
{
u > 0 : inf

R
P[BR

Vu←→ ∂B2R] = 0
}
.

In particular, the condition appearing in (1.22) yields useful connectivity estimates in the regime
u < u∗∗, see e.g. (6.1) below or [37, Lemma 2.2]. In fact u∗∗ was originally introduced in [67]
with a polynomial decay condition for the probability appearing in (1.22), which was shown in
[66] to imply the stretched exponential decay asserted in (1.19). The polynomial speed condition
was then removed (among others) in [69], yielding (1.22) in its present form, and as shown in
[56], it is enough for the infimum to fall below an explicit constant c = c(d) > 0.

The supercritical phase has comparatively seen less progress. By renormalization arguments,
one knows for instance that the rapid decay exhibited in (1.13)-(1.14) follows as soon as the
probabilities in question decay to 0 as R → ∞, but little is known otherwise. Note that, by
requiring Exist(R, u) and Unique(R, u, v) to occur simultaneously for all scales R = R02k for
R0 ≥ 1 and k ≥ 0, and at levels v < u < ū, one readily infers using (1.13)-(1.14), a union bound

and a straightforward gluing argument involving (1.10) and (1.11), that P[BR0

Vv←→ ∞] → 1 as
R0 → ∞, whence ū ≤ u∗ in view of (1.20). Moreover, by [34, Theorem 1.1], see also [77] for
d ≥ 5, one knows that ū is non-trivial, i.e. ū > 0 for all d ≥ 3. For completeness, we mention
that even stronger notions than (1.20) have appeared in the literature, involving any of: i) no
sprinkling, i.e. picking u = v in (1.11) and (1.20), see e.g. [34, (1.3)]; or even ii) requiring strong
percolation in (1.20) to hold for all u < s and some v ∈ (u, s), see e.g. [78, (2.16)], see also [30,
Remark 8.9,3)], where this stronger uniqueness property is established in a non-perturbative
regime; or iii) requiring uniformity of the constants c, C in (1.13)–(1.14) over compact intervals
of u, v, see [73, (2)-(3)], where it is used in combination with i). We will not deal with these
stronger notions in the present work; see [44] for more on this.

As much as the defining features of ū yield deep insights in the phase u < ū, that, together
with Theorem 1.2, turn out to apply to the entire supercritical regime u < u∗, the implications
of the condition u > ū are unwieldy. Closer in spirit to (1.22), we define a parameter, first
introduced in [37], given by

(1.23) ũ = ũ(d) = sup
{
u > 0 : lim inf

R
(M/R)d P[BR

Vu
6←→ ∂BM ] ≤ α

}
,

with α = α(d) > 0 as supplied by [37, Theorem 1.1],

(1.24) M = M(R) = exp
{

(logR)γM
}

and γM large enough, as for [37, Corollary 1.2] to hold. The regime u > ũ characterizes a region
of parameters in which, borrowing a term from [55], de-solidification effects occur. Indeed, note
that for every u > ũ, the negation of (1.23) implies that disconnection events are not too unlikely,
in a manner which is quantitative in the scale M(R). This force, together with its counterpart
corresponding to the condition u < u∗∗ (see (1.22)), will play a fundamental role in the sequel.
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1.4. Discussion of the proof of Theorem 1.2. Recent sharp threshold results for a wide
range of dependent percolation models, see e.g. [39, 41, 29, 63, 25] and references below, see
also [52, 3, 42] in the case of Bernoulli percolation and the Ising model, have shown that the
probabilities of connection events quickly decay when incrementing the parameters starting from
a value for which disconnection events are not too unlikely (as is the case above ũ). Among
such models, so-called k-dependent models that satisfy a uniform finite-energy property are of
particular interest. Here k ≥ 0 parametrizes the (finite) range of spatial dependence.

Key features. The vacant set of random interlacements however is anything but a k-dependent
percolation model, and very far from satisfying the finite-energy property, let alone a uniform
one, as we will shortly elaborate. The high-level strategy of the proof will be to interpolate, in
a sense to be made precise, between our model and k-dependent percolation models for varying
choices of k. An important stepping stone towards this interpolation is a propitious approxima-
tion of the vacant set Vu = Zd\Iu by a truncated version Vu,L = Zd\Iu,L ‘localized’ (temporally)
at scale L, i.e. comprising trajectories of (time-)length L, which roughly corresponds to choosing
k ≈
√
L. We will soon describe this interpolation in more detail. It is delicate. To wit, see for

instance (1.27), (1.31) and (1.37) below, see also Figure 1.
There are several serious obstructions to implementing anything close to the strategy outlined

above. We now highlight some of these, which gives insights into some of the central issues we
have to face up to. Our previous work [36] successfully managed to leverage a certain finite-range
approximation of the Gaussian free field (GFF), which bears a long-range dependence akin to
(1.9), in order to derive an analogue of the equality ū = u∗ = u∗∗ for excursion sets of the
GFF; see also [54] for a different argument yielding subcritical sharpness, i.e. the analogue of
the equality u∗ = u∗∗, including generalizations to a class of Gaussian percolation models, and
also [35, 4] for inspirational interpolation techniques, albeit in a different context. These works
all crucially exploit a very specific (multi-scale white-noise) decomposition of the underlying
Gaussian field over scales, which harnesses the Gaussian nature of the problem; cf. also [62, 7].

In the present context, a first and immediate obstruction is to give meaning to a multi-scale
approximation of Vu. One can no longer exploit the structural properties of the Gaussian setup.
In fact matters are rather worse owing to degeneracies in the law of Vu, which arise in multiple
ways. For example, they preclude the ‘ellipticity’ of the conditional law of Vu that any analogue
of a finite-range decomposition would necessarily imply: indeed, unlike in the setup of [36] for
instance, a point is forced to lie in Vu whenever its neighbors do (a manifestation of the lack
of finite energy mentioned above). In particular, this means that there is no analogue of a
finite-range decomposition in the present context. This absence is also linked to the fact that for
every u > 0, an infinite component is present in Iu = Zd \ Vu (in fact, Iu is connected for every
u > 0, see [68, Cor. 2.3], so Iu consists of a single infinite component), and that Iu corresponds
to a (degenerate) ‘hard threshold’ limit α ↓ 0 for the excursion sets {`u· > α} of the occupation
time field (`ux)x∈Zd of interlacements, see [61]. Incidentally, let us also mention [63, 64], where a
(soft) shift argument is employed to deal with certain degeneracy issues stemming from analytic
rigidity effects in the context of (smooth) Gaussian fields with short-range correlations.

To tackle the issue of decomposing the problem over scales, we initiated in our companion
article [38] a different pathway using coupling, which will play a central role in this work.
Although appealing, an approach involving ‘massive’ interlacements, i.e. including a uniform
killing measure, does not distinguish sharply between scales, see Remark 3.1 for more on this.
By pushing existing coupling techniques, see e.g. [69, 78, 56, 18, 57, 22, 5, 11], one can compare Vu
with Vu,L favorably in the sub-diffusive range, i.e. inside regions with diameter�

√
L. However,
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in order to navigate the dependence inherent to the model Vu,L, which has an ‘effective’ range
≈
√
L, we need to be able to compare the two models in regions well above the diffusive scale

√
L.

Indeed, leveraging the independence properties of Vu,L typically warrants ‘losing information’
at scales &

√
L, which in turn inevitably leads to ‘reconstruction’ problems around these scales.

Notice that across range
√
L, the length-L trajectories essentially become stripped of their long-

range structure and behave increasingly like ‘dust particles’. One of the most important features
of our coupling results in [38] is to manage to cross over this barrier between super- and sub-
diffusive scales. This feature also permeates the present paper, as will become apparent in the
discussion below: sub- and super-diffusive scales are treated in distinctive manners, and the most
uncompromising difficulties arise at near-diffusive scales, at which the cross-over for length-L
trajectories occurs.

Finally, let us point out that the severe degeneracies in the conditional law of Vu alluded
to above have very serious ramifications for performing surgery arguments involving clusters,
for which some form of finite energy is often a key. This is felt all the more so in situations
where we want to preserve a non-local condition like pivotality, see, e.g. (1.32) below. To get a
sense of what this entails in practice, we refer the reader to the ‘path reconstruction’ arguments
described at the start of Section 8.

Overview of the proof. We now return to our interpolation scheme and discuss informally
the truncated models Vu,L localized (temporally) at scale L that will be used in our approxima-
tion; their formal definition is postponed to Section 4. They correspond to a special (spatially
homogenous, cf. §4.1) example drawn from a more general class of models Iρ introduced in
Section 3 (see (3.1)-(3.3)), which will account for all our needs. Let Px denote the canonical law
of the discrete-time (lazy) random walk on Zd started at x and X = (Xn)n≥0 the correspond-
ing process; see §2.1 for precise definitions. We consider the product measure ν on R+ ×W+,
where W+ is the space of forward Zd-valued trajectories (supporting Px), see below (2.10),
characterized by

(1.25) ν([0, u]×B) = u
∑
x∈Zd

Px[X ∈ B],

for any event B measurable for X. We then introduce the Poisson point process ω on R+×W+,
defined on its canonical space (Ω+,A+), having intensity ν. Its construction is standard as ν is
σ-finite. For an arbitrary (density) function f : Zd → R+, we then define, if ω =

∑
i δ(ui,wi),

(1.26) J f,L = J f,L(ω) =
⋃

i :ui≤ 4d
L
f(wi(0))

wi[0, L− 1],

where wi[0, L] = {x ∈ Zd : x = wi(t) for some 0 ≤ t ≤ L}. The factor 4d appearing in (1.26)
is a matter of convenience. In words, J f,L comprises the first L steps (including the initial
position) of the traces of a Poissonian number of random walk trajectories, started with density
proportional to 1

Lf(·). For u ≥ 0, we write J u,L whenever f(x) = u for all x ∈ Zd. The
random set J u,L is translation invariant, and converges in law (in the sense of finite-dimensional
marginals) as L → ∞ to Iu defined by (1.2), see (3.10). Models of this and similar kind have
appeared in the literature, see e.g. [12, 60, 11].

The approximation Iu,L of Iu mentioned above shares this property, see (4.7), but cor-
responds to a carefully chosen ‘noisy’ version of J u,L, see (4.5) in §4.1. The more involved
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definition of Iu,L over J u,L has technical reasons. Informally, the noised version Iu,L of the
process J u,L, whose vacant set will define Vu,L, is obtained in two steps:

(1.27)



- first, one defines another random interlacement set J εLσ,L, where εL is
of order inverse poly-log (see (4.6) for the precise value) and σ is random
and chosen as follows: paving Zd into boxes B of radius L, one roughly
sets σ =

∑
B σB, where the σB’s are i.i.d. mean one Poisson variables;

- second, one resamples the state of every vertex in the set J u,L ∪J εLσ,L
in an i.i.d. fashion with a very small probability e−L.

We are now ready to state the first main step of the proof, which in itself already highlights
a number of key issues. Recalling M(R) from (1.24), set

(1.28) M0(L) = 103M(103L).

We focus on the comparison of ‘connection events’ {Br ←→ ∂BR} between the full and truncated
vacant sets (Vu)u>0 and (Vu,L)u>0. Following our policy regarding constants stated at the end
of this introduction, c, C ∈ (0,∞) denote generic constants depending only on the dimension d.
The following result will be obtained as part of Corollary 5.2 below, see also Remark 5.3.

Proposition 1.3. For all δ ∈ (0, 1
2) and γ ≥ C, there exists L0(δ, γ) > 1 such that for all

ũδ−1 > u > ũ(1 + δ), all L ≥ L0 integer power of 2 and r,R ≥ 1 satisfying 2r ≤ R ≤ 2M0(L),

P[Br
Vu,L←−→ ∂BR] ≥ P[Br

Vu(1+(logL)−3)

←−−−−−−−−→ ∂BR]− exp{−(logR)cγ},(1.29)

P[Br
Vu,L←−→ ∂BR] ≤ P[Br

Vu(1−(logL)−3)

←−−−−−−−−→ ∂BR] + exp{−(logR)cγ}.(1.30)

This result may be surprising at first sight. For, when looking at a box of size R, it is fairly
believable (but not that easy) to compare Vu and Vu,L when L � R2. Indeed, the latter is
mostly composed of walks of length L that rarely start inside the box and therefore naturally
lend themselves to a comparison with the walks ‘arriving from infinity’ comprising Vu. It is
much more surprising that one may achieve the comparison of Proposition 1.3 up to walks of
length L(R) ≈ exp{(logR)1/γM } (which is sub-polynomial in R), corresponding to the smallest
scale L which is a power of 2 and for which 2M0(L) ≥ R, cf. (1.28) and (1.24). The proof of this
proposition will already occupy large parts of Sections 4 and 5 (until the end of §5.1) and will
involve a series of couplings; see in particular Theorems 3.2 and 3.4, as well as Proposition 4.3
(derived from them), which plays a central role in the argument. It is important to realize that
the proof of Proposition 1.3 (which is but a first step) and above all the underlying couplings that
allow to compare (Vu)u>0 and (Vu,L)u>0 rely on novel techniques, some of which are delegated
to another article [38] not to make the present one too long.

These couplings are in fact used in several places and of independent interest. At their heart
lies the fact that we can afford to compare the two random interlacements of interest on BR \O,
where O is called obstacle set. This possibility is offered by the fact that we work above ũ (cf. the
statement of Proposition 1.3) and that we can use the disconnection events to reconstruct the
geometry of certain connected components in the vacant sets in an efficient way. A good mental
picture is that the obstacle set O is the union of many small boxes (the obstacles) inside BR, in
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which incoming pieces of random walk trajectories can be glued together to form longer ones.
In practice, we typically only build a small fraction of trajectories at a time. The remaining
bulk contribution is left untouched and used to generate O, which is random. In a loose sense,
the set O exploits a certain exchangeability present in the models at mesoscopic scales.

The obstacle set O will only feature indirectly in the present article: it is a crucial ingredient
for the proof of the coupling exhibited in Theorem 3.4, which is obtained as a direct consequence
of the results of [38]. We wish to emphasize that the definition of O, which lurks in the back-
ground of Theorem 3.4, is a delicate matter. In particular, the parameters associated to the
obstacle set (obstacle size vs. separation) need to balance opposite forces: indeed one intuitively
wants ‘as much exchangeability’ as possible, which manifests itself as requiring a high ‘surface
density’ of incoming trajectories on each obstacle comprising O. This feature tends to improve
the smaller the obstacles get. On the other hand, they need to remain sufficiently visible for
the walks. We defer a thorough discussion of these matters to [38]; see, in particular, (1.9) and
(1.10) therein, along with the discussion in [38, §1.2].

Suppose now that Proposition 1.3 is proved. At this stage, notice that walks involved in the
definition of Vu,L(R) will be of size much smaller than R. Still, we need to pursue our comparison
to reach the set Vu,L0 , with L0 independent of R, which is a 2L0-dependent percolation model
with a finite-energy property, for which we can use available sharp threshold results. To go down
from scale L(R) to L0, we will compare Vu,2L and Vu′,L, where u′ is close to u. This will be

done by incrementing between Vu,2L and Vu′,L using intermediate models Ṽu,Lk and Vu,Lk , each

corresponding to one of two possible directions (cf. (1.29) and (1.30)). We simply write Vu,Lk
when referring to either choice.

We now provide an idea of what these two processes look like by defining a baby version of
Vk = Vu,Lk , as follows (we return to the legitimate question as to why what follows is not the
full story at the end of this proof outline). With a slight abuse of notation, we still refer to
these simplified processes as Vk, but stress that their informal character (see e.g. (1.31) below)
only serves the expository purposes of this introduction. The reader is referred to Section 4 for
precise definitions. Consider now the partition BL of Zd provided by the boxes used to define
Vu,L and set Ak for every k ≥ 0 to be the union of the (k + 1) first boxes in this collection.
Then, (the baby version of) Vk is a noised version of the process

J u′1Ak ,L ∪ J u(1−1Ak ),2L,

with u′ close to u, obtained in two steps:

(1.31)



- first, one introduces to the picture another random interlacement set
J εLσ1Ak ,L∪J ε2Lσ(1−1Ak ),2L, where εL, ε2L and σ are defined as in (1.27);

- second, one resamples independently the state of each vertex in
J u′1Ak ,L ∪J u(1−1Ak ),2L ∪J εLσ1Ak ,L ∪J ε2Lσ(1−1Ak ),2L with a probability
e−L for sites in Ak, and e−2L for the remaining sites.

For simplicity, we ignore in the following discussion the second step in (1.31), which is anyways
simple to handle. The construction of Vk roughly resembles the one of Vu′,L in Ak and Vu,2L out-
side Ak; see Figure 1. Notice that this process is 2L-dependent and spatially inhomogenous. We
also define Vk+1/2 exactly as Vk+1 except that we do not include the union with J ε2Lσ(1−1Ak ),2L

in the first step of (1.31). Hence, we immediately find that Vk+1/2 ⊃ Vk+1.
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Figure 1 – From Vk to Vk+1 in a pivotal configuration around x. In going
from k to k + 1, length-L walks of intensity u in the box around xk are replaced
by length-2L walks, with a sprinkled intensity u′ (grey area). The sets Cr and CR,
representing the clusters of ∂Br and ∂BR in Vk+1 ∩ BR are disconnected and in
a pivotal configuration near x, as typically encountered in the process of bounding
f(x) in (1.35). The circular red arcs around xk hint at the fact that, contrary to
the ‘baby’ version of the process Vk from (1.31), the ‘true’ process Vk introduced
in Section 4 includes random sprinkling not only localized around xk, but spreading
everywhere in space (red), with intensity decreasing radially away from xk. The red
boxes correspond to regions in which the random sprinkling is (abnormally) large,
i.e. of order εL, as needed to perform surgery in their vicinity. The necessity for this
is related to the iterative scheme in which the difference estimate (1.35) is applied,
which requires understanding f(x), see (1.34), for a generic argument x, and not only
for x = xk.

In an ideal world, one would manage to compare Vk and Vk+1 (for instance looking at the
probability of the event {Br ←→ ∂BR}) using the fact that the two processes only differ because
of walks (and noise) sampled from the (k+1)-st box B. In order to prove such a fact, we will rely
on a coupling similar to the one used to prove Proposition 1.3 above, which allows to compare
interlacements comprising walks of length L and length 2L. This will essentially yield that
with good probability, Vk ⊃ Vk+1/2(⊃ Vk+1). Unfortunately, it will happen that the coupling
between these processes fails. This is not an artefact of our method: indeed coupling with
perfect inclusion across all scales would imply similar large-scale behavior of observables, which
are however known to change as L→∞, e.g. from surface to capacity order; see (1.2) or (1.17)
for instance.

In case of coupling failure, we aim to leverage the fact that the probability of such a failure
is the product of two contributions: first the coupling needs to fail locally, which will have
tiny probability of order exp{−(logL)γ} and depends only on what happens in the box B̃ ⊃ B
of size CL concentric with B, but in addition this failure should impact the occurrence of
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{Br ←→ ∂BR}. This is only possible if the pivotal event Piv
B̃

(Vk+1/2) occurs, where

(1.32) PivK(V)
def.
=
{
Br

V∪K←−−→ ∂BR, Br
V\K
6←→ ∂BR

}
,

for V,K ⊂ Zd and R ≥ r ≥ 0. Overall, we will thus (roughly, cf. (5.15)) get that

(1.33) P[Br
Vk+1/2←−−−→ ∂BR] ≤ P[Br

Vk←→ ∂BR] + exp{−(logL)γ}f(xk),

where xk refers to the center of the box B̃ and, writing L for the lattice consisting of all centers
of boxes in the collection BL that partition Zd (to which xk belongs), we introduce

(1.34) f(x) = P[PivB(x,CL)(Vk+1/2)], for x ∈ L.

The core of the argument will be to prove that the small additive error term arising in (1.33)
can be compensated in a second step by passing from Vk+1/2 to Vk+1, i.e. that it is bounded
for values of u around u∗ and at scales R(≥ 2M0(L)) in the regime complementary to that of
Proposition 1.3 by a ‘discrete gradient’ of the form

b = P[Br
Vk+1/2←−−−→ ∂BR]− P[Br

Vk+1←−−→ ∂BR] = P [Br
Vk+1/2←−−−→ ∂BR, Br

Vk+1

6←→ ∂BR] (> 0).

We refer to Proposition 5.1 for the exact result. In summary, owing to (1.33), the game is over
once we have that e−(logL)γf(xk) ≤ b. As we now explain, the prof of this inequality is a very
difficult game to win, and it occupies most of this article. We will obtain the desired estimate
by iterating a functional inequality for the function f = f(·) in (1.34) of the form

(1.35) f ≤ b · g + e−(logL)cγ Āf

(see Proposition 5.4 for the precise statement). Observe that (1.35) is an inequality between
functions defined on L. Here b is our discrete gradient around xk (a scalar), g = g(·) is a
certain cost function satisfying log(g) = o((logL)γ) as L → ∞ that captures the cumulated
price of reconstructing b out of the box pivotality, and (Āf)(x) refers to a local average of f
in a neighborhood of x ∈ L roughly of size M0. Iterating (1.35) and evaluating at x = xk, the
desired bound relating f(xk) to b quickly follows. Proving (1.35), which is key to the argument,
will take us on a long expedition starting from §5.3 onwards.

Let us now outline how (1.35) comes about. First, we will use disconnection estimates to
prove that the probability of pivotality of the box B̃ inherent to f(xk) can be expressed in terms
of the probability of closed pivotality of a much bigger box of size roughly M0(L), where closed
pivotality of a set K refers to the event

(1.36) PivK(V)
def.
= PivK(V) ∩ {Br

V
6←→ ∂BR}.

This readily takes care of the disconnection condition that forms part of b, at the cost of for-
feiting information inside the large box of size approximately M0(L). However, producing a
configuration in b further requires building a full connection in V̂k+1/2, all while preserving this
disconnection. We think of this in terms of progressively reducing the separation between the
clusters of ∂Br and ∂BR, or, equivalently, narrowing down the region of (closed) pivotality, which
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to begin with is a box of size about M0(L), until we eventually reconstruct a configuration in
b, up to a not too large multiplicative cost factor given by g. We will describe the process of
shrinking the cluster separation (or pivotal region) momentarily. Notice though that all efforts
to do this may fail at various stages of the argument, but if they do then typically on some bad
event of small probability e−(logL)cγ . Roughly speaking, the second term on the right-hand side
of (1.35) accounts for this possibility.

We now enter the heart of the argument: reducing the size of the pivotal region. This is
performed in two steps, which deal with complementary sets of scales, and are fundamentally
different. First, in Lemma 5.5, we will essentially find a closed pivotal box T of intermediate
(but super-diffusive) size RT =

√
L · (logL)C . Second, Lemma 5.6 will establish that one can in

fact go from the closed pivotality of T to a configuration in b (which roughly corresponds to a
closed pivotality at scale 1).

The scale
√
L does not come out of thin air. At scales �

√
L, the walks of length L and 2L

constituting Vk+1 are essentially dust-like. At scales significantly below
√
L, they start to look

back like random interlacements and become infinitely long for practical purposes. Managing
the cross-over at the diffusive barrier to ‘transform the dust into random walks’ is the most
challenging part of the argument. For this purpose, it is in fact crucial that T not be a box, but
rather a tube of thin cross-section rT =

√
L · (logL)−C

′
, whose long direction RT minimizes the

distance between the two clusters at the outcome of the first step. Inside T , we can no longer
work directly with Vk+1. Its finite-range property is essentially useless, at the same time the
truncation to time-length ≈ L is severely felt from a random walk perspective. To deal with
this, we introduce a local modification, VT roughly obtained as follows: starting from Vk+1,

(1.37)



- first, one removes all trajectories that start inside a slightly bigger tube
T ◦ (with rounded cross-section);

- second, one lets the walk ‘run freely’ inside an intermediate tube T ′

with T ⊂ T ′ ⊂ T ◦, so that time only accumulates towards the fixed time
horizon (L or 2L) when the random walk travels outside of T ′.

These properties are designed to exhibit a picture resembling that of a normal interlacement
inside T , which in turn reinstates various desirable tools, notably a conditional decoupling which
is heavily relied on in our construction of the path. Crucially, the geometric features of T ensure
that (1.37) is not tampering too much with the configuration (for instance walks tend to quickly
exit through the short sides), so that with high probability, one has that

(1.38) Vk+1 ⊂ VT ⊂ Vk+1/2

(cf. Lemma 7.2). Yet again, the general coupling results developed separately in our companion
article [38] crucially enter in establishing (1.38), which is far from innocent to show.

The actual path is then built in the configuration VT , which is typically in Vk+1/2 on account
of (1.38). We will not describe the specifics of the construction here (for further details the
reader is referred to the beginning of Section 8). We should mention that this part of the proof
will rely on a delicate hierarchical bridge construction, which is in fact also crucially at play in
the proof of the equality ū = ũ in our work [37]. This bridge, constructed in [37], is very different
from the ‘croissants’ used in the context of the GFF in our earlier work [36]. The present bridge
is much less ‘rigid,’ it leaves gaps at all scales, which are in order owing to the afore mentioned
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T ◦

T (⊂ T ′)

T ′

≈ rT

≈ RT

Figure 2 – The model VT . Green trajectories correspond to unconstrained random
walk bridges. Time only accumulates towards the fixed horizon in the black pieces.
These modifications are instrumental in order to ‘cross’ the diffusive barrier R ≈

√
L.

absence of finite energy and degeneracies in the occupation laws. Importantly, the configuration
VT , which looks like interlacements at near-critical intensity u ≈ u∗ inside T , inherits (almost)
polynomial lower bounds from Vu, which are used to build the path efficiently ‘on’ the bridge.
The resulting picture of the reconstructed path is that of a critical object: for instance, the
bridge region occupied by the path has Hausdorff dimension > 1.

To finish, we wish to highlight one last thing. Among other things, this also explains why

Vk as described informally in (1.31) is but a baby version of the actual processes Ṽu,Lk and Vu,Lk ,
which are more carefully designed. Due to the functional nature of the key inequality (1.35),
the argument x in f(x) bears no connection to the centre xk of the box where trajectories
are currently being swapped. This is not a side-note and owed to the non-local nature of our
argument: although eventually we aim to bound f(xk), iterating (1.35) really requires controlling

f anywhere in space. This is why Vu,Lk and Ṽu,Lk differ from (1.31) in that the random intensity
profile used to go from step k+ 1

2 to k+ 1 will in fact be a polynomially decaying infinite-range
profile instead of simply concentrated around the (k + 1)-st box. Moreover, the reader may
legitimately wonder why this sprinkling is random. This is because an inclusion such as (1.38)
actually requires a sprinkling of order εL = (logL)−C , no matter the location of the tube T
where the surgery is currently being performed. When iterating over k, sprinkling would thus
add up in units of εL everywhere in space, which would be catastrophic. Instead the average
sprinkling follows the profile of σ, which decays away from xk in step k → (k + 1), but the
randomness leaves the possibility to ask for an atypical sprinkling when need be, which, as will
turn out, comes at an affordable cost that can be absorbed in the pre-factor g.

1.5. Organization of the article. Section 2 introduces some notation and recalls various
facts about the simple random walk, potential theory, and random interlacements. It concludes
with the proof of how Theorem 1.1 is classically deduced from Theorem 1.2.

Section 3 brings in the models Iρ, parametrized by an intensity measure ρ allowing for
trajectories with both variable time-length and spatial intensity (§3.1). The setup is general
enough to fit all our needs, which comprise the models described informally in (1.27), (1.31)
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and (1.37). In §3.2 we then present the important couplings between models of type Iρ as ρ
varies. These will play a central role throughout. The proof of these couplings, which are of
independent interest, is included in [38] for the sake of room.

Section 4 introduces the models that will be used to approximate Vu and gathers their basic
properties. The homogenous models Vu,L = Zd \ Iu,L, corresponding to (1.27), are defined
in §4.1, their more elaborate (inhomogenous) counterparts Vu,L` = Zd \ Iu,L` , where ` is a half-

integer, in §4.2. The latter come in two variants, Vu,L` and Ṽu,L` , but most subsequent arguments

apply equally to both, in which case we simply write Vu,L` (see the convention (4.29)), as for the
remainder of this outline. The section culminates in Proposition 4.3 and its proof (§4.3), which
relates the models Vu,L` as ` varies.

Relying on this preparatory work, Section 5 begins the proof of Theorem 1.2, which is deduced
in §5.1 from two comparison inequalities, stated in Corollary 5.2, which subsumes Proposition 1.3
and includes the (harder) estimate in the complementary regime of scales R and L. These
comparison inequalities are reduced in §5.2 to the difference estimate stated informally in (1.35),
see Proposition 5.4. As detailed in §5.3, Proposition 5.4 follows from two difficult lemmas, namely
Lemma 5.5 and Lemma 5.6 below, that separately deal with the shrinking of the pivotal region
at super- and (near-)+(sub-)diffusive scales, respectively.

Section 6 contains the proof of Lemma 5.5. This requires two additional inputs. We first
gather (§6.1) important preliminary connection and disconnection estimates for Vu,L` , which are
inherited from Vu in suitable regimes of u by virtue of the couplings of Section 4. We then present
in §6.2 some estimates relating pivotality events for Vu,L` at different scales. The ingredients are
put together in §6.3, where the proof of Lemma 5.5 is presented.

Sections 7 and 8 are devoted to the proof of Lemma 5.6 that operates at near-diffusive scales
and below. As explained above, this requires extending the toolbox, as the models Vu,L` are no
longer functional at these scales.

To this effect, Section 7, which is organized in a similar fashion as Section 4, introduces a new
model, VT , described around (1.37) (§7.1). After deriving relevant random walk estimates related
to the cylinder T (§7.2), we prove in §7.3 an important conditional decoupling property for VT
(Lemma 7.1), to which the specifics of VT are tailored. The key is then to show that VT really

interpolates between Vu,Lk+1/2 and Vu,Lk+1 with very high probability; cf. (1.38) and Lemma 7.2.
Keeping the analogy with Section 4, one can view this as refining Proposition 4.3. The proof
of Lemma 7.2 is given in §7.4. This is the most involved coupling we will work with. Together
with the pivotality estimates of §8.1, corresponding to those of §6.2 but now involving VT , these
results constitute the extended toolbox for Lemma 5.6.

The proof of Lemma 5.6 unfolds over Section 8, which is organized similarly as Section 6.
In §8.2 we first construct an ‘almost-path’ with holes at the bottom scales, relying on a delicate
bridge construction exhibited in [37], where it is used for a related purpose, but for the full
model Vu rather than the more complicated VT . The holes are ‘plugged’ separately in §8.3.
Finally §8.4 wraps things up and concludes by giving the proof of Lemma 5.6, which assembles
the various elements.

Our convention regarding constants is as follows. Throughout the article c, c′, C, C ′, . . .
denote generic constants with values in (0,∞) which are allowed to change from place to place.
All constants may implicitly depend on the dimension d ≥ 3. Their dependence on other
parameters will be made explicit. Numbered constants are fixed when first appearing within the
text. To keep notations reasonable, a separate protocol is valid from §5.3 onwards (see below
(5.24)), allowing constants to depend on a larger set of parameters.
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2 Notation and useful facts

We write N = {0, 1, 2, . . . } for the set of nonnegative integers, N∗ = N \ {0}, R for the set of
reals and R+ = {x ∈ R : x ≥ 0}. We consider the lattice Zd, d ≥ 3 and denote by | · | and
| · |∞ the `2 and `∞-norms on Zd, respectively. We use ej , 1 ≤ j ≤ d, to denote the standard
unit vectors in the j-th coordinate direction and frequently write x ∼ y when |x − y| = 1 for
x, y ∈ Zd. For a set U ⊂ Zd, we write U c = Zd \ U for its complement (in Zd), ∂U for the
interior vertex boundary of U , i.e. ∂U = {x ∈ U : ∃y /∈ U s.t. y ∼ x}. We write ∂outU = ∂(U c)
for its outer vertex boundary, U = U ∪ ∂outU . The set B(U, r) = Ur =

⋃
x∈U B(x, r) denotes

the r-neighborhood of U , for r > 0, and U ⊂⊂ Zd means that U ⊂ Zd has finite cardinality.
We use the notations Br(x) = B(x, r) interchangeably to denote balls with radius r > 0 around
x ∈ Zd with respect to the `∞-norm and abbreviate Br = Br(0). We write d(·, ·) to refer to the
`∞-distance between subsets of Zd and d2(·, ·) for the Euclidean one.

2.1. Basic properties of random walk. We now introduce the random walks of interest

and recall a few elements of potential theory. We endow Zd, d ≥ 3, with the symmetric weight
function a : Zd × Zd → [0,∞) defined as ax,y = ay,x = 1 if x ∼ y, ax,x = 2d and ax,y = 0
otherwise, and write ax =

∑
y∈Zd ax,y (= 4d). We consider the discrete-time Markov chain on Zd

with transition probabilities p(x, y) =
ax,y
ax

, x, y ∈ Zd. We write Px for the canonical law of this

chain when started at x ∈ Zd and X = (Xn)n≥0 for the corresponding canonical process. We
often abbreviate X[s,t] = {Xn : s ≤ n ≤ t} for 0 ≤ s ≤ t. For a positive measure µ on Zd we write

Pµ =
∑

x∈Zd µ(x)Px. We refer to X as the random walk. Let pn(x, y) = Px[Xn = y], x, y,∈ Zd,
n ≥ 0, with p1 = p, denote the transition probabilities of X. Note that pn(x, y) = pn(0, y − x)
by translation invariance. We denote by Pn the corresponding transition operators, i.e.

(2.1) Pnf(x)
def.
= Ex[f(Xn)] =

∑
y

pn(x, y)f(y), x ∈ Zd

for any f : Zd → R (note that Pn effectively has finite range by time-discreteness so there is
no convergence issue in (2.1)). The family (Pn)n≥0 forms a semigroup, i.e. Pn+m = PnPm for
all integers n,m ≥ 0. We now recall a few elements of potential theory for X that will be used
throughout. We write

(2.2) g(x, y) =
∑
n≥0

a−1
y Px[Xn = y], for x, y ∈ Zd

for the Green’s function of X (more precisely its density with respect to a·). By translation
invariance g(x, y) = g(x+ z, y + z) for all x, y, z ∈ Zd and by [47, Theorem 1.5.4], one has that

(2.3) g(x)
def.
= g(0, x) ∼ c1|x|2−d, as |x| → ∞,

(where ∼ means that the ratio of both sides tends to 1 in the given limit), for an explicit constant
c1 ∈ (0,∞). We further define, for K ⊂⊂ Zd,

(2.4) eK(x) = axPx[H̃K =∞]1{x ∈ K},

the equilibrium measure of K, which is supported on ∂K. We denote by

(2.5) cap(K) =
∑
x

eK(x)
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its total mass, the (electrostatic) capacity of K and by ēK = eK
cap(K) the normalized equilibrium

measure. By [47, Prop. 2.2.1(a)], one knows that cap(·) is increasing, i.e.

(2.6) cap(K) ⊂ cap(K ′), for all K ⊂ K ′ ⊂⊂ Zd.

One further has the last-exit decomposition, see e.g. [47, Lemma 2.1.1] for a proof,

(2.7) Px[HK <∞] =
∑
y

g(x, y)eK(y), for all x ∈ Zd,

valid for all K ⊂⊂ Zd. Summing (2.7) over x ∈ K, one immediately sees that

(2.8)
(

max
x∈K

∑
y∈K

g(x, y)
)−1 ≤ cap(K)

|K|
≤
(
min
x∈K

∑
y∈K

g(x, y)
)−1

,

where |K| denotes the cardinality of K, which along with (2.3), readily gives, for all L > 0,

(2.9) cLd−2 ≤ cap(BL) ≤ CLd−2.

2.2. Random interlacements. We now introduce the interlacement point process, defined
on its canonical space (Ω,A,P), the construction of which we briefly review. We write W for the
set of doubly-infinite, nearest-neighbor transient trajectories in Zd (by which, slightly departing
from usual conventions, we include the possibility to stay put), that is

(2.10) W
def.
=
{

(wi)i∈Z ∈ (Zd)Z : |wi − wi+1| ≤ 1, i ∈ Z, and w−1({x}), x ∈ Zd, is finite
}
,

endowed with its canonical σ-algebra W. The corresponding canonical shifts are denoted by
θn : W → W , n ∈ Z, with θn(w)(·) = w(n + ·) and the canonical coordinates by (Xn)n∈Z. For
later reference, we also introduce W+, the set of one-sided trajectories (wi)i∈N with analogous
properties to (2.10), and its σ-algebraW+. The shifts θn, n ≥ 0, also act on W+. Note that W+

has full measure under the canonical law Px of X introduced at the beginning of Section 2.1.
We denote by W ∗ the set of trajectories modulo time shift, i.e. W ∗ = W/ ∼, where w ∼ w′ if
w = θn(w′) for some n ∈ Z, and by π∗ : W →W ∗ the canonical projection. We write W ∗K ⊂W ∗
for the trajectories visiting K ⊂ Zd. We use the shorthands w[s, t] = {w(n) : s ≤ n ≤ t} for
s ≤ t and w ∈W and similarly w[s, t] for w ∈W+ when s ≥ 0.

We write P for the probability measure governing a Poisson point process on W ∗ ×R+ with
intensity measure ν∞(dw∗)du, where du denotes the Lebesgue measure and for all K ⊂ Zd

1W ∗Kν∞ = π∗ ◦QK , where QK is a finite measure on W , and

QK [(X−n)n≥0 ∈ A, X0 = x, (Xn)n≥0 ∈ A′] = Px[A | H̃K =∞]eK(x)Px[A′],
(2.11)

for all x ∈ Zd and A,A′ ∈ W+, with eK as in (2.4). The existence of a unique measure ν∞
satisfying (2.11) was shown in [68, Theorem 1.1], see also [76, Theorem 2.1] for its generalization
to arbitrary transient weighted graphs (where ν∞ is denoted by ν – the hopefully suggestive
notation ν∞ is not without reason, cf. (3.2) and (3.4) below). The ‘lazyness’ inherent to X,
manifested by the presence of a non-vanishing conductance ax,x (cf. the beginning Section 2.1)
presents the benefit of avoiding certain parity issues, which is technically convenient. The
existence of ν∞ as in (2.11) falls into the realm of [76] if one includes an unoriented loop (self-
edge) of weight ax,x at every vertex. In fact, due to the transitivity of the weight function, our
setup corresponds exactly to that of [68] up to a global rescaling of u.
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Given a sample ω ∈ Ω under P, one defines the interlacement set

(2.12) Iu = Iu(ω) =
⋃

(w∗,v)∈ω, v≤u

range(w∗),

where, with a slight abuse of notation, in writing (w∗, v) ∈ ω we tacitly identify the point
measure ω with its support, a collection of points. For K ⊂ Zd, let µKu denote the point measure
on W+ defined as the push-forward of ω obtained by retaining only the points (w∗, v) ∈ ω such
that v ≤ u and w∗ ∈W ∗K and mapping them to the forward trajectory (∈W+) generated by w∗

upon first entering K. By (2.11), it follows that µKu is a Poisson process on W+ with intensity
νKu = uPeK [·] and by (2.12),

(2.13) Iu ∩K =
⋃

w∈µKu

range(w) ∩K,

from which (1.2) readily follows. We abbreviate µxu ≡ µ
{x}
u in the sequel.

The parameter u entering multiplicatively in the intensity measure νKu governs the number
of trajectories entering the picture, and thus controls the density of Iu (and Vu). It can be more
precisely characterised as follows. Let `u = (`ux)x∈Zd denote the field of (discrete) occupation
times under P, defined for x ∈ Zd as

(2.14) `ux(ω) = a−1
x

∑
(w,v)∈ω

∑
n∈Z

1{w(n) = x, v ≤ u}
(

= a−1
x

∑
(w,v)∈µxu

∑
n≥0

1{w(n) = x}
)
.

One readily finds using (2.14) and observing that µxu has intensity u
g(0)Px that

(2.15) E[`ux] = u, for all x ∈ Zd;

indeed, with N a Poisson variable having parameter u
g(0) and Xi, i ≥ 0, i.i.d. independent of N

and having the law of X under Px, the expectation on the left-hand side of (2.15) is seen to equal
a−1
x E[

∑
1≤i≤N

∑
n≥0 1{Xi

n = x}] = E[N ]g(x, x) = u; cf. (2.2). In words, (2.15) asserts that u
corresponds to the average number of visits at x by any of the trajectories in the interlacement
process at level u (i.e. comprising the points with label at most u).

2.3. Random walk on T. We conclude this section by deducing our main first main result,
Theorem 1.1, from Theorem 1.2. The interlacement point process was introduced in §2.2 in its
lazy version, which is convenient for later purposes. For the sake of proving Theorem 1.1, and
within §2.3 only, we tacitly modify the definition of Vu = Zd \ Iu in (2.12) to include all points
with label v ≤ u

4d (rather than v ≤ u), which amounts to an inconsequential rescaling.
We now recall the following link between Vu and VuN from (1.1). For all N ≥ 1, 0 < u0 < u1,

δ, ε ∈ (0, 1), writing QN = ([0, (1− δ)N)∩Z)d, there exists a measure Q governing the joint law
of (Vu(1−ε),VuN ,Vu(1+ε))u∈[u0,u1] with the property that

(2.16) Q
[(
Vu(1+ε)∩QN

)
⊂
(
VuN ∩π(QN )

)
⊂
(
Vu(1−ε)∩QN

)
, for all u ∈ [u0, u1]

]
≥ 1−Ce−cNc

,

for some c, C ∈ (0,∞) depending on u0, u1, δ, ε and d only; see [18, Theorem 4.1] and [57] for
a streamlined proof; see also [8, 78, 79] for earlier results of this kind. In fact the error term
on the right-hand side of (2.16) can be made quantitative in all the parameters but its present
form will be sufficient for our purposes.
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Proof of Theorem 1.1. We start with (1.7). Thus, let u > u∗ and pick ε = ε(u) ∈ (0, 1) such
that u(1− ε) > u∗. From (1.12) in Theorem 1.2,i), it follows that

(2.17) P[0
Vu(1−ε)
←−−−→ ∂BR] ≤ C(u)e−R

c2
, for all R ≥ 1,

where c2 = c2(u). Let Cux ⊂ T denote the cluster of x ∈ T in VuN , cf. (1.1), and fix a reference
point 0 = π(0). It follows in turn from (2.17) and (2.16) (applied with δ = 1

2 say) and the
isoperimetric inequality on Zd that for all t,N ≥ 1,

(2.18) P [|Cu0 | ≥ t]

≤ P
[
diam(Cu0 ) ≥ c(t ∧N)

1
d
]
≤ P

[
0
VuN←→ ∂Bc′(t∧N)1/d

]
≤ C(u) exp

{
− c(t ∧N)

c2
d
}
.

Let λ = 2d
c2

and tN = (logN)λ. Since the event of interest in (1.7) can be expressed as {|Cumax| ≥
t} =

⋃
x∈T{|Cux | ≥ t}, by a union bound, translation invariance of P and (2.18), it readily follows

that P [|Cu0 | ≥ t] is bounded for all N ≥ 1 and t ≥ tN by the right-hand side of (2.18), up to
possibly adapting the constants C(u) and c in the exponent. From this, (1.7) is immediate since
P [|Cu0 | ≥ t] vanishes for t > |T| = Nd.

We now show (1.8) and begin with the item in the second line. With hopefully obvious
notation, for R ≥ 1, u > 0 and z ∈ Td, we write Ez(R, u) for the analogue of Exist(R, u) in

(1.10) obtained by replacing Vu by VuN and BR by BT(z,R)
def.
= π(B(ẑ, R)) with ẑ ∈ Zd any

point in π−1({z}), and similarly Uz(R, u, v), cf. (1.11), and omit the subscript z when z = 0.
Combining (1.13) and (1.14) from Theorem 1.2ii) and the coupling (2.16), one finds that for all
0 < v < u < u∗ and all 1 ≤ R ≤ N

10 ,

(2.19) P [E(R, u)c] + P [U(R, u, v)c] ≤ Ce−R
c
,

with constants C, c depending on u, v; in applying (2.16), one notes that U(R, u, v) is increasing
in u and decreasing in v. For n ≥ 1, define Tn ⊂ T as Tn = π(K) where K = {x ∈ nZd :

B(x, n) ∩
(
[0, N) ∩ Z

)d 6= ∅}. Now, for all u < u∗ and ε ∈ (0, 1) and 100 ≤ t ≤ N
10 , as we now

explain,

(2.20)
⋂

z∈Tbt/8c

Ez(
t
8 , u) ∩Uz(

t
4 , u, u(1− ε)) ⊂

{
all clusters of Cu>t are part of

the same cluster of Vu(1−ε)
N

}
.

Indeed, let C ∈ Cu>t be any cluster of VuN having diameter at least t. Picking z0 ∈ C any of
two points of C at distance at least t, and z ∈ Tbt/8c nearest to z0, it follows that BT(z, t4) ∩ C
contains a connected component of diameter at least t

8 , and Uz(
t
4 , u, u(1− ε)) implies that this

component is connected to all clusters of BT(ẑ, t4) ∩ VuN of diameter at least t
20 inside Vu(1−ε)

N

(the existence of at least one such cluster is guaranteed by Ez(
t
8 , u)). The latter clusters are

all connected as z varies on the event on the left of (2.20), and the inclusion in (2.20) follows.
Taking complements, applying a union bound over z and using (2.19), the second line of (1.8)
follows upon choosing tN = (logN)λ for large enough λ, first for tN ≤ t ≤ N

10 , and with it for
all larger t by monotonicity and since the event in question is empty for t > N

2 .
We now show the first item in (1.8) and start by arguing that for all ε > 0 and u < u∗, the

inequality N−d|Cumax| ≥ θ∞(u) − ε holds with probability tending to 1 as N → ∞. For u > 0,
consider the random set

(2.21) C̃u def.
=
{
x ∈ T : x

VuN←→ ∂BT(x,N
1
2 )
}
.
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Applying [78, Proposition 2.3] with δ = 1
2 to the function f : 2Z

d → [0, 1], K 7→ 1{0 K←→ ∞},
and using continuity of θ∞ : [0, u∗)→ [0, 1], cf. below (1.5), one finds u′ = u′(u, ε) ∈ (u, u∗) such
that

(2.22) lim
N
P
[∣∣∣ |C̃u′ |Nd − θ∞(u)

∣∣∣ > ε
]

= 0.

By (2.21), for each point x ∈ C̃u′ , one has that diam(Cu′x ) ≥ N1/2, i.e. Cu′x ∈ Cu
′

>
√
N

. But on the

event AN given by the right-hand side of (2.20) with t =
√
N , u′ in place of u and ε = 1 − u

u′ ,
which has probability tending (rapidly) to 1 as N → ∞ by what we just proved, each of the
elements of Cu′

>
√
N

belong to the same cluster of VuN . In particular, this applies to Cu′x for any

x ∈ C̃u′ , whence C̃u is part of the same cluster of VuN . Thus, one obtains that |Cumax| ≥ |C̃u
′ | on

AN and the lower bound N−d|Cumax| ≥ θ∞(u)− ε follows with (2.22).
To deduce the corresponding upper bound in (1.8), one simply notes that |Cumax| ≤ |C̃u|

for all u > 0 unless diam(Cumax) ≤ 2
√
N . But the latter implies that |Cumax| ≤ CNd/2, which

has probability tending to 0 as N → ∞ by the lower bound already established. The bound
N−d|Cumax| ≤ θ∞(u)+ε thus also follows by means of (2.22), thus finishing the proof of (1.8).

3 The models Iρ and couplings

We now introduce a framework of interlacement processes with trajectories of varying (finite
or infinite) length and intensities that will account for all our needs. These include the (local
version of) the usual interlacement set Iu, see (2.12), as well as the relevant homogenous finite-
range models J u,L prior to noising, see (1.26) and (4.5) below, but more flexibility will be
required in due course (cf. Sections 4 and 7). The models in the class {Iρ} are parametrized by
an intensity measure ρ, see (3.1) below, which in principle allows for (forward) trajectories of
any length started anywhere in space. After introducing the framework §3.1, we focus in §3.2
on one essential tool in relation with these models, consisting of a pair of couplings stated in
Theorems 3.2 and 3.4 below, which are special cases of the general coupling results developed
in the companion article [38]. These couplings will feature prominently in the remainder of this
work, cf. in particular the proofs of Proposition 4.3 and Lemma 7.2 below.

3.1. Basic setup. We start by introducing the framework and consider a density

(3.1) ρ : (N∗ ∪ {∞})× Zd → R+

(recall that N∗ = {1, 2 . . . }). Since the domain of ρ is discrete, we will frequently think of ρ as a
measure on (N∗∪{∞})×Zd (or on any of its factors), and not distinguish between the two. For
instance, this means that we routinely write ρ(A, x) =

∑
`∈A ρ(`, x), for A ⊂ N∗ etc. Intuitively,

ρ(`, x) gives the intensity of trajectories that have length ` and start at x.
Recall the measurable space (W+,W+), where W+ denotes the set of transient nearest-

neighbor trajectories, see below (2.10). With ρ as above, we introduce a Poisson point process
η on the space (N∗ ∪ {∞})×W+ with intensity measure νρ given by

(3.2) νρ(`, A)
def.
=
∑
x∈Zd

ρ(`, x)Px[X ∈ A], for A ∈ W+
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and

(3.3) Iρ def.
=

⋃
(`,w)∈η

w[0, `− 1].

In view of (3.3), the label ` indeed corresponds to the (time-)length of a trajectory in Iρ, as
indicated above.

We denote by Pρ the canonical law of η. Notice that, for any finite K ⊂ Zd,

Iu ∩K law
= Iρu ∩K, for ρu(`, x) = u1∞(`) eK(x),(3.4)

for, νρu(∞, ·) = νKu (·), cf. above (2.13). Similarly, the set J f,L from (1.26) is in the realm of
(3.1). Indeed, in view of (1.26) and (3.2)-(3.3), for any positive measure µ on Zd, one has

(3.5) J f,L law
= Iρ, with ρ(`, x) = axf(x)

L 1L(`) = 4df(x)
L 1L(`), x ∈ Zd,

which specialises to J u,L with µ(x) = u, x ∈ Zd.
Returning to general ρ as in (3.1), one has the following alternative description of the law

of Iρ when restricted to a finite set K ⊂ Zd, which often comes in handy in practice. For a
measure ρ supported on N∗ × Zd and finite K ⊂ Zd, defining

(3.6) ρK(`, x) =
∑
`′≥0

Ex
[
ρ(`+ `′, X`′)1{H̃K>`′}

]
1x∈K ,

one has, with ≥st denoting stochastic domination,

(3.7) Iρ ∩K law
= IρK ∩K and Iρ ≥st IρK ;

see [38, Lemma 3.1] for a proof. In words, (3.7) roughly asserts that, if one is only interested in
Iρ ∩K, then one can replace the intensity ρ with a modified version ρK that fast forwards the
walk until the first time it hits K.

Lastly, an important quantity ‘average occupation time density’ field ¯̀ρ
x = ¯̀

x, x ∈ Zd, for
Iρ, which acts as a surrogate for the scalar parameter u in view of (2.15). It is defined as

(3.8) ¯̀
x = a−1

x

∑
k>0

∫
dνρ(k, ·)

∑
0≤`<k

1{X`=x}

(3.2),(2.1)
= a−1

x

∑
y

∑
k>0

ρ(k, y)
∑

0≤`<k
p`(y, x) =

∑
`≥0

Ex
[ρ(`+N∗,X`)

aX`

]
=

1

4d

∑
`≥0

Ex
[
ρ(`+ N∗, X`)

]
.

In the case of J u,L, i.e. with ρ the measure appearing in (3.5), it is instructive to observe that
for all x ∈ Zd,

(3.9) ¯̀
x

(3.8)
=

1

4d

∑
`≥0

Ex[ρ(`+ N∗, X`)] =
∑
`≥0

u

L
1{` < L} = u.

With a view towards (2.15), (3.9) suggests that J u,L is a good local approximation for Iu.
Indeed, by [38, Proposition 3.6], one knows that for all K ⊂⊂ Zd and u > 0,

(3.10) limL P[J u,L ∩K = ∅] = exp{−ucap(K)}.
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Remark 3.1 (Localizing with a mass). The process J u,L forms the core of our finite-range
approximation Iu,L, as will soon become clear; cf. (4.5) below. The more involved definition
of Iu,L has purely technical reasons. One may instead attempt to use ‘massive’ interlacements,
which simply amount to including to the setup of §2.2 a uniform killing measure κx = κ at every
vertex x ∈ Zd, see [31, Section 2] for the general framework, with κ ≈ L−1. This process has
been studied by several authors under the name ‘finitary’ interlacements, see [12, 58, 13]. In
fact a result similar in spirit to (3.10) was shown in [12, Theorem 2] (where κ is replaced by
another parameter T = 2d

κ ) in the limit where κ ↓ 0. The benefit of the localizing using κ is to
retain a Markovian character for the trajectories. However the spatial range of the process is
unbounded and rather poorly concentrated around κ−1/2.

3.2. General couplings. We now come to the afore mentioned couplings, which will play a
key role throughout this article. They correspond to two special cases of the results of [38]. We
consider two parameters u and γ̄ (both real-valued) and integer length scales L,L′,K with

(3.11) u > 0, γ̄ > 10, L ≥ 2L′ > 1 such that L′ ∈
[

L
(logL)γ̄ ,

L
(logL)10

]
and K ∈ [0, 10L]

and let

(3.12) l = L
L′ .

We further tacitly assume from here on and throughout the remainder of this article that the
two scales L and L′ in (3.11) are integer powers of 2, which is a matter of convenience. In
particular, this implies that L′ divides L and L/2.

With the exception of L, to which we return shortly, all subsequent results are tacitly un-
derstood to hold uniformly for all possible choices of parameters appearing in (3.11), which is in
force from here onwards. To avoid clumsy notation, constants may implicitly depend on all of u,
γ̄ and d ≥ 3. Their dependence on any other quantity will appear explicitly in our notation. We
will (often tacitly) assume that statements hold for L ≥ C (with C possibly depending on u, γ̄,
and d, in accordance with afore convention). Such a restriction is already implicit in (3.11), as
needed for the allowed range of L′ to contain a power of 2. Finally, we will frequently encounter
‘profiles’ f : Zd → R+ satisfying

(3.13) u ≥ f(x) ≥ (logL)−γ̄ for all x ∈ BK+L.

Assumption (3.13) will always appear explicitly and is gathered here for later reference.
For reasons that will become clear later on (in a nutshell, to suit the set up of Proposition 4.3

in the next section, cf. in particular around (4.15) and (4.23)), we work with a slightly more
general configuration than J f,L allowing for a mixture of trajectories of length L and L

2 . Note
however that the following theorem holds perfectly true with f1 ≡ 0. Recall from (2.1) that Pn
denotes the n-step transition operator for the (lazy) random walk for n ≥ 0.

Theorem 3.2. For any L ≥ C and f1, f2 : Zd → R+ such that f = f1 + f2 satisfies (3.13),

there exists a coupling Q of two {0, 1}Zd-valued random variables J1, J2, such that

J1
law
= J

1
2

(1+PL/2)f1,
L
2 ∪ J f2,L, J2

law
= J (1−C1l−1/2)(f1BK )′,L′ and

Q [J1 ⊃ J2] ≥ 1− CLd e−cl1/4 ,
(3.14)
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where J
1
2

(1+PL/2)f1,
L
2 ,J f2,L are independent; here (and in accordance with our convention re-

garding constants) c = c(u, γ̄), C = C(u, γ̄), C1 = C1(u, γ̄) and for any f : Zd → R+,

(3.15) f ′
def.
= l−1

∑
0≤k<l PkL′(f).

Proof. This is an immediate consequence of the more general result [38, Theorem 4.1].

In (3.14), longer trajectories (of lengths L/2 and L, inherent to J1) are used to cover shorter
ones (of length L′, inherent to J2). Roughly speaking, our second result, Theorem 3.4 below,
displays complementary features. Intuitively, it is more difficult to cover long trajectories by
short ones than vice versa. Correspondingly, the next theorem is more elaborate. It involves a
certain ‘environment’ process Iρ inherent to both sets J1 and J2 to be coupled. This process
corresponds to an incarnation of the obstacle set O, which features prominently in [38]. We
return to this shortly.

We first introduce the conditions on the underlying intensity function ρ, cf. (3.1) that will
generate the ‘random environment’. These conditions depend on the parameters in (3.11) as
well as the threshold ũ introduced in (1.23), for reasons explained below. Recall the average
occupation time density ¯̀

x = ¯̀ρ
x from (3.8).

Definition 3.3. The function ρ : N∗ × Zd → R+ is said to satisfy (Cobst) (with parameters
(u, γ̄, κ, L,K)) if for some dyadic L̂ ∈ [L8 , 8L] of the form L̂ = L̂1 − L̂2, where L̂1, L̂2 are dyadic

integers such that L̂2 ≥ 8L(log L
8 )−4γ , one has that:

ũ(1 + κ) ≤ ¯̀ρ
x ≤ u and ρ(N∗, x) ≤ 4du

L̂
for all x ∈ BK+5(L∨L̂);(3.16)

ρ(`, ·) = ρ(`, ·)1`∈{L̂,L̂/2},
L̂
8dρ( L̂2 , ·) =

(1+PL̂/2
2

)
f1 and L̂

4dρ(L̂, ·) = f2, where

f1, f2 : Zd → [0,∞) satisfy u ≥ f1 + f2 ≥ κ(logL)−γ̄ for all x ∈ BK+5(L∨L̂).
(3.17)

A simple (but for our later purposes insufficient) example of admissible profile ρ for the
next definition, which is good to keep in mind, is that of uniform trajectories of length L̂ =
L (i.e. ρ(`, x) = ρu,L(`, x) = u

L1L(`), x ∈ Zd, cf. (3.5)) at intensity u > ũ. In particular,
Definition 3.3 implicitly requires that u > ũ, see (3.16). That is, the environment parametrized
by the intensity profile ρ effectively operates at an intensity at least ũ, which is key for the next
coupling to work. The reason for this necessity is explained in [38] and briefly reviewed below
the next theorem. Hereinafter we use C ∂

S (V), for S ⊂ Zd, to denote the connected component of
∂S in V ∩ S where V = V(J ) = Zd \ J is the vacant set of a configuration J ⊂ Zd. We further
write (Ωρ,Aρ,Pρ) for the canonical space of ρ-interlacements.

Theorem 3.4 (under (3.11)). For any B = BN (x), f : Zd → R+ satisfying (3.13) and ρ
satisfying (Cobst), there exists for each ω ∈ Ωρ a coupling Q′ω of J f1BK ,L and J (1+ε)f ′,L′, where

ε = C2(u, γ̄)l−
1
2 and f ′ is as in (3.15), such that, with α = 1− e−c′l1/4 and c′ = c′(u, γ̄),

(3.18) Pρ
[
ω : Q′ω

[
C ∂
S

(
V
(
J f1BK ,L ∪ Iρ(ω)

))
⊃ C ∂

S

(
V
(
J (1+ε)f ′,L′ ∪ Iρ(ω)

))]
≥ α

]
≥ α,

provided L ≥ C(u, γ̄), where S ∈ {B′ a box : B′ = B or B′ ⊃ BK+5(L∨L̂)}. In particular, there

exists a coupling Q′ of (J f1BK ,L, Iρ,J (1+ε)f ′,L′) such that Iρ, J f1BK ,L are independent, Iρ,
J (1+ε)f ′,L′ are independent and, defining (under Q′)

(3.19) J1 = J f1BK ,L ∪ Iρ, J2 = J (1+ε)f ′,L′ ∪ Iρ, with ε = C2(u, γ̄)l−
1
2 ,
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one has, for all L ≥ C(u, γ̄) and S as above,

(3.20) Q′
[
C ∂
S

(
V(J1)

)
⊃ C ∂

S

(
V(J2)

)]
≥ 1− e−c′l1/4 .

The obstacle set O mentioned above corresponds to an arrangement of well-separated boxes
inside B around which disconnection occurs in Iρ. This obstacle set O, which lurks behind the
coupling (3.20), delimits a region which is out of reach for the boundary clusters C ∂

S (· ∪ Iρ).
The very fact that O is typically seen is guaranteed by the condition (Cobst); in particular the
fact that O is defined in terms of disconnection events by Iρ (at certain scales) accounts for the
pertinence of ũ in the condition (3.16).

Finally, the reason for the flexibility in the choice of S in C ∂
S above (rather than just stating

(3.20) for S = B) is technical, and has to do with the possible effect of the noise operator NL

(present later, cf. (4.5)) on boundary clusters; see the proof of (4.35) at the end of §4.3. As with
Theorem 3.2, Theorem 3.4 is a consequence of the results of [38].

Proof. As we now explain, Theorem 3.2 follows from [38, Theorem 7.4]. Assuming the conditions
of the latter to hold for a moment, the conclusion (3.18) follows immediately from [38, (7.7)]
(recall to this effect that K ≤ 10L by assumption in (3.11)), with γ̄ above playing the role of γ
in [38]. The annealed result (3.20) is an immediate consequence of (3.18) upon integrating.

Thus, the only thing that requires an explanation is the fact that [38, Theorem 7.4] indeed
applies. In comparison with the condition (Cobst) appearing in [38, Definition 7.3], the present
Definition 3.3 differs in two respects: first the allowed range for L̂, whose slightly circumvoluted
form has technical reasons, is larger. This extended range is allowed in view of [38, Remark
7.5,2)]. Second, the lower bound on the mean occupation time in (3.16), which corresponds to
u′ in [38, (7.3)], is parametrized as u′ = u(1 + κ). In view of (1.23) and by monotonicity of
the relevant disconnection event, this implies in particular that the bound [38, (7.1)] holds with
u = u′(1− (logL)−4) whenever L ≥ C(κ), as required for [38, Theorem 7.4] to be in force. The
remaining conditions appearing in [38, Theorem 7.4] are plainly satisfied.

4 Interpolation

We now prepare the ground for the proof of Theorem 1.2. To this effect we introduce in §4.1 a
family Iu,L for u ∈ (0,∞) and integer L > 1 (cf. (3.11)) of spatially homogenous models and in
§4.2 a further (inhomogenous) family Iu,L` for ` ∈ N/2. These correspond to precise versions of
(1.27) and (1.31). All models are within the realm of the class {Iρ} introduced in Section 3.

The models Vu,L` = Zd \ Iu,L` will be instrumental in our proof. Roughly speaking, Vu,L
are the truncated (finite-range) models that will be used to approximate Vu, and the models
Vu,L` interpolate between two homogenous models at scales L and 2L (synonymous of ` = 0

and ` = ∞). The models Vu,L` come in two variants, Ṽu,L` and Vu,L` , see (4.19) and (4.27),
corresponding to each of two possible comparison inequalities we aim to show. In spite of their
specific features, tailored to their later use, it turns out that most statements hold uniformly for
both models. We use the notation Vu,L` in the sequel, see (4.28), when referring to either choice.

After gathering basic properties of the models Vu,L and Vu,L` that will be needed later on,

we derive in Proposition 4.3 a coupling between Vu,Lk and Vu,Lk+1/2 for all k ∈ N (for improved

readability, we use k rather than ` below when the index in question is an integer). Proposi-
tion 4.3, which appears in §4.3, can be viewed as the main result of the present section. In rough
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terms, it asserts that ` 7→ Vu,L` is decreasing with high probability. Its proof relies on a (skillful)
application of Theorems 3.2 and 3.4.

4.1. The homogenous models Iu,L. We start by defining and gathering the main properties
of the homogenous length-L models Iu,L used in approximating Iu, and first recall their ‘pure’
version J u,L, cf. below (1.26). These models are of class Iρ, as noted in (3.5). We now proceed
with the model Iu,L alluded to in (1.27). Its definition involves several sources of randomness.
We first introduce a certain noise operator. Let PU be an (auxiliary) probability measure car-
rying i.i.d. uniform random variables U = {Ux : x ∈ Zd}. For δ ∈ (0, 1) and a set I ⊂ Zd, let
Nδ(I) ⊂ Zd denote the set whose complement has occupation variables

(4.1) 1{x/∈Nδ(I)} =


0 if Ux ≤ δ

2 ,

1{x/∈I} if Ux ∈ ( δ2 , 1−
δ
2) ,

1 if Ux ≥ 1− δ
2 ,

and for L ≥ 1, set

(4.2) NL(I) = Nδ(I)
∣∣
δ=e−L

.

For later reference, we note that

(4.3) NL(I) is increasing in I and decreasing in U,

as follows plainly from (4.1)-(4.2).
Next, for integer L ≥ 1, let BL = {B(z, L) : z ∈ (2L + 1)Zd}, which forms a set of L-boxes

tiling Zd. We introduce the random field (σL(x))x∈Zd given by

(4.4) σL(x) = 1 + σB, for the unique B ∈ BL such that x ∈ B,

where (σB)B∈BL denotes a family of independent integer-valued random variables having Poisson
distribution with intensity one. Adding one in (4.4) will guarantee a certain ‘ellipticity’ for the
random sprinkling to be introduced below, which is proportional to the field σL(·), cf. (4.5).
We assume throughout the remainder of §4.1 that P carries the independent fields (ω, ω̃, σL,U),
where ω, ω̃ are two (independent) Poisson point processes on R+ ×W+ with intensity ν each
(see (1.25)), σL(·) has distribution specified by (4.4), and U = {Ux : x ∈ Zd} are i.i.d. uniform.
With this we define

(4.5) Iu,L = Iu,L(ω, ω̃, σL,U) = NL
(
J u,L(ω) ∪ J εσL,L(ω̃)

)
,

where, for some (large) parameter γ > 1,

(4.6) ε = εL
def.
= (logL)−(γ+5)

and NL is the noise operator introduced in (4.1)-(4.2), which resamples each occupation variable
independently with exponentially small probability in L.

We now collect a few fundamental properties of the random sets Iu,L and its complement
Vu,L = Zd \ Iu,L. By restricting to an event involving U and σL of high probability and
using (3.10), one readily deduces that for all u > 0 and any sequence (uL) with limL uL = u,

(4.7) IuL,L under P converges in distribution to Iu as L→∞.
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One further infers using (4.5), (3.3), (3.5) and (4.2) that

(4.8)
for all U, V ⊂ Zd with d(U, V ) > 2L, the σ-algebras
σ
(
1{x∈Iu,L} : x ∈ U

)
and σ

(
1{x∈Iu,L} : x ∈ V

)
are independent.

Moreover, as we now explain, for any suitable pair of increasing functions f, g : {0, 1}Zd → R
(such that the following integrals are all well-defined and finite), one has with Vu,L = Zd \Iu,L,

(4.9) E[f(Vu,L)g(Vu,L)] ≥ E[f(Vu,L)]E[g(Vu,L)].

for all u > 0 and L ≥ 1. In particular, (4.9) applies when f, g are bounded measurable depending
on finitely many coordinates (and increasing), which will be sufficient for our purposes.

To deduce (4.9), one first conditions on (σL,U) under P, and writing E(σL,U) for the corre-
sponding conditional expectation, one applies [46, Theorem 20.4] to infer that (4.9) holds with
E(σL,U) in place of E everywhere. Upon integrating the resulting inequality over (σL,U), one
applies the FKG-inequality for independent random variables to the right-hand side to obtain
(4.9), noting that the relevant quantities E(σL,U)[f(Vu,L)] and E(σL,U)[g(Vu,L)] are decreasing
functions of (σL,U), which follows on account of (4.5) and (4.3).

Lastly, by definition, the law of Iu,L is translation invariant and ergodic with respect to
lattice shifts on (2L+ 1)Zd. One can then introduce critical parameters uL∗ , u

L
∗∗ and ũL akin to

(1.5), (1.19) and (1.23), with Vu,L = Zd \ Iu,L in place of Vu everywhere. The following can
then be regarded as a consequence of the combined results of [40] and [45] (generalized in the
latter case to percolation models with finite-range dependence).

Proposition 4.1. For all d ≥ 3 and L ≥ 1,

(4.10) ũL = uL∗ = uL∗∗.

Proof. Referring to Section 6 of [36], as explained therein starting with the paragraph above
(6.7) until the end of that section, the claim (4.10) follows at once if the properties listed as (a)-
(e) at the beginning of that section can be verified, with the occupation field (1{x∈Vu,L})x∈Zd,u>0

in place of (ωh(x))x∈Zd,h∈R. Inspection of the argument in [36] reveals that the translation
invariance inherent to (a) (lattice symmetry) can be replaced by the coarse one noted above,
the invariance of the law of Vu,L under lattice rotations and coordinate reflections is also plain.
Property (b) (positive association) is precisely (4.9). Similarly, (4.1) and (4.2) yield that e−L

2 ≤
P[x /∈ Vu,L|σ(1{x∈Vu,L}, y 6= x)] ≤ 1− e−L

2 , whence (c) (finite energy). Property (d), which refines
(4.8), requires a more detailed explanation and is postponed for a few lines. Finally, inspection
of the proof of Lemma 6.1 in [36] reveals that the final sprinkling property (e) follows at once if
one shows that for all u < u′ and x ∈ Zd,

(4.11) P[x ∈ Vu,L|x /∈ Vu′,L] ≥ c(u, u′, γ, L)

(indeed (4.11) is the only model-specific input, which appears towards the end of the proof of
Lemma 6.1 in [36]; the rest of the proof shows how to deduce Property (e) from it). In the
present case (4.11) is readily obtained by splitting J u′,L = J1 ∪J2 into the sum of independent

processes J1
law
= J u,L and J2

law
= J u′−u,L, cf. (4.5), while requiring that Ux ∈ ( δ2 , 1−

δ
2).

Finally, the existence of a bounded-range i.i.d. encoding postulated by Property (d) touches
on all of the randomness (ω, ω̃, σL,U) entering the definition of Vu,L under P, and can be obtained
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as follows. One conveniently generates Vu,L using an independent family of Poisson processes
(ωLx,k, ω̃

L
x,k)x∈Zd, k∈N (along with σL,U) rather (ω, ω̃). The process ωx,k (and ω̃x,k) has values in

[0, 1]×W+
f (recall that W+

f refers to the space of finite Zd-valued trajectories) and finite intensity

νLx,k = du× Px[X[0,L−1] ∈ ·], cf. (3.3) (which, by defining properties of a Poisson process can be

sampled from a Poisson random variable of parameter 1 and an i.i.d. collection of ([0, 1]×W+
f )-

valued random variables having law νLx,k). In view of (4.4), (4.5) and (4.1), the required locality

in the way (σL,U) enter the construction of Vu,L is plain, leading overall to an i.i.d. encoding
having range 2L.

4.2. The inhomogenous models Iu,L` . We now introduce the mixed (inhomogenous) models
that interpolate between homogenous ones. We will mostly work with these mixed models,
which will permeate our proofs. Slight care is needed due to the presence of several sources
of randomness, as we now detail. We first revisit the random sprinkling parameter σL in (4.4)
inherent to the homogenous model Iu,L in (4.5), and start by adding spatial structure to it.
Recall the definition of the paving BL of Zd by boxes of radius L, see above (4.4). Let Σ =
{σB′B : B,B′ ∈ BL, L > 1} be a family of independent integer-valued random variables having
the following distribution: if B = BL(z) and B′ = BL(z′), and with Poi(λ) denoting the Poisson
distribution with mean λ > 0,

(4.12) σB
′

B
law
=

{
1 if z = z′,

Poi
(

1
c3

(
2L+1
|z−z′|∞

)d+1
)

if z 6= z′,

where c3 =
∑

z∈Zd\{0} |z|
−(d+1)
∞ , so that the parameters of the Poisson random variables sum up

to one as z ranges over (2L + 1)Zd. In words, when z = z′, (4.12) simply means that σB
′

B is
constant and equal to one. We then define the random fields

(4.13) σB
′
(x) = σB

′
B and σL(x) =

∑
B′∈BL

σB
′
(x) for x ∈ B (∈ BL).

Observe that the random field σL defined by (4.13) has the same distribution as the one pre-
viously defined in (4.4). However, the explicit spatial decomposition in (4.13) will allow us to
regard the sprinkling σL(x) as being added/removed in steps, one for each box B′ ∈ BL, with
decreasing intensities as B′ moves away from x. When referring to σL(·) from here on, we always
mean the random field declared by (4.13) (rather than (4.4), which is equal in law).

Throughout the remainder of this article, we assume that P carries a Poisson process ω̃ on
{1, 2, 3, 4}× (R+×W+) having intensity c× ν, with c denoting counting measure on {1, 2, 3, 4}
and ν as in (1.25). The (big) process ω̃ gives rise to the processes ωi, 1 ≤ i ≤ 4 on R+ ×W+,
obtained by retaining all points in ω̃ whose first label is i, and forgetting this label. Thus, ωi,
1 ≤ i ≤ 4, are independent Poisson processes with intensity ν each, i.e. each ωi is a copy under
P of the process ω introduced around (1.25).

Along with ω̃, the measure P is assumed to carry the family Σ introduced above (4.12) and
the i.i.d. family U, see above (4.1). All fields ω̃, Σ, U are independent under P, and we will
frequently abbreviate by

(4.14) σ̃ = (Σ,U)

the ‘disorder’ variables (under P). We write Fσ̃ for the sigma-algebra generated by these random
variables and Pσ̃ for the corresponding quenched law, so P[ · ] = Eσ̃[Pσ̃[ · ]] with Eσ̃ denoting
averages with respect to σ̃.
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Without further ado, we now define under the above measure P two sequences of models,

(Ĩu,L` )`∈N/2 and (Iu,L` )`∈N/2, see (4.19) and (4.27) below, which will interpolate between the
two homogenous models, see (4.21) and (4.28). We first introduce, for any L > 1, and δ2 > 0
to be chosen soon (see (4.22)), recalling the transition operator Pn from (2.1), two functions
g̃, h̃ : Zd → R+ with

(4.15) g̃
def.
=
(

1+PL
2

)
1B2L

, h̃
def.
= 1B2L

+ δ21B6L
,

Let {x̃0, x̃1, . . .} denote an arbitrary enumeration of (4L + 1)Zd and define B̃j = B2L(x̃j) for

j ≥ 0 as well as D̃k =
⋃
j<k B̃j . Note that B̃ = {B̃j : j ≥ 0} is an enumeration of B2L, cf. the

paragraph preceding (4.4), and consists of boxes which pave Zd. With g̃, h̃ as in (4.15), we set

(4.16) g̃k(·)
def.
=
∑
j≥k

g̃(· − x̃j), h̃k(·)
def.
=
∑
j<k

h̃(· − x̃j),

and define, with σB̃j and σL as in (4.13) and εL as in (4.6),

(4.17) r̃k
def.
= εLσL1

D̃ck
, s̃k

def.
= ε2L

∑
j<k

σB̃j .

As opposed to g̃k, h̃k, the functions r̃k and s̃k are random and declared under P. Recalling that
P further carries ω1, ω2, ω3 and ω4, independent copies of ω, independent from Σ, we then let
(see (1.26) for notation)

J̃ u,Lk (ω1, ω2, ω3, ω4,Σ)
def.
= J ug̃k,L(ω1) ∪ J ur̃k,L(ω2) ∪ J uh̃k,2L(ω3) ∪ J us̃k,2L(ω4)

J̃ u,L
k+ 1

2

(ω1, ω2, ω3, ω4,Σ)
def.
= J ug̃k+1,L(ω1) ∪ J ur̃k+1,L(ω2) ∪ J uh̃k+1,2L(ω3) ∪ J us̃k,2L(ω4).

(4.18)

In words, on account of (4.16), when passing from J̃ u,Lk to J̃ u,L
k+ 1

2

, the combined effect of

(J ug̃k,L(ω1),J uh̃k,2L(ω3))→ (J ug̃k+1,L(ω1),J uh̃k+1,2L(ω3))

is to replace the relevant length-L trajectories starting in B̃k by trajectories of length 2L, with
slightly higher intensity, cf. (4.15). In view of (4.17), a similar fate occurs to the randomly
sprinkled trajectories, parametrized by r̃k and s̃k, but whereas the ‘removal’ inherent to r̃k →
r̃k+1 happens during step k → (k + 1

2), the ‘addition’ s̃k → s̃k+1 is performed separately as
(k + 1

2)→ (k + 1).

We are only one step away from defining Ĩu,L· , which is just a noised version of J̃ u,L· . Recall
the noise operator NL(·) from (4.1)–(4.2) in Section 4.1, which involves an independent family
U of i.i.d. uniform random variables, carried by P within our setup; see above (4.14). Now let

(4.19) Ĩu,L` ∩ B̃j
def.
=

{
N2L(J̃ u,L` ∩ B̃j) if j < d`e, and

NL(J̃ u,L` ∩ B̃j) if j ≥ d`e.

We also extend the definitions (4.18) and (4.19) when k = ∞ (whereby g̃∞ = r̃∞ = 0). As we
now explain, our goal is to eventually couple Ĩu,Lk and Ĩu,Lk+1 in such a way that Ĩu,Lk ⊂ Ĩu,Lk+1 with
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sufficiently high probability; see §4.3 below. The following notation will be useful: for any pair
of functions f1, f2 : Zd → R+ with f1(x) ≤ f2(x) for all x ∈ Zd, define, for ω ∈ Ω+ (cf. (1.26)),

(4.20) J [f1,f2],L(ω)
def.
=

⋃
(v,w)∈ω:

4d
L
f1(w(0))<v≤ 4d

L
f2(w(0))

w[0, L− 1],

so that, with a view towards (1.26), one has J f,L = J [0,f ],L. With this notation, by (4.18)
(4.19) and (4.5), and for a suitable constant C3 = C3(d), one obtains that

Ĩu,L0
law
= Iu,L, Ĩu,L∞ ≤st. Iu(1+C3δ2),2L

J̃ u,Lk+1 = J̃ u,L
k+ 1

2

∪ J [us̃k,us̃k+1],2L(ω4)
(
⊃ J̃ u,L

k+ 1
2

)
, Ĩu,Lk+1 ⊃ Ĩ

u,L

k+ 1
2

;
(4.21)

the second inclusion (involving Ĩ’s) in the second line follows from the first one and the mono-
tonicity property (4.3) of NL(I) in I. We now choose

(4.22) δ2 = δ1/C3, with δ1 = δ1(L) = (logL)−4,

so that the total sprinkling in the first line of (4.21) amounts to δ1.

We now define a second sequence (Iu,L` )`∈N/2. Akin to (4.15), we introduce two functions

(4.23) ḡ = 1BL , h̄ =
(

1+PL
2

)
1BL + δ21B6L

(with domain Zd). Let {x̄0, x̄1, . . .} denote an enumeration of (2L + 1)Zd, consider the boxes
Bj = BL(xj) for j ≥ 0 and let Dk =

⋃
j<k Bj . Likewise, B = {Bj : j ≥ 0} is an enumeration of

BL, which paves Zd. In the same vein as in (4.16), we then define

(4.24) ḡk(·) =
∑
j≥k

ḡ(· − x̄j), h̄k(·) =
∑
j<k

h̄(· − x̄j).

Furthermore, let

r̄k = ε2Lσ2L1Dck
, s̄k = εL

∑
j<k

σBj .(4.25)

Now under P, define J u,L` = J u,L` (ω1, ω2, ω3, ω4,Σ), ` ∈ N/2, by setting

J u,Lk = J uḡk,2L(ω1) ∪ J ur̄k,2L(ω2) ∪ J uh̄k,L(ω3) ∪ J us̄k,L(ω4)

J u,Lk+ 1
2

= J uḡk+1,2L(ω1) ∪ J ur̄k+1,2L(ω2) ∪ J uh̄k+1,L(ω3) ∪ J us̄k,L(ω4),
(4.26)

for k ∈ N, which naturally extends to k =∞. Similarly as in (4.19), we then set

(4.27) Iu,L` ∩Bj
def.
=

{
NL(J u,L` ∩Bj) if j < d`e, and

N2L(J u,L` ∩Bj) if j ≥ d`e,

for ` ∈ N/2. Note that, with these definitions (possibly enlarging the value of C3 in (4.22)),

Iu,L0
law
= Iu,2L, Iu,L∞ ≤st. Iu(1+δ1),L

J u,Lk+1 = J u,Lk+ 1
2
∪ J [us̄k,us̄k+1],L(ω4)

(
⊃ J u,Lk+ 1

2

)
, Iu,Lk+1 ⊃ I

u,L

k+ 1
2
.

(4.28)
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As in (4.21), the two sets on the right-hand side in the first equality of the second line are
independent. Most of the arguments in the sequel can be performed in a unified manner for

both sequences (Ĩu,L` )`∈N/2 and (Iu,L` )`∈N/2. Accordingly we often write

(4.29) Iu,L` = Ĩu,L` or Iu,L` (similarly for J u,L` )

and, correspondingly, drop tildes and bars from all notations, e.g. writing gk, hk, Bk etc. While
doing so we tacitly agree that the statements are true in either case. We write Vu,L` for the vacant

set Zd \ Iu,L` and often omit the superscripts u, L altogether, so that I` = Iu,L` , V` = Vu,L` .
Finally we let L = {x0, x1, . . . } correspond to the enumeration of the sublattice (4L + 1)Zd,
resp. (2L+ 1)Zd depending on the choice of Iu,L· , so xj denotes the center Bj for j ≥ 0.

We now collect a few consequences of the above setup that will be used repeatedly in the
sequel. These includes basic measurability and independence properties as well as an FKG-type
inequality due to the positive association inherent to the above models, which follows a similar
pattern as in the homogenous case; cf. §4.1. Recall that Pσ̃ refers to the quenched law given the
realization of the ‘disorder’ σ̃ = (Σ,U), see (4.14), which is simply the law of a Poisson process.

We then write ω̃L, L ≥ 1, for the point measure induced by ω̃ (introduced above (4.14))
which only retains (j, v, (w(n))0≤n≤2L−1) for any point (j, v, w) ∈ ω̃; here, with hopefully obvious
notation, j ∈ {1, . . . , 4}, v ≥ 0 and w ∈ W+. For K ⊂ Zd, let ω̃LK refer to the process of
points (j, v, w′) ∈ supp(ω̃L) with range(w′) ∩K 6= ∅ and define (ω̃LK)c = ω̃L − ω̃LK . Thus, ω̃LK ,

(ω̃LK)c form independent Poisson processes under Pσ̃. Similarly we write ΣL def.
= {σB′B : B,B′ ∈

B̃ or B} = ΣL
K ∪ (ΣL

K)c (recall (4.12)) where ΣL
K

def.
= {σB′B : B,B′ ∈ B̃ or B, B ∩ K 6= ∅} and

(ΣL
K)c

def.
= ΣL \ΣL

K are independent families of random variables. With regards to the family U
of independent random variables, which is indexed by points in Zd, we partition U = UK ∪UKc

where UK
def.
= U|K for K ⊂ Zd.

It follows from the previous definitions that for any ` ∈ N/2, the set Vu,L` ∩ K = V` ∩ K
(i.e. σ(1{x ∈ V`}, x ∈ K)) is measurable under Pσ̃ relative to ω̃LK . Hence, in particular, it is
independent of (ω̃LK)c. Since the length of any trajectory corresponding to a point in supp(ω̃L) is
at most 2L, we similarly get that V` ∩K is measurable under P with respect to (ω̃LK ,Σ

L
K2L

,UK),
where Kr denotes the r-neighborhhood of K, see §2 for notation. Now recall that the diameter
of any box in B̃ ∪ B is at most 4L. Hence for any two sets U, V ⊂ Zd with d(U, V ) ≥ 10L,
the corresponding collections of random processes (ω̃LU ,Σ

L
U2L

,UU ) and (ω̃LV ,Σ
L
V2L

,UV ) are in fact
independent. As a consequence of this observation, the set V` has the following finite-range
property. Under both P and Pσ̃, for any ` ∈ N/2,

(4.30) V` ∩ U and V` ∩ V are independent for any U, V ⊂ Zd with d(U, V ) ≥ 10L,

by which we mean that the σ-algebras generated by {1{x ∈ V`} : x ∈ U}, and {1{x ∈ V`} : x ∈
V } are independent.

We call an event A ∈ FL = σ(ω̃L) increasing in K ⊂ Zd under Pσ̃ if ω̃ ∈ Ac (the complement
of A) implies ω̃′ ∈ Ac, where ω̃′ ≥ ω̃ is obtained by addition of points (j, v, w) with range(w) ∩
K 6= ∅. In particular, any event A that is increasing w.r.t. V`∩K, i.e. that satisfies A ∈ σ(1{x ∈
V`} : x ∈ Zd) and increasing in the variables 1{x ∈ V`}, x ∈ K, is also increasing in K.

Lemma 4.2 (L ≥ 1, K ⊂ Zd). If both A ∈ FLK
def.
= σ(ω̃LK) and B ∈ FL are increasing in K

under Pσ̃, then

(4.31) Pσ̃[A ∩B] ≥ Pσ̃[A] · Pσ̃[B].
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Proof. First notice that ω̃LK is a Poisson process under Pσ̃[ · | (ω̃LK)c] and both A and B are
increasing events under this law. Hence, applying [46, Theorem 20.4], it follows that

Pσ̃[A ∩B | (ω̃LK)c] ≥ Pσ̃[A | (ω̃LK)c] · Pσ̃[B | (ω̃LK)c] = Pσ̃[A] · Pσ̃[B | (ω̃LK)c]

where in the second step we used the fact that A ∈ FLK . The lemma now follows by taking
expectations with respect to Pσ̃ on both sides.

4.3. Couplings between Vu,L` . In this subsection we further develop the toolbox for the mod-

els Vu,L` = Zd \ Iu,L` we will be working with. As opposed to the properties gathered above, the

more elaborate features of the models Vu,L` used later (such as suitable connectivity estimates)
all hinge on a central coupling statement, see Proposition 4.3 below, which roughly speaking

establishes that the models Ĩu,Lk and Iu,Lk are both ‘increasing in k’ (with high probability). In

accordance with the convention from (4.29), the following statement(s) apply to both Ĩu,Lk and

Iu,Lk . Recall ũ from (1.23), C ∂
S (·) for S ⊂ Zd from above Theorem 3.4 and δ2 from (4.22).

Proposition 4.3 (Coupling between Iu,Lk and Iu,Lk+1/2). Let k ∈ N, L > 2 be a dyadic integer,

δ ∈ (0, 1
2), u ∈ [ũ(1+δ), ũδ ] and γ̄ > 10; let B = BN (x) for some N ≥ 1 and x ∈ Zd. There exists

a coupling Qσ̃ of two {0, 1}Zd-valued random variables (Îk, Îk+ 1
2
) with the following properties.

Letting Uk = B(xk, 10L) and Vk = B(xk, 50L), one has that

Îk (resp. Îk+ 1
2
) has the same law as Iu,Lk (resp. Iu,L

k+ 1
2

) under Pσ̃;(4.32)

Îk ∩ U ck = Îk+ 1
2
∩ U ck ;(4.33)

σ
(
1{x ∈ Îj}, x ∈ V c

k , j = k, k + 1
2

)
is indep. from σ

(
1{x ∈ Îj}, x ∈ Uk, j = k, k + 1

2

)
.(4.34)

Furthermore, for suitable c4 = c4(δ, γ̄) > 0,

(4.35) Qσ̃

[
C ∂
B

(
V̂k
)
⊃ C ∂

B

(
V̂k+ 1

2
)
)]
≥ (1− e−c4(logL)γ̄ )1G(xk),

where

(4.36) G(xk) = Gu,L(xk)
def.
=
{
u(rk ∨ sk)|Vk ≤

δ2(2L)
100 , UVk ∈ [ e

−L

2 , 1− e−L

2 ]
}

(∈ Fσ̃).

Remark 4.4. 1) (Annealed coupling). By (4.32), it is clear that the measure Q[·] def.
= Eσ̃[Qσ̃[·]]

constitutes a coupling between Iu,Lk and Iu,Lk+1/2 under P. We now aim to lift the (condi-

tional) independence property (4.34) to an independence property under Q. To this end,
note that for any event A measurable under Pσ̃ relative to σ(1{x ∈ Îj}, x ∈ U, j = k, k+ 1

2)
with U = Uk, the quantity Qσ̃[A] is measurable with respect to (ΣL

U2L
,UU ). This essentially

follows from the discussion leading up to (4.30) in view of (4.32). Similarly, for any event
A measurable relative to σ(1{x ∈ Îj}, x ∈ V c, j = k, k + 1

2), where V = Vk, the quantity
Qσ̃[A] is measurable with respect to (ΣL

(V c)2L
,UV c). However, since d(U, V c) ≥ 40L, the

collections (ΣL
U2L

,US) and (ΣL
(V c)2L

,UV c) are independent and consequently, under Q,

(4.34’)
σ
(
1{x ∈ Îj}, x ∈ V c

k , j = k, k + 1
2

)
is indepen-

dent from σ
(
1{x ∈ Îj}, x ∈ Uk, j = k, k + 1

2

)
.
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We now determine the corresponding annealed coupling error implied by (4.35). First
recall (see, e.g. [53, pp. 97-98]) that the tails of a Poisson variable X with mean λ satisfy

(4.37) P[X ≥ λ+ x] ∨ P[X ≤ λ− x] ≤ e−cx,

valid for all x ≥ λ/2. Since the Poisson variables σB’s (see (4.4)) have mean 1 and, on
account of (4.6) and (4.22), one has that (ε−1

L ∧ε
−1
2L )δ2(L) ≥ c(logL)γ , it follows combining

(4.17)/(4.25), the tail estimate (4.37) and a simple union bound, that

(4.38) P σ̃[G(xk)] ≤ e−c(δ)(logL)γ + e−L |V | ≤ e−c(δ)(logL)γ .

Together with (4.35) applied with γ̄ = γ, this yields that for some c5 = c5(δ, γ) > 0,

(4.39) Q
[
C ∂
B

(
V̂k
)
⊃ C ∂

B

(
V̂k+ 1

2
)
]
≥ 1− e−c5(logL)γ .

2) (Perfect coupling in distant regions). Observe for later use that (4.33) readily implies that
the event in (4.35) (as well as in (4.39)) has full measure whenever B ⊂ U ck .

In the next two subsections, we harvest consequences of the above couplings which are
easily isolated and will be used throughout. We conclude this subsection with the proof of
Proposition 4.3. The proof combines Theorems 3.2 and 3.4, which will be applied repeatedly.

Proof of Proposition 4.3. We only give the proof for Iu,L· = Ĩu,L· as the proof for Iu,L· is similar.
It is further sufficient to show the conclusions for L ≥ C(δ, γ̄), which will often tacitly be assumed
in the sequel. Indeed, the remaining cases for L follow by choosing Qσ̃ = Pσ̃ (cf. around (4.14)),
which is readily seen to satisfy (4.32)-(4.34), as well as (4.35) upon possibly adjusting c4.

Recall the configurations J̃ u,L` ’s from (4.18), which are in fact identical to Ĩu,L` inside Vk on
the event G(xk) by (4.19), (4.36) and (4.1)-(4.2). In the course of the proof, we will define a
sequence of configurations {J̃k,a; 0 ≤ a ≤ A} interpolating between J̃k and J̃k+1/2 where J̃k,a+1

is obtained from J̃k,a by replacing a small fraction of the L-trajectories with 2L-trajectories; see

(4.42) below. For each 0 ≤ a < A, we will then produce a coupling Qa between the laws of J̃k,a
and J̃k,a+1 by means of Theorems 3.2 and 3.4. We will eventually arrive at our final coupling
Qσ̃ by concatenating the couplings Qa’s, in the manner of [38, Section 2.3].

We now introduce the relevant intermediate configurations (in law). Let A
def.
= d2

δ e so that
u
A ≤

uδ
2 . For integer a with 0 ≤ a ≤ A, with g̃, h̃ as in (4.15) and g̃k, h̃k as in (4.16), let

(4.40) g̃ak(·) = g̃k+1(·) +
(
1− a

A

)
g̃(· − x̃k), h̃ak(·) = h̃k + a

A h̃(· − x̃k),

so that g̃0
k = g̃k, g̃

A
k = g̃k+1 and similarly for h̃ak. In the same vein, for r̃k as in (4.17), define

r̃ak = r̃k+1 + (1− a
A)εLσL1

B̃k
. We now introduce under Pσ̃ the configurations (cf. (4.18))

J̃ ak (ω1, ω2, ω3, ω4)
def.
= J ug̃ak ,L(ω1) ∪ J ur̃ak ,L(ω2) ∪ J uh̃ak,2L(ω3) ∪ J us̃k,2L(ω4),(4.41)

so that J̃ 0
k = J̃k and J̃ Ak = J̃k+1/2. For any 0 ≤ a < A, one extracts from both J̃ ak and J̃ a+1

k a

joint ‘bulk’ contribution J̃ a,1k by decomposing

J̃ ak = J̃ a,1k ∪ J̃ a,2k , J̃ a+1
k = J̃ a,1k ∪ J̃ a,3k ,(4.42)
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where (under Pσ̃)

J̃ a,1k
def.
= J ug̃a+1

k ,L(ω1) ∪ J ur̃a+1
k ,L(ω2) ∪ J uh̃ak,2L(ω3) ∪ J us̃k,2L(ω4),

J̃ a,2k
def.
= J [ug̃a+1

k , ug̃ak ],L(ω1) ∪ J [ur̃a+1
k , ur̃ak ],L(ω2),

J̃ a,3k
def.
= J [uh̃ak, uh̃

a+1
k ],2L(ω3).

(4.43)

The bulk contribution J̃ a,1k is further split as

(4.44) J̃ a,1k = J̃ a,1,1k ∪ J̃ a,1,2k ,

where, with Ũ = B(x̃k, 15L) and using that (g̃a+1
k )|Ũc = (g̃k+1)|Ũc and (h̃ak)|Ũc = (h̃k)|Ũc ,

J̃ a,1,1k
def.
= J u(g̃a+1

k )|Ũ , L(ω1) ∪ J u(h̃ak)|Ũ , 2L(ω3), and

J̃ a,1,2k
def.
= J u(g̃k+1)|Ũc , L(ω1) ∪ J ur̃a+1

k , L(ω2) ∪ J u(h̃k)|Ũc , 2L(ω3) ∪ J us̃k,2L(ω4).
(4.45)

By construction, the random sets J̃ a,1,1k , J̃ a,1,2k , J̃ a,2k and J̃ a,3k are independent under Pσ̃.

The set J̃ a,1,1k is destined to play the role of ‘background’ configuration Iρ appearing in the

context of Theorem 3.4. Recall the definition of Iρ from (3.3). Clearly, J̃ a,1,1k has the same law
(under Pσ̃) as Iρ (under Pρ), where ρ : N∗ × Zd → R+ is given by

(4.46) ρ(`, x) = 4du
L

(
1L(`)g̃a+1

k (x) + 1
212L(`) h̃ak(x)

)
1Ũ (x).

Recall the obstacle condition (Cobst) from Definition 3.3. In what follows, ρ is said to satisfy
(Cobst)(x) for some x ∈ Zd if ρ0 given by ρ0(`, y) = ρ(`, x+ y) for all ` ∈ N∗ and y ∈ Zd satisfies
(Cobst). We first isolate the following result.

Lemma 4.5. For all δ ∈ (0, 1
2), u ∈ [ũ(1 + δ), ũδ ], γ̄ > 1 and L ≥ C(δ, γ̄), the density ρ in (4.46)

satisfies (Cobst)(x̃k) with parameters (4ũδ−1, γ̄, κ = δ
4 , L,K = 3L).

Proof of Lemma 4.5. Verifying (Cobst)(x̃k) amounts to checking conditions (3.16) and (3.17)
inside the box BK+5(L∨L̂)(x̃k) in place of BK+5(L∨L̂). We choose L̂ = 2L. Since K = 3L we thus

need (3.16)-(3.17) to hold in B3L+5×2L(x̃k) = B13L(x̃k). By (3.8), ¯̀ρ
x only depends on ρ(k, y) if

|y−x|1 < k and the relevant values of k are L and 2L, we can safely drop the indicator function
1Ũ in (4.46) as long as we only deal with the quantities ¯̀ρ

x and ρ(`, x) for x ∈ B13L(x̃k), as for
the verification of (3.16)-(3.17) with the above choices.

We first verify condition (3.17) for ρ as in (4.46). It follows from the definitions of (g̃, h̃),
(g̃k, h̃k) and (g̃ak , h̃

a
k), see (4.15), (4.16) and (4.40) respectively, that ρ satisfies (3.17) with L̂ = 2L:

indeed, 2Lρ(2L, x) = 4d f2 and Lρ(L, x) = 4d (1+PL
2 )f1 with f1 + f2 ∈

[
u(1− 1

A), u(1 + δ1)
]

for
all x ∈ B13L(x̃k); see in particular around (4.21) regarding the upper bound u(1 + δ1).

Let us now verify (3.16). The previous paragraph also implies that ρ(N∗, x) ≤ 4d4u
L̂

with

L̂ = 2L for all L ≥ C. We now proceed to verify the required lower bound on ¯̀ρ
x. It will be

convenient to use the notation ¯̀
x(ρ) = ¯̀ρ

x in the sequel. Let ρ̃ ≤ ρ be obtained by replacing h̃ak

in (4.46) by f̃ak , defined similarly as h̃ak but with the function f̃
def.
= 1B2L

(≤ h̃) playing the role
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of h̃. By monotonicity and linearity of ρ 7→ ¯̀·(ρ) (see (3.8)), it follows by definition of g̃a+1
k and

f̃ak (see (4.40)) that for all x ∈ B13L(x̃k),

¯̀
x(ρ) ≥ ¯̀

x(ρ̃) = ¯̀
x

(
4d u

2L12L(·) f̃ak (·)
)

+ ¯̀
x

(
4d uL1L(·) g̃a+1

k (·)
)

=
∑
n<k

¯̀
x(ρ̃n;f̃ ) +

a

A
¯̀
x(ρ̃k;f̃ ) +

(
1− a+ 1

A

)
¯̀
x(ρ̃k;g̃) +

∑
n>k

¯̀
x(ρ̃n;g̃)

where ρ̃n;f̃ (x, `) = 4d u
2L12L(`)f̃(x − x̃n) and ρ̃n;g̃(x, `) = 4d uL1L(`)g̃(x − x̃n). We will prove

shortly that for all x ∈ B13L(x̃k) and every n ≥ 0,

(4.47) ¯̀
x(ρ̃n;g̃) = ¯̀

x(ρ̃n;f̃ ),

which, together with the previous display, then implies

¯̀
x(ρ) ≥

(
1−A−1

)∑
n≥0

¯̀
x(ρ̃n;f̃ ) =

(
1−A−1

)∑
n≥0

¯̀
x

(
4d u

2L12L(·)1B2L(x̃n)(·)
)

=
(
1−A−1

)
¯̀
x

(
4d u

2L12L(·)
) (3.9)

=
(
1−A−1

)
u ≥ u

(
1− δ

2

)
≥ ũ

(
1 + δ

4

)
,

(4.48)

where in the first step of the second line, we used the fact that B2L(x̃n)’s form a partition of
Zd (see above (4.16)) and in the last two steps we used the definition of A as well as the fact
that u ≥ ũ(1 + δ); we also used δ < 1/2 in deriving the last inequality. Thus ρ satisfies the
lower bound condition in (3.16) with κ = δ/4 provided (4.47) holds, which we verify now. Due
to translation invariance, it suffices to check this for n = 0. Invoking (3.8) again, we can write

¯̀
x(ρ̃0;g̃) = ¯̀

x

(
4d uL1L(·)g̃(·)

) (3.8)
=

u

L

∑
`≥0

Ex

[ ∑
`′>`

1L(`′)g̃(X`)
]

=
u

L

∑
0≤`<L

Ex[g̃(X`)]

=
u

L

∑
0≤`<L

(P`g̃)(x)
(4.15)

=
u

L

∑
0≤`<L

P`

(1 + PL
2

)
f̃(x) =

u

2L

∑
0≤`<2L

P`f̃(x) = ¯̀
x(ρ̃0;f̃ )

(4.49)

where in the penultimate step we applied the semigroup property and we suppressed in the final
step the details which are similar to the first four steps. It remains to verify the upper bound
condition on ¯̀

x(ρ) in (3.16), which is straightforward. Indeed, since ¯̀
(
4d uL1L(`)

)
= u for all u

and L by (3.9), and max(g̃k(x), h̃k(x)) ≤ 2 for all x ∈ B50L(x̃k) and L ≥ C, we get immediately
in view of (4.46) that ¯̀

x(ρ) ≤ 4u ≤ 4ũδ−1 for all x ∈ B50L(x̃k).

We resume the proof of Proposition 4.3. We are now ready to define the desired coupling
Qa of J̃k,a and J̃k,a+1, for 0 ≤ a < A, via a combination of Theorems 3.4 and 3.2. In view of

(4.42), this amounts to replacing J̃ a,2k by J̃ a,3k . This will involve an intermediate (fragmented)
configuration K, comprising shorter trajectories of length L′ � L of appropriate intensity.

Without any loss of generality, we assume from now on that γ̄ > 10 so so as to meet the
relevant condition in (3.11), inherent to both Theorems 3.2 and 3.4. Instead of working directly
with J̃ a,2k directly, we will work with a ‘larger’ configuration J f,L (in the sense of (4.51) below),
which renders certain computations more transparent. Let

(4.50) f(x) = 1
A ug̃(x− x̃k) + δ2

80A u1B4L
(x− x̃k), x ∈ Zd,

34



let L′ = L
(

1
(logL)4γ̄ ∧ (δ2)4

)
and f ′ be given in terms of f , L and L′ by (3.15). One readily checks

that f is supported on B4L(x̃k) and that 2u ≥ f ≥ c(δ)ũ (logL)−4 pointwise on B4L(x̃k) (for
the lower bound on f , one only considers the second term in (4.50) and recalls δ2 from (4.22)).
Moreover, since u(r̃ak − r̃

a+1
k ) ≤ ur̃0

k = ur̃k, which by (4.36) is at most δ2
100 in B4L(x̃k) on the

event G(x̃k), one deduces from (4.43) and (4.50) that for all L ≥ C(δ),

(4.51) J̃ a,2k (under Pσ̃) ≤st. J f,L, for any σ̃ ∈ G(x̃k).

Recalling that J̃ a,1,1k
law
= Iρ with ρ as in (4.46) and combining (4.51) with Theorem 3.4, which

is in force in the wake of Lemma 4.5 and the discussion following (4.50), it follows that for
all L ≥ C(δ, γ̄), with l = L

L′ and L′ as defined below (4.50), there exists a coupling Qa
1 of

(J̃ a,2k ∪ J̃ a,1,1k ) and (K ∪ J̃ a,1,1k ), with the two configurations sampled independently for either

pair, where K law
= J (1+C2l

− 1
2 )f ′,L′ , and such that

(4.52) Qa
1

[
C ∂
S

(
V
(
J̃ a,2k ∪ J̃ a,1,1k

))
⊃ C ∂

S

(
V
(
K ∪ J̃ a,1,1k

))]
≥ 1− e−c(logL)γ̄ ,

for both S = B = BN (x) and S = B13L(x̃k) and some c = c(δ, γ̄) > 0. Note that C2 = C2(δ, γ̄)
for the constant appearing in the statement of Theorem 3.4 (and in K) due to the choice of
parameters prescribed by Lemma 4.5.

Next we aim to effectively replace K by J̃ a,3k . To this end, we apply Theorem 3.2 with 2L
playing the role of L (and thus 2l replacing l), 2ũδ−1 in place of u, K = 4L and

f = f2 = 1+C2l
− 1

2

1−C1l
− 1

2
f̄ , where f̄ = 1

A u1B2L
(· − x̃k) + δ2

40A u1B6L
(· − x̃k)

(with C1 = C1(δ, γ̄)). As we now explain, this yields for L ≥ C(δ, γ̄) a coupling of K and J̃ a,3k

such that, for S ∈ {B,B13L(x̃k)} and some c = c(δ, γ̄) > 0,

(4.53) Qa
2

[
C ∂
S

(
V(K)

)
⊃ C ∂

S

(
V
(
J̃ a,3k

))]
≥ 1− e−c(logL)γ̄ .

Indeed, one readily verifies that the function f2 above (4.53) satisfies c(δ, γ̄)(logL)−4 ≤ f2 ≤
2ũδ−1 pointwise on B5L, so that condition (3.13) is met for our choice of parameters. Thus,

Theorem 3.2 yields a coupling of J1 = J f,2L (where f = f2) and J2 = J (1−C1l−1/2)(f1BK )′,L′ =

J (1+C2l−1/2)(f̄1B4L
)′,L′ such that the inclusion V(J1) ⊂ V(J2) holds with probability as in (4.53)

on account of (3.14) and by choice of L′; here it is important to notice that (·)′ refers to the
operation in (3.15) with 2L in place of L, in accordance with our choice of parameters. But
now, in view of (4.50), with l = L

L′ , we have, pointwise on Zd,

f ′
(3.15)

= l−1
∑

0≤k<l
PkL′(f) = (lA)−1

∑
0≤k<l

PkL′(ug̃(· − x̃k)) +
δ2

80
(lA)−1

∑
0≤k<l

PkL′(u1B4L(x̃k))

(4.15)

≤ (lA)−1
∑

0≤k<l
PkL′

(1 + PL
2

)
(u 1B2L(x̃k)) +

δ2

40
(lA)−1

∑
0≤k<l

PkL′
(1 + PL

2

)
(u1B4L(x̃k))

= (2l)−1
∑

0≤k<2l

PkL′(f̄1B4L
),

with f̄ as above. Since K has the same law as J (1+C2l
− 1

2 )f ′,L′ , one immediately infers from this
that K ≤st. J2. Moreover, by choice of L′ and since l = L

L′ , keeping in mind that δ2 = c(logL)−4
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whilst γ̄ > 10, one readily sees that whenever L ≥ C(δ, γ̄),

f2 ≤ (1 + C(δ, γ̄, γM )(δ2)2)f̄

≤ u
A 1B2L

(· − x̃k) + uδ2
A 1B6L

(· − x̃k)
(4.15)

= u
A h̃(· − x̃k)

(4.40)
= u(h̃a+1

k − h̃ak)

whence J1 ≤st. J̃ a,3k in view of (4.43). Thus, applying [38, Lemma 2.4] (twice) to concatenate
the coupling of J1 and J2 supplied by Theorem 3.2 with those implied by the two dominations
yields Qa

2 satisfying (4.53).

Having obtained Qa
1 and Qa

2 satisfying (4.52) and (4.53) for each 0 ≤ a < A, the remaining
task is to extend and concatenate these so as to produce a measure Qσ̃ satisfying all of (4.32)–
(4.35). We start by reconstructing for individual a’s the full configurations J̃ ak and J̃ a+1

k . In light

of (4.42), (4.44) and the sets coupled under Qa
1 and Qa

2, this boils down to defining J̃ a,1,2k , which
is not involved in either of the two measures. With a view towards the required independence
property (4.34), which requires slightly more care than the rest, we first refine (4.44) by further
decomposing (under Pσ̃)

J̃ a,1,2k

(4.45)
= J̃ ′ ∪ J [ur̃k+1,ur̃

a+1
k ],L(ω2)

where

(4.54) J̃ ′ def.
= J u(g̃k+1)|Ũc , L(ω1) ∪ J ur̃k+1, L(ω2) ∪ J u(h̃k)|Ũc , 2L(ω3) ∪ J us̃k,2L(ω4).

Note that J̃ ′ does not depend on a (and thus evolves trivially as a → (a + 1)). Feeding the
decomposition of J̃ a,1,2k into (4.44) and subsequently (4.42) yields the rewrite (still under Pσ̃)

J̃ ak = J̃ ′ ∪ K̃ak, K̃ak = J̃ a,2k ∪ J̃ a,1,1k ∪ J [ur̃k+1,ur̃
a+1
k ],

J̃ a+1
k = J̃ ′ ∪ K̃a+1

k , K̃a+1
k = J̃ a,3k ∪ J̃ a,1,1k ∪ J [ur̃k+1,ur̃

a+1
k ],

(4.55)

valid for all 0 ≤ a < A, and and each of the union is over independent sets. Moreover, it follows
from the definitions of J̃ ′, J̃k = J̃ 0

k and J̃k+1/2 = J̃ Ak that

(4.56) J̃ ′ ∩B17L(x̃k)
c = J̃ 0

k ∩B17L(x̃k)
c = J̃ Ak ∩B17L(x̃k)

c.

This observation will be crucial towards deriving (4.34).
Returning to Qa

1 and Qa
2, observe that the inclusion in (4.53) (and similarly in (4.52)) remains

true if the pair (K, J̃ a,3k ) is replaced by (K ∪ J , J̃ a,3k ∪ J ), for arbitrary J ⊂ Zd. We apply

this observation to both Qa
1 and Qa

2 separately with the choice J law
= J [ur̃k+1,ur̃

a+1
k ] in the former

and J law
= J [ur̃k+1,ur̃

a+1
k ]∪ J̃ a,1,1k in the latter case, sampled independently and incorporated into

Qa
1 and Qa

2 by suitable extension. In view of (4.55), this yields with (4.52) that the inclusion

C ∂
S (V(K̃ak)) ⊃ C ∂

S (V(K′)), where K′ law
= K ∪ J̃ a,1,1k ∪ J [ur̃k+1,ur̃

a+1
k ], holds with Qa

1-probability

1 − e−c(logL)γ̄ . In the same vein, (4.53) lifts to the event C ∂
S (V(K′)) ⊃ C ∂

S (V(K̃a+1
k )) under

Qa
2. Thus, concatenating Qa

1 and Qa
2 by means of [38, Lemma 2.4] produces a coupling Qa of

(K̃ak, K̃
a+1
k ) satisfying

(4.57) Qa
[
C ∂
S

(
V(K̃ak)

)
⊃ C ∂

S

(
V(K̃a+1

k )
)]
≥ 1− 2e−c(logL)γ̄ .
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Since both J̃ a,2k and J̃ a,3k are supported on B8L(x̃k) and the remaining sets constituting K̃ak and

K̃a+1
k in (4.55) coincide by construction under Qa, it follows with Uk = B10L(x̃k) (cf. (4.33))

that for all 0 ≤ a < A,

(4.58) K̃ak ∩ U ck = K̃a+1
k ∩ U ck under Qa.

We will soon refer to this equality when verifying the property (4.33) for Qσ̃.
Further concatenating the couplings Qa’s over all a with 0 ≤ a < A by repeated application

of [38, Lemma 2.4] and extending the resulting measure by an independent sample of J̃ ′ with

law given by (4.54), we arrive in view of (4.55) at a coupling Qσ̃ of J̃ ′ ∪ K̃0
k

law
= J̃ 0

k = J̃k and

J̃ ′ ∪ K̃Ak
law
= J̃ Ak = J̃k+1/2. Combining (4.57), the same observation as following (4.56) and a

union bound, cf. [38, Remark 2.5,2)], it follows that for S ∈ {B = BN (x), B13L(x̃k)},

(4.59) Qσ̃

[
C ∂
S

(
V(J̃ ′ ∪ K̃0

k)
)
⊃ C ∂

S

(
V(J̃ ′ ∪ K̃Ak )

)]
≥ 1− 2Ae−c(logL)γ̄ ,

The measure Qσ̃ is our final coupling. Let Î`, ` = k, k + 1
2 , be defined as Ĩu,L` in (4.19) but

with J̃ ′ ∪ K̃0
k resp. J̃ ′ ∪ K̃Ak in place of J̃ u,Lk resp. J̃ u,Lk+1/2 on the right-hand side. The noise N·

present in (4.19) thereby acts deterministically under Qσ̃. We proceed to verify (4.32)-(4.35)
with these choices.

Property (4.32) is immediate since J̃ ′∪K̃0
k

law
= J̃ u,Lk and J̃ ′∪K̃Ak

law
= J̃ u,Lk+1/2. Property (4.33)

follows directly from our construction as each measure Qa satisfies (4.58) and the same noise
operator is applied to both configurations outside the box B̃k ⊂ Uk according to (4.19). Prop-
erty (4.34) is a consequence of (4.56), the independence between J ′ and (K̃0

k, K̃Ak ) and the fact
that σ(1{x ∈ J ′}, x ∈ V c

k ) is independent from σ(1{x ∈ J ′}, x ∈ Uk), as can be seen by
inspection of (4.54).

Last but not least, (4.35) does not immediately follow from (4.59) with S = B. For, the
(deterministic, under Qσ̃) noise N acting through (4.19) in the definition of both Î`, ` = k, k+ 1

2 ,
varies as ` changes and may in principle completely spoil the inclusion (ensured by (4.59)) of
the boundary clusters of B prior to noising. This is where we leverage the flexibility in S. Thus,
let γ ⊂ B ∩ V̂k+1/2 be a path starting on ∂B. Note that the location of B = BN (x) ⊂ Zd is
arbitrary. We claim that on the intersection of both events in (4.59) as S ranges over the two
allowed sets, and if σ̃ ∈ G(xk), one has γ ⊂ V̂k. From this, (4.35) follows.

To see that γ ⊂ V̂k, we decompose γ = (γn) into disjoint segments (sub-paths) as follows.
Let Ũk = B13L(x̃k). We split γ into (γn)0≤n<TŨk

and, in case TŨk <∞, decompose γ ◦ TŨk into

its excursions in Ũk and their complements (contained inside Ũ ck).

If TŨk =∞, then γ ⊂ Ũk and hence γ ⊂ V̂k automatically by (4.59) for S = B since

V̂k+1/2 ∩ Ũk = V(J̃ ′ ∪ K̃Ak ) ∩ Ũk and V̂k ∩ Ũk = V(J̃ ′ ∪ K̃0
k) ∩ Ũk

if σ̃ ∈ G(xk) on account of (4.36).
If TŨk <∞, then all of (γn)0≤n<TŨk

and the excursions of γ◦TŨk inside Ũk are each contained

in Ũk and part of boundary clusters of C ∂
Ũk

(V̂k+1/2), and thus part of V̂k for the same reason as

above, but using (4.59) for S = Ũk instead. Finally, each segment γ′ ⊂ (Ũ ck ∩ V̂k+1/2) is also in

V̂k by (4.34). This completes the verification of (4.35).
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5 Reduction to super- and (near-/sub-)diffusive estimates

We now commence with the proof of Theorem 1.2. The purpose of the present section is to
progressively reduce it to two individual estimates, stated in Lemmas 5.5 and 5.6 below, which
deal with complementary sets of scales (super- vs. (sub-)diffusive for random walks of time length
roughly L). The two lemmas will be proved separately in Sections 6 and 8. These two estimates
represent the technical core of certain comparison inequalities for connection events, stated in
Proposition 5.1 and Corollary 5.2 below, which imply Theorem 1.2 rather straightforwardly. We
present this latter implication in §5.1. The remainder of this section is devoted to reducing
Proposition 5.1 progressively to the two aforementioned lemmas. They encapsulate the cost of
performing surgery on certain coarse pivotal events (alluded to in §1.4) in two distinct regimes
of a multi-scale analysis. They correspond in a sense to ‘off-critical’ vs. ‘critical’ scales.

5.1. Comparison inequalities. Recall the models Vu,L` = Zd \ Iu,L` from (4.29), (4.21) and
(4.28) in the previous section. The following result will be key.

Proposition 5.1. For all δ ∈ (0, 1
3) and γ ≥ C4 (recall (4.6)), there exists L0(δ, γ) ≥ 1 such

that for all dyadic L ≥ L0, k ∈ N and every r ≥ 1, R ≥ 2(r ∨ M0(L)) (recall (1.28)) and
u ∈ (ũ(1 + 3δ), u∗∗(1− 3δ)),

(5.1) P[Br
Vk←→ ∂BR] ≥ P[Br

Vk+1←−−→ ∂BR], where V· ∈ {V
u,L
· , Ṽu,L· } (see (4.29)).

We admit Proposition 5.1 for the time being and return its proof in §5.2. Together with
Proposition 4.3, which can be used directly in the complementary regime of R, Proposition 5.1
has the following important consequence. Note that the following statement is uniform with
respect to the radii r and R, and that the comparison between Vu and the homogenous model
Vu′,L (see §4.1) it entails, requires a small amount of sprinkling, from u to u′ = u(1±C(logL)−4).

Corollary 5.2. For all γ ≥ C (cf. (4.6)) and δ ∈ (0, 1), there exists L0 = L0(δ, γ) > 1 such
that for all L ≥ L0 integer power of 2, u ∈ (ũ(1 + δ), u∗∗(1− δ)) and R ≥ 2r ≥ 1,

P[Br
Vu←→ ∂BR] ≥ P[Br

Vu(1+C(logL)−4),L

←−−−−−−−−−−→ ∂BR]− exp
{
− (logR)c6γ

}
,(5.2)

P[Br
Vu←→ ∂BR] ≤ P[Br

Vu(1−C(logL)−4),L

←−−−−−−−−−−→ ∂BR] + exp
{
− (logR)c6γ

}
.(5.3)

Moreover, the requirement that u ≤ u∗∗(1− δ) can be replaced by u ≤ ũ
δ when R ≤ 2M0(L).

Remark 5.3. In view of the last sentence, Proposition 1.3 thus corresponds to a special case of
Corollary 5.2.

We proceed to give the proof of Corollary 5.2, which combines Propositions 5.1 and 4.3. From
Corollary 5.2, Theorem 1.2 will readily follow. The proof is given at the end of this paragraph.

Proof of Corollary 5.2. Let γ ≥ 4γ2
M ∨C4∨ 11, cf. (1.24) and Proposition 5.1. We first establish

the following analogue of (5.2)-(5.3) between homogenous models at scales L and 2L, which will
then be iterated over dyadic scales. Namely, as we now explain, for every δ′ ∈ (0, 1) there exists
L0(δ′, γ) > 1 such that, for all u ∈ (ũ(1 + δ′), u∗∗(1− δ′)), dyadic L ≥ L0 and all r ≥ 1, R ≥ 2r,

P[Br
Vu,2L←−−→ ∂BR] ≥ P[Br

Vu(1+δ1),L

←−−−−−→ ∂BR]− η,(5.4)

P[Br
Vu,L←−→ ∂BR] ≥ P[Br

Vu(1+δ1),2L

←−−−−−−→ ∂BR]− η,(5.5)
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where δ1 = δ1(L) = (logL)−4 as in (4.22) and

η = η(L)
def.
= exp

{
− c(logL)γ

}
1R<2M0(L),

with M0(L) = 103M(103L) as in (1.28). Moreover, we claim that the conclusions (5.4)-(5.5)
remain true when requiring u ≤ ũ

δ instead of u ≤ u∗∗(1 − δ) whenever R ≤ 2M0(L). To see

all of this, pick δ = δ′

18 in Proposition 5.1, which is in force when R ≥ 2M0. The inequalities
(5.4)-(5.5) immediately follow in the regime R ≥ 2M0, simply by iterating (5.1) and letting
k → ∞ whilst keeping in mind (4.21), (4.22) and (4.28), which account for the sprinkling δ1.
Note that each of the two sequences of inhomogenous models thereby yields precisely one of
the two inequalities among (5.4) and (5.5). If instead R < 2M0, we choose an enumeration
{x0, x1, . . .} of the lattice L ⊂ Zd underlying the definition of (Vk)k≥0 (cf. below (4.29)) in such
a way that VK ∩ BR = V∞ ∩ BR for some K ≤ CMd

0 . In view of (4.21) and (4.28), we now
apply Proposition 4.3 (see (4.39) in the subsequent remark) with B = BR and γ̄ = γ to deduce
(5.4)-(5.5). The application of Proposition 4.3 underlying the case R < 2M0 does not require
an upper bound on u in terms of u∗∗. This completes the verification of (5.4)-(5.5).

We now show how to deduce (5.2) from (5.4) and the convergence (4.7). Fix δ ∈ (0, 1) as in
Corollary 5.2 and u ∈ (ũ(1 + δ), u∗∗(1− δ)). Then, letting u0 = u(1 + 5δ′) with δ′ = δ/15 and

Lk+1 = 2Lk and uk+1 = uk(1 + δ1(Lk))
−1, k ≥ 1,

we have for all L0 ≥ C(δ) that uk ∈ (u(1 + δ′), u∗∗(1 − δ′)) for all k ≥ 0. Thus, (5.4) applies
between all pairs (uk+1, Lk+1) and (uk, Lk) yielding, for all L0 ≥ C(δ, γ),

(5.6) P[Br
Vun,Ln←−−−→ ∂BR] ≥ P[Br

Vu0,L0←−−−→ ∂BR]−
∑
k≥0

η(Lk), n ≥ 0.

By definition of η(·), the sum in (5.6) only runs over k such that 2M0(Lk) > R. Moreover, since
γ ≥ 4γ2

M and by definition of M0 (recall (1.28)), we see that

(5.7)
∑
k≥0

η(Lk) ≤ exp{−(logR)cγ}

whenever L0 ≥ C(γ). The desired inequality (5.2) now follows from (5.6) and (5.7) upon letting
n→∞, thereby applying (4.7), using the fact that limn un ≥ u and monotonicity of all vacant
sets involved in order to conclude. The complementary estimate (5.3) is obtained similarly by
combining (5.5) and (4.7) instead.

We conclude with the:

Proof of Theorem 1.2. Recall ũ from (1.23). By [37, Corollary 1.2], we know that ũ = ū. On
account of this, and since ū ≤ u∗ ≤ u∗∗ by definition, in order to complete the proof it is enough
to argue that u∗∗ ≤ ũ. Suppose on the contrary that ũ < u∗∗. Pick δ = 1

10u∗∗
(u∗∗ − ũ) > 0,

γ ≥ C large enough so that c6γ ≥ 2γM and let L = 2C5dlog2 L0e with L0 = L0(δ, γ) the length
scale supplied by Corollary 5.2 for these choices of δ and γ and C5 = C5(δ) ≥ 1 an integer
chosen large enough so that the sprinkling appearing in (5.2) and (5.3) satisfies C(logL)−4 ≤ δ

3 .
Applying (5.2) with u = ũ(1 + 2δ) < u∗∗(1− δ) and R = M(r), it follows by (1.23)-(1.24) with
u′ = u(1 + δ

3) that

inf
r
M(r)d P

[
Br
Vu′,L
6←→ ∂BM(r)

]
> 0,
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whence

(5.8) ũ(1 + 3δ) ≥ ũL

(see around Proposition 4.1 regarding ũL and uL∗∗). In a similar vein, applying (5.3) with
u = u∗∗(1 − 2δ) and R = 2r, and combining with the bound implied by (1.22), it follows with
u′ = u∗∗(1− 3δ) that

inf
r
P
[
Br

Vu′,L←−−→ ∂B2r

]
> 0,

and therefore

(5.9) uL∗∗ ≥ u∗∗(1− 3δ).

But by choice of δ, one has u∗∗(1 − 3δ) > ũ(1 + 3δ). Together with (5.8)-(5.9), this yields
uL∗∗ > ũL, which violates Proposition 4.1. Thus, u∗∗ ≤ ũ and Theorem 1.2 follows.

5.2. Surgery: difference estimate. With §5.1 completed, the task of proving Theorem 1.2
is reduced to that of proving the comparison inequality between Vk and Vk+1 (omitting the
superscripts u and L) stated in Proposition 5.1. The proof of the latter occupies the remainder
of this article. Our approach involves a ‘discretized differential calculus’ which will make certain
(coarse) pivotal events already met in §1.4, see (1.32), naturally appear. In the present section
we derive Proposition 5.1 from an inequality involving these pivotal events, see Proposition 5.4
and in particular (5.17) below, which in a rather loose sense can be viewed as a differential
version of (5.1). We explain the meaning of the bound (5.17) in greater detail following the
statement of Proposition 5.4. This proposition will then be derived in §5.3 from the two key
lemmas mentioned at the beginning of this section.

Proof of Proposition 5.1. Let U = Br and V = ∂BR. Throughout the proof, we always tacitly
assume that k ∈ N, δ ∈ (0, 1

3), u ∈ (ũ(1 + 3δ), u∗∗(1− 3δ)), r ≥ 1 and R ≥ 2(r ∨M0). Recalling
L from below (4.29), PivK(V) from (1.32) and writing Pivx,N (V) = PivBN (x)(V), let

(5.10) f(x)
def.
= P

[
Pivx,50L(Vk+ 1

2
)
]
, x ∈ L.

Introduce (cf. (4.21) and (4.28) regarding the second equality)

b
def.
= P[U

V
k+ 1

2←−−→ V ]− P[U
Vk+1←−−→ V ] = P[U

V
k+ 1

2←−−→ V,U
Vk+1

6←→ V ].(5.11)

We will show that for suitable L0(δ, γ), all L ≥ L0 and γ ≥ C,

(5.12) e−c5(logL)γf(xk) ≤ b

(see (4.39) regarding the definition of c5). We first explain how (5.12) yields (5.1). Consider
the configurations Vk+1/2 and Vk. Applying Proposition 4.3 with B = B(xk, 10L) together with
Remark 4.4,1) (see (4.39) in particular), denoting by Coup the event appearing on the left-hand
side of (4.35) with x = xk and N = 10L and recalling the standing assumption on r,R, we first
claim that under the annealed coupling measure Q,

(5.13) {U
V̂
k+ 1

2←−−→ V,Coup} ⊂ {U V̂k←→ V },
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where V̂j
law
= Vj , j = k, k + 1

2 . Indeed, (5.13) can be seen as follows. Since B = B(xk, 10L)
cannot intersect both U and V simultaneously owing to the hypothesis R ≥ 2(r ∨M0) where

M0 = M0(L), we get for any ω ∈ {0, 1}Zd that

1{U
ω←→V } is an increasing measurable function of

(
{ω ∩Bc,C ∂

B(ω)
)
,(5.14)

where ω is tacitly identified with its open set V = {ω = 1} and the underlying partial order �
is the usual inclusion as subsets of Zd. Now V̂k+1/2 ∩ Bc = V̂k ∩ Bc by (4.33) and on the event

Coup, we have C ∂
B(V̂k+1/2) ⊂ C ∂

B(V̂k). Therefore (V̂k+1/2 ∩Bc,C ∂
B(V̂k+1/2)) � (V̂k ∩Bc,C ∂

B(V̂k))
and consequently, (5.13) follows by (5.14). In turn, (5.13) yields that

P[U
V
k+ 1

2←−−→ V ]− P[U
Vk←→ V ]

= Q[U
V̂
k+ 1

2←−−→ V ]−Q[U
V̂k←→ V ] ≤ Q[U

V̂
k+ 1

2←−−→ V,U
V̂k
6←→ V ]

(5.13)
= Q[Coupc, U

V̂
k+ 1

2←−−→ V,U
V̂k
6←→ V ]

(4.33)

≤ Q[Coupc, Pivxk,50L(V̂k+ 1
2
)].

(5.15)

Finally, observe that Coup is measurable with respect to σ(1{x ∈ Îj}, x ∈ B, j = k, k + 1/2)

whereas Pivxk,50L(V̂k+1/2) ∈ σ
(
1{x ∈ Îk+1/2}, x ∈ B̄c) for B̄

def.
= B(xk, 50L) and therefore these

two events independent by virtue of (4.34’). Thus, the bound obtained in (5.15) factorizes, and
applying (4.39) to bound Q[Coupc] followed by (5.12) gives

P[U
V
k+ 1

2←−−→ V ]− P[U
Vk←→ V ] ≤ b,

for L ≥ L0 and γ ≥ C. By definition of b in (5.11), the claim (5.1) follows.
It thus remains to show (5.12). Recall our standing assumptions on δ, u, r and R from

the statement of Proposition 5.1, which are implicitly in force in the statement of the next
proposition. For α, β > 0, define gα,β : L 7→ [0,∞) given by

(5.16) gα,β(x) =

{
e(logL)αγ , if |x− xk|∞ ≤M2

1 ,

e(logL)βγ |x− xk|
β(logL)αγ

∞ , if |x− xk|∞ > M2
1 ,

where M1
def.
= M(650L) (so that, in particular, M1 < M0, cf. (1.28)). We will derive the following

inequality for f(·) and b, see (5.10) and (5.11), which is at the heart of our proof.

Proposition 5.4 (Surgery). There exist c7(δ) ∈ (1
2 , 1), c8(δ) ∈ (0, 1), C6(δ) > 10 and C7(δ) > 0

such that for all γ ≥ C6γ
2
M , all dyadic L ≥ C(δ, γ), k ∈ N and x ∈ L, one has

(5.17) f(x) ≤ b g(x) + e−c(logL)c8γ Āf(x),

where g = gα=c7,β=C7 and Ā is the local averaging operator

(5.18) Āf(x)
def.
=

1

|BL|
∑
y∈BL

f(y),

with BL = BL(x,M1) = B(x,M1) ∩ L.
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Roughly speaking, (5.17) should be read as follows: at a cost controlled by g in (5.16), one can
typically reconstruct the (discrete, see (5.11)) gradient b from the coarse pivotal event f . This
may however fail and the resulting ‘error’ is conveniently expressed in terms of a suitable average
of f itself, attenuated by the pre-factor exp{−c(logL)c8γ}. Due to the form of the error term,
the resulting bound lends itself to iteration, as performed below in order to conclude the proof
of Proposition 5.1. The two cases distinguished in (5.16) reflect the fact that the contraction on
the error term occasioned by iterating (5.17) only becomes effective after a certain number of
iterations, as will become clear momentarily, until which point the exponent γ from (5.12) takes
precedence over the exponent αγ (with α = c7 < 1) in the first line of (5.16).

Before delving into the proof of Proposition 5.4, which is rather involved, let us conclude the
proof of Proposition 5.1, which we reduced to proving the bound (5.12). We now explain how
Proposition 5.4 implies this bound. Pick γ large enough as for the conclusions of Proposition 5.4
to hold. Notice that Ā is a linear operator on the space L∞(L) with unit norm which preserves
non-negativity, i.e. Af ≥ 0 whenever f ≥ 0. Consequently, we can iterate (5.17) to arrive at

(5.19) f(xk) ≤ b
m−1∑
j=0

e−c j(logL)c8γ (Ājg)(xk) + e−cm(logL)c8γ (Āmf)(xk),

valid for any integer m ≥ 1. Indeed, (5.19) can be verified by a straightforward induction
argument. Moreover, Ā acts on RL since it has finite range, cf. (5.18). In particular, Ājg with g
as in (5.16) (which is not in L∞(L)) is well-defined for every integer j ≥ 0. Now since ‖A‖∞ = 1
and |f | ≤ 1, cf. (5.10), we immediately obtain that

(Āmf)(xk) ≤ ‖f‖∞ ≤ 1.

Hence, taking the limit m→∞ in (5.19), we deduce that

(5.20) f(xk) ≤ b
∞∑
j=0

e−c j(logL)c8γ (Ājg)(xk).

With a view towards (5.12), we need to obtain a suitable upper bound on the series (5.20). To
this end, we distinguish two cases in (5.20) based on the value of j. For j ≤ M1 and since
A has range M1, one has that Ājg(xk) = Āj(g1x∈B(xk,M

2
1 ))(xk). Hence, for such j, using that

c7γ >
γ
2 > γM (recall that γ ≥ 10γ2

M ) and that

(Ājg)(xk) ≤ ‖g1x∈B(xk,M
2
1 )‖∞

(5.16)

≤ eC(logL)c7γ ,

we readily infer that

(5.21)
∑

0≤j≤M1

e−c j(logL)c8γ (Ājg)(xk) ≤
∑

0≤j≤M1

(Ājg)(xk) ≤ 2−1ec5(logL)γ ,

for all L ≥ C(δ, γ). In a similar vein, we get for j ≥M1,

(Ājg)(xk) ≤ ‖g1x∈B(xk,jM1)‖∞
(5.16)

≤ eC(logL)C7γ
(jM1)C7(logL)c7γ ,

which immediately yields, for L ≥ C(δ, γ),

(5.22)
∑
j>M1

e−c j(logL)c8γ (Ājg)(xk) ≤ e−c
′M1(logL)c8γ .

Together, (5.20), (5.21) and (5.22) imply (5.12) for L ≥ C(δ, γ), which concludes the proof of
Proposition 5.1 conditionally on the validity of Proposition 5.4.
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5.3. Reduction to two lemmas. The proof of Proposition 5.4 will follow from two interme-
diate results, stated separately in Lemmas 5.5 and 5.6 below. The first of these two lemmas is
proved in Section 6, the second in Section 8. Combining the two results, Proposition 5.4 quickly
follows. Its short proof is given at the end of the present section.

Lemma 5.5 essentially converts the pivotality event f , cf. (5.10), at the cost of similar additive
errors as those appearing in (5.17) into a (nearby) closed pivotal event (recall (1.36)) for the
modified configuration Vk+1 at an intermediate, near-diffusive range RT , slightly larger than√
L, see (5.28) and (5.29) below. Lemma 5.6 then further reduces the cluster separation to

sub-diffusive scales RT,m, eventually removing it entirely, in order to re-construct a ‘discrete
gradient’ configuration in b, cf. (5.11). Before carrying on, we introduce the notation (cf. (4.29)
and (5.1))

(5.23) L∗ =

{
2L, if V· = Ṽu,L· ,

L, if V· = V
u,L
· ,

which corresponds to the opposite roles played by L and 2L in (4.18) and (4.26), respectively.
The convenient notation L∗ will be freely used throughout the text.

For the remainder of §5.3 (as in the statement of Proposition 5.4), we are always tacitly
assuming that

(5.24) γ ≥ 10γ2
M , δ ∈ (0, 1

3), u ∈ (ũ(1 + 3δ), u∗∗(1− 3δ)), and r ≥ 1, R ≥ 2(r ∨M0),

where M0 = M0(L) depends on the range parameter L, which is always (often tacitly) assumed
to be a dyadic positive integer. In particular, these assumptions are implicit in the statements
of Lemma 5.5 and 5.6 below. To lighten the load, un-numbered constants such as c, C, . . . may
from here onwards implicitly depend on δ and γ, as does any parameter A (like L etc.) whenever
we use the phrase ‘for A large enough.’

5.3.1. Super-diffusive scales. We begin by introducing a suitable framework for the near-
diffusive estimate entailed by Lemma 5.5. Its outcome is a bound on f in terms of the quantity
q defined in (5.29) below. We will condition on a certain amount of ‘random sprinkling’ s, as
follows. Recalling εL from (4.6), let

(5.25) ε = εL∗d(logL∗)γ−γ1e, for γ1 ∈ (0, γ),

with L∗ as in (5.23). Abbreviating s(·) = (sk+1 − sk)(·) where sk = s̃k, or s̄k depending on V
(and similarly for rk, recall (4.17) and (4.25)), we then set

(5.26) Pεx[ · ] def.
= P

[
·
∣∣ s|Cx = ε

]
, where Cx = B(x, 90L) for x ∈ L.

We will also abbreviate πεx = P
[
s|Cx = ε

]
and λx = 1 ∧ c3( L

|x−xk|)
d+1. On account of (5.25) and

(4.12), (4.13), (4.38), using that P [Poi(λ) = k]−1 ≤ e( kλ)k for all λ ≤ 1 and k ≥ 1, it follows
that πεx satisfies (cf. (5.16))

(πεx)−1 ≤
∏

y∈BL(x,90L)

P
[
Poi(λy) = d(logL∗)γ−γ1e

]−1

≤

{
eC(logL)γ−γ1+γM , if |x− xk|∞ ≤ 2M2

1 ,

e(logL)C8γ |x− xk|
C8(logL)γ−γ1

∞ , if |x− xk|∞ > 2M2
1

(5.27)
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for some C8 = C8(d) > 1 and all L ≥ C. Finally, for a parameter γ2 > 0, let

(5.28) RT = bL1/2(logL)γ2c.

(the reason for the notation T will become apparent in §7.1; RT will eventually correspond to
the radius of a certain tubular region T ). The near-diffusive bound stated below is expressed in
terms of the quantity

(5.29) q(y)
def.
= Pεy

[
Pivy,50L(Vk+1), dy(CU (Vk+1),CV (Vk+1)) ≤ RT

]
,

with Pεy as in (5.26), CS(V) denoting the cluster of S ⊂ Zd in V and dy(K,K
′) = d(Ky,K

′
y), for

K,K ′ ⊂ Zd and Ky = K ∩B(y, 20L).

Lemma 5.5 (Super-diffusive scales, (5.24)). Let β > 2C8 and α, γ1, γ2 be such that

(5.30) α ∈ (1
2 , 1), γ1 − 3γM > (1− α)γ and γ2 > 3γM .

Then, with M2 = 4M̃(50L)(< M1/4, see below (6.15)) and M = M(L), one has

f(x) ≤
gα,β(x)

2
b+ e−c(logL)2γ2∧γ

Af(x) + eC(logM)2
∑

y∈BL(x,M2)

q(y),(5.31)

for all dyadic L ≥ C and x ∈ L, where Af(x)
def.
=
∑

y∈BL(x, 1
2
M1) f(y).

The proof of Lemma 5.5 is the subject of Section 6.

5.3.2. Near- and sub-diffusive scales. We now improve on the outcome of Lemma 5.5 by
replacing the quantity q (= qm0 in the notation below) appearing in the bound (5.31) by the
quantity q0 below (see (5.37)), thus progressively reducing the cluster separation to sub-diffusive
scales RT,m for 0 ≤ m ≤ m0 (with RT,m0 = RT ), in steps indexed by m. The corresponding
single-step bound relating qm to qm−1 is the content of the next lemma. This lies at the very
heart of the surgery argument. For γ3 ≥ 10, let C9 = C9(γ3) > 0 denote the smallest integer
such that

(5.32) RT
(
1− d−1

)m0 ≤ (logL)γ3 , where m0 = C9blogLc.

and define RT,m = RT (1 − d−1)m0−m, so that RT,m0 = RT . Notice that supγ3
C9(γ3) < ∞.

Further let, with s(·) = (sk+1 − sk)(·) as before, and for y ∈ L,

(5.33) s′k
def.
= sk+1 − s′

def.
= sk+1 − s|Cy (≥ sk);

this singles out the contribution s′ = s|Cy employed in the conditioning, see (5.26). Now consider
for any real t ∈ [0,m0] the configuration (recall and compare to (4.21),(4.28))

(5.34) Jk,t = Jk,t;y
def.
=

J
u,L

k+ 1
2

, if t = 0,

J u,L
k+ 1

2

∪ J [usk,us
′
k], L∗(ω4) ∪ J [us′k,us

′
k+ t

m0
us′], L∗

(ω4), if t > 0,

with L∗ as in (5.23) and let (cf. (4.19) and (4.27))

(5.35) Ik,t =

{
NL
∗
(Jk,t ∩ B̃j) if j ≤ k,

N3L−L∗(Jk,t ∩ B̃j) if j > k,
Vk,t = Zd \ Ik,t.
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The decomposition in (5.34) when t > 0 is meant to highlight that the increment Jk,t \ Jk,t−1

for t = m an integer in {1, . . . ,m0} (which will be relevant in the sequel) differs depending on
whether m = 1 or m > 1. With the above choices, for any y ∈ L one has that

Vk,0 = Vk+ 1
2
, Vk,m0 = Vk+1,

Vk,t ∩B(y, 130L)c = Vk+1 ∩B(y, 130L)c ∀ 0 < t ≤ m0 (cf. (4.30))

Vk,t ⊂ Vk,s ∀ 0 ≤ s ≤ t ≤ m0.

(5.36)

Now define q0 = 0 and for any integer m with 1 ≤ m ≤ m0,

(5.37) qm = qm(y) = Pεy
[

Pivy,50L(Vk,m), dy(CU (Vk,m),CV (Vk,m)) ≤ RT,m
]
,

so qm0(y) = q(y) with the same notation as in (5.29). Recall that γ1 regulates the amount of
sprinkling ε, see (4.6), γ2 defines the initial near-diffusive scale RT , see (5.28), and γ3 the final
scale RT,0, see (5.32). To avoid unwieldy notation, we henceforth abbreviate Γ = (δ, γ, γ1, γ2, γ3).
Our goal is to prove the following.

Lemma 5.6 (Critical scales, (5.24), y ∈ L). There exist C10(δ), C11(δ), C12 ≥ 10 such that, for
all γ, γ1, γ2, γ3 satisfying

(5.38) γ/C11 ≥ γ2 ≥
(
(γ1 + 5) ∨ 3γM ∨ C12

)
and γ3 ≥ C10γ2,

and for all dyadic L ≥ L0(Γ) > 1 and 1 ≤ m ≤ m0, one has, for some c = c(Γ) > 0,

qm ≤ e(logL)C12γ3
(qm−1 + (πεy)

−1 b) + e−c(logL)γ2
Af(y).(5.39)

The proof of Lemma 5.6 draws on several distinct ideas, which we won’t attempt to summa-
rize here; see the beginning Section 8 (which contains the proof) for an overview.

5.3.3. Proof of Proposition 5.4. Admitting Lemmas 5.5 and 5.6 for the time being, we
conclude this section by giving the short:

Proof of Proposition 5.4 (assuming Lemma 5.6). Recalling the value of m0 from (5.32) and ap-
plying (5.39) iteratively over all 1 ≤ m ≤ m0, we get

q(y) ≤ e(logL)C13γ3
(πεy)

−1 b+ e−c(logL)γ2
Af(y)(5.40)

for suitable C13 > C12, all γ, γ1, γ2, γ3 satisfying (5.38) and all dyadic L ≥ C(δ, γ, γ2, γ3).
With a view towards the statement of Proposition 5.4, we now set C6 = 100C11(C10C13)3

and consider any γ ≥ C6γ
2
M . We then pick γ1 = γ

10C11(C10 C13)2 , γ2 = max(γ1 + 5, 3γM , C12) =

γ1 + 5 (< γ/C11) and γ3 = C10γ2, so that the conditions in (5.38) are all satisfied. With these
choices, we have for the exponent appearing in the first term on the right-hand side of (5.40)
that C13γ3 ≤ γ

5C11C10 C13
. Thus, substituting the bound for (πεy)

−1 from (5.27) into (5.40) and

combining the resulting bound with (5.31), for α = 1− (20C11(C10C13)2)−1, for which condition
(5.30) holds, and β = 10 max(C8, C10, C13) with C8 as in (5.27), yields that

(5.41) f(x) ≤ b gα,β(x) + e−c(logL)γ2
Āf(x)

for dyadic L ≥ C. Thus, we deduce Proposition 5.4 from the inequality (5.41) for c7 = α(=
1−(20C11(C10C13)2)−1), c8 = (20C11(C10C13)2)−1, with the above choice of C6 and C7 = β.
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6 Super-diffusive scales

The remainder of this article is devoted to the proofs of Lemmas 5.5 and 5.6, to which Theo-
rem 1.2 has been reduced in the previous section. This will take us on a long and exciting journey
(the Odyssey). We will try to be cunning archers but the key inequality (5.17) (Penelope) the
two lemmas allow us to establish seemingly requires our arrow to traverse twelve axe heads.
The present section deals with Lemma 5.5, which is conceptually simpler. We first gather in
§6.1 some a-priori connectivity estimates for the mixed models Vu,L` introduced in §4.2. These
bounds are inherited from Vu in a suitable regime of the intensity parameter u by means of
Proposition 4.3, which acts as a transfer mechanism. We then extend the toolbox by proving
in §6.2 certain inequalities allowing to switch between pivotal configurations in different vacant
configurations and at different scales. The various ingredients are put to use in §6.3, which
comprises the proof of Lemma 5.5.

6.1. Connectivity estimates. Our starting point is the following connectivity lower bound
for the (full) vacant set Vu. Namely, combining (1.22) and [37, Lemma 2.2], one sees that for
all δ ∈ (0, 1), u < u∗∗(1− δ), every N ≥ 1 and x, y ∈ BN ,

P
[
x
Vu∩BN←−−−→ y

]
≥ e−C14(δ)(logN)2

.(6.1)

The next result translates these lower bounds to the inhomogenous models Vu,L` (recall the
notational convention from (4.29)) under suitable assumptions. This is not completely innocent.
Crucially, the allowed spatial range (parametrized by N below) relative to L does not just cover
a regime of ‘very long’ walks, i.e. the case L1/2 � N . This warrants the use of Proposition 4.3
and with it already the full technology of Section 3, developed separately in [38].

Lemma 6.1 (Connection lower bound). Let δ ∈ (0, 1
2), γ > 2γM and u ∈ (ũ(1 + δ), u∗∗(1− δ)).

For any L > 2 integer power of 2, z ∈ Zd and 1 ≤ N ≤M0(L) (see (1.28)), letting

(6.2) GN (z)
def.
=

⋂
k≥0:

Uk∩BN (z)6=∅

Gu,L(xk)

(cf. (4.36)), one has for all x ∈ ∂BN (z), y ∈ BN (z) and σ̃ ∈ GN (z),

(6.3) Pσ̃
[
x
V∩BN (z)←−−−−→ y

]
≥ e−C(δ,γ)(logN)2

, with V = Vu,L` , ` ∈ N/2.

Moreover, (6.3) continues to hold under the unconditional measure P in place of Pσ̃.

Proof. Throughout the proof, generic constants may implicitly depend on δ and γ. We will
omit the intersection with BN (z), as present in (6.3), from all connection events below to avoid
unnecessary clutter of notations. We first prove a version of (6.3) with P instead of Pσ̃ and
explain how to deduce its quenched version at the end. By writing

(6.4) P
[
x
V`←→ y

]
=
(
P
[
x
V`←→ y

]
− P

[
x
Vd`e←−→ y

])
+ P

[
x
Vd`e←−→ y

] (4.21),(4.28)

≥ P
[
x
Vd`e←−→ y

]
,

it is enough to prove (6.3) for ` ∈ N, which will be tacitly assumed from here on. We bound
the probability on the right-hand side in two steps. In the first step, we use Proposition 4.3
(more precisely, its annealed version (4.39)) repeatedly in the region B = BN (z) to obtain a

46



lower bound in terms of the same connection probability for Vu′,L′ for some u′ > u close to u
and L′ ≥ L very large compared to N . The coupling errors accumulated along the way will
turn out to be negligible due to the upper bound constraint on N . In the second step, we use
(4.7) to directly compare the resulting connection probability with the corresponding quantity
for the full interlacement, for which the required lower bound holds in view of (6.1).

The construction of Vu,L· involves an enumeration L = {x0, x1, . . .} of (4L+1)Zd (resp. (2L+
1)Zd), see above (4.16) (resp. (4.24)). Although this is strictly speaking not necessary, we assume
for convenience that the ordering first exhausts the points xk with BN (z) ∩ Bk 6= ∅ where
Bk = B(xk, 2L) (resp. B(xk, L)). Thus, {x0, x1, . . .} has the property that for some n ∈ N with
n ≤ |BN |, one has BN (z) ⊂

⋃
k<n Uk, where Uk = B10L(xk). With these choices, it follows that

(6.5) Vu,L` ∩BN (z) = Vu,L`∧n ∩BN (z), for all ` ∈ N/2.

Let Qk = Q refer to the (annealed) coupling (4.39) and observe that the connection event in
(6.3) implies that y ∈ C ∂

B(V) with B = BN (z). Then by (6.5), repeated application of (4.39) as
well as the relationships in (4.21) or (4.28) (as appropriate) we obtain that for all ` ∈ N,

(6.6) P
[
x
Vu,L`←−→ y

]
= Q`∧n

[
x
V̂u,L`∧n←−→ y

]
≥ Qn

[
x
V̂u,Ln←−→ y

]
− n e−c(logL)γ ≥ P

[
x
Vu0,L0←−−−→ y

]
− n e−c(logL)γ ,

where (u0, L0)
def.
= (u(1+δ1(L)), 2L) if Vu,L· = Ṽu,L· and (u(1+δ1(L)), L) otherwise. Now consider

the sequence of scales (Li)i≥0 along with an increasing sequence of levels (ui)i≥0 defined as
Li+1 = 2Li and ui+1 = ui(1 + δ1(Li)) for all i ≥ 0. Similarly as above, let {xi0, xi1, . . .} denote an
enumeration of (4Li+1)Zd (resp. (2Li+1)Zd) with the property that BN (z) ⊂

⋃
k≤ni B10Li(x

i
k)

where ni is the number of points w satisfying B10Li(w) ∩ BN (z) 6= ∅. Repeating the steps
leading to (6.6) successively for models defined with respect to the sequences {xi0, xi1, . . .} over
all 1 ≤ i ≤ m yields, for arbitrary m ≥ 1,

(6.7) P
[
x
Vu,L`←−→ y

]
≥ P

[
x
Vum,Lm←−−−−→ y

]
− ne−c(logL)γ −

∑
i>0

nie
−c(logLi)

γ
.

Since γ > 2γM and n ∨ supi{ni} ≤ |BN | ≤ CM0(L)d = C(M(103L))d by condition on N , this
immediately gives in view of (1.24) that

(6.8) P
[
x
Vu,L`←−→ y

]
≥ P

[
x
Vum,Lm←−−−−→ y

]
− e−c(logL)γ , for all m ≥ 1.

We now arrive at the second step. By choosing Lm large enough in the previous display, (4.7)
applies and allows to deduce from (6.8) that

(6.9) P
[
x
Vu,L`←−→ y

]
≥ P

[
x
Vu∞(1+ δ

100 )

←−−−−−−→ y
]
− e−c′(logL)γ .

where u∞ = limn ↑ un(<∞). We are free to prove (6.3) for L ≥ C(δ) only since the remaining
cases amount to adapting the constants by restriction on N . For L ≥ C(δ), one can ensure that
u∞(1 + 5

100δ) ≤ u∗∗(1 − 0.9δ), so (6.1) applies and yields that the first term on the right-hand

side of (6.9) is at least e−C14(δ)(logN)2
. The second term is then negligible since N ≤M0(L) and

using γ > 2γM > 2. Overall, this yields (6.3) for P.
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It remains to explain how to deduce the corresponding estimate under Pσ̃. The (stronger)
quenched analogue of (6.4) (with Pσ̃ everywhere) holds so we may assume that ` ∈ N. Then,
one simply notes that the analogue of (6.6) with Pσ̃ in place of P everywhere holds whenever
σ̃ ∈ GN (z). To see this, one proceeds exactly as in (6.6) but replaces the coupling (4.39) by
(4.35), which is in force in view of (6.2). Averaging the lower bound thus obtained over σ̃ and
subsequently using (4.38) and a union bound (note to this effect that the intersection in (6.2) is
over at most n elements), it follows that for all σ̃ ∈ GN (z),

Pσ̃
[
x
Vu,L`←−→ y

]
≥ P

[
x
Vu0,L0←−−−→ y

]
− n e−c(logL)γ − P[GN (z)c] ≥ P

[
x
Vu0,L0←−−−→ y

]
− 2n e−c(logL)γ .

One now proceeds exactly as above to deal with P
[
x
Vu0,L0←−−−→ y

]
and arrives at (6.3).

We now turn to disconnection estimates. The following is an analogue of (6.1). By (1.23),
one knows that for all δ > 0, there exists c9(δ) > 0 such that for u ≥ ũ(1 + δ), N ≥ 1, x ∈ Zd,

(6.10) P
[
BN (x)

Vu
6←→ ∂BM(N)(x)

]
≥ c9M(N)−d.

Unlike Lemma 6.1, we only state the relevant disconnection estimate under the annealed mea-
sure P, which is all we need. A similar quenched result could however also be derived.

Lemma 6.2 (Disconnection lower bound). Let δ ∈ (0, 1/2), γ > 2γM and u ∈ (ũ(1 + δ), ũδ−1).
Then for some c = c(δ, γ) > 0, all dyadic L > 2, x ∈ Zd and 1 ≤ N ≤ 103L, we have

P
[
BN (x)

V
6←→ ∂BM(N)(x)

]
≥ cM(N)−d, with V = Vu,L` , ` ∈ N/2.

Proof. The proof is very similar to that of Lemma 6.1 except that various steps are performed
in the ‘reverse’ direction. More precisely, instead of (6.6), with L = {x0, x1, . . .} and n similarly
in the previous proof, i.e. the ordering chosen as to minimize n such that BM(N)(z) ⊂

⋃
k<n Uk,

whence in particular, (6.5) holds with M(N) in place of N , one has that

P
[
BN (x)

Vu,L`
6←→ ∂BM(N)(x)

]
≥ P

[
BN (x)

Vu,Lb`c
6←→ ∂BM(N)(x)

]
= Qb`c∧n

[
BN (x)

V̂u,Lb`c∧n
6←→ ∂BM(N)(x)

]
≥ Q0

[
BN (x)

V̂u,L0

6←→ ∂BM(N)(x)
]
− ne−c(logL)γ ≥ P

[
BN (x)

Vu0,L0

6←→ ∂BM(N)(x)
]
− n e−c(logL)γ ,

where (u0, L0) = (u, L) if Vu,L· = Ṽu,L· and (u, 2L) if Vu,L· = Vu,L· . Observe that the restriction
on N implies that n ≤ eC(logL)γM , which is readily absorbed since γ > 2γM . Then one considers
the dyadic sequence of scales (Li)i≥0 as before but with a decreasing sequence of levels (ui)i≥0

defined as ui+1 = ui
1+δ1(Li)

for all i ≥ 0, to arrive at the following analogue of (6.8),

P
[
BN (x)

Vu,L`
6←→ ∂BM(N)(x)

]
≥ P

[
BN (x)

Vum,Lm
6←→ ∂BM(N)(x)

]
− e−c(logL)γ ,

valid for all integers m ≥ 1. The remainder of the proof now follows the same steps as in the
previous lemma except one substitutes (6.10) for (6.1) while deriving the relevant estimates.
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6.2. Pivotality and switching. We now prove two results that will allow to switch between

different pivotal configurations in Vu,L` . These will be used in the course of proving Lemma 5.5
in the next paragraph, which states in (5.31) an (inductive) bound for the function f(x) =
P[Pivx,50L(Vk+1/2)] introduced in (5.10). Recall to this effect the coarse pivotal event PivK(V)

and close coarse pivotal event PivK from (1.32) and (1.36), which implicitly depend on R ≥ 2r.
When K = BN (x), which will frequently occur, we continue to write Pivx,N (V) = PivBN (x)(V)

and similarly Pivx,N (V) = PivBN (x)(V). Observe that the events in (1.32) and (1.36) are both

increasing in K, and in particular that both Pivx,N (V) and Pivx,N (V) are increasing in N . This
fact will be frequently used in the sequel.

Our first lemma concerns a simple yet very useful relationship between the probability of
pivotal events in two different configurations. The utility of this result will become manifest
later; see, e.g., Remark 6.5 for a brief discussion.

Lemma 6.3. For any K ⊂ Zd and V ′ ⊂ V ⊂ Zd (under P), one has

(6.11) P
[

PivK(V ′)
]
≤ P[U

V ′
6←→ V,U

V←→ V ] + P
[

PivK(V)
]
.

In particular, (6.11) holds with (V ′,V) = (Vk+1,Vk+ 1
2
).

Proof. One first decomposes

(6.12) P
[

PivK(V ′)
]

= P
[

PivK(V ′), U V←→ V
]

+ P
[

PivK(V ′), U
V
6←→ V

]
.

Now by (1.32) and (1.36) one has that

(6.13)
{

PivK(V ′), U V←→ V
}
⊂
{
U

V ′
6←→ V,U

V←→ V
}

whereas, since V ′ ⊂ V,

(6.14)
{

PivK(V ′), U
V
6←→ V

}
⊂
{
U
V∪K←−−→ V,U

V
6←→ V

}
= PivK(V).

Feeding (6.13) and (6.14) into (6.12) yields (6.11). Finally, Vk+1 ⊂ Vk+ 1
2

in view of (4.21),

resp. (4.28), and thus (6.11) is satisfied by (Vk+1,Vk+ 1
2
).

Our second result will be used in various places in order to turn pivotal into closed piv-
otal configurations. Recall the definition of ω̃LK following (4.29). Below we refer to ωu,LK as
the point measure induced by ω̃LK obtained by retaining only the (finite length) trajectories w
corresponding to points (j, v, w) ∈ supp(ω̃LK) with label v ≤ u/L.

Lemma 6.4. For δ ∈ (0, 1) and γ > 2γM , there exists C = C(δ, γ) ∈ (0,∞) such that the
following holds. For all u ∈ (ũ(1 + δ), u∗∗(1 − δ)), L ≥ C integer power of 2 and all r ≥ 1,
R ≥ 2(r ∨ 3M(N)), with V = Vu,L` , one has

P [Pivx,N (V)] ≤ CM(N)dP
[

Piv
x,M̃(N)

(V)
]
, ` ∈ N/2, x ∈ L, 1 ≤ N ≤ 103L,(6.15)
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where M̃(N)
def.
= M(N) + 10L. Moreover, for any 10 ≤ ∆ < 10L and x ∈ L, defining

F∆ = F∆,N (x)
def.
=
{

diam`∞(range(w)) ≤ ∆/4 for all w ∈ supp(ωu∗∗,LB2N (x))
}
, and

H = HN (x)
def.
= G2N (x) (∈ Fσ̃) (see (6.2)),

(6.16)

one has, for ` ∈ N/2, x ∈ L, 10 ≤ ∆ ≤ 10L and 10 ≤ N ≤ 1
10M0(L),

if ∆ < 10L: Pσ̃
[
F∆, Pivx,N (V)

]
≤ eC(logN)2

Pσ̃
[ ⋃

z∈B2N (x) Pivz,∆(V)
]

on H, and(6.17)

if ∆ = 10L: P
[
Pivx,N (V)

]
≤ eC(logN)2

P
[ ⋃

z∈B2N (x) Pivz,∆(V)
]
.(6.18)

Proof. As in the proof of previous lemmas in this section, generic constants c, C may implicitly
dependent on δ, γ (and d). We first show (6.15). Let Dx(N) refer to the event that BN (x) is
disconnected from ∂BM(N)(x) in V = Vu,L` . Since u ≥ ũ(1 + 3δ) and for L ≥ C, which we will
henceforth tacitly assume, we have by Lemma 6.2 that

(6.19) P[Dx(N)] ≥ cM(N)−d, for all N ≤ 103L.

As we now explain, since R ≥ 2(r ∨ 3M(N)) one has the inclusion

(6.20) Dx(N) ∩ {U
V\BN (x)

6←→ V } ⊂ {U
V
6←→ V }.

To see this, observe that at least one of U and V does not intersect BM(N)(x) due to the bound

on R. Hence, on the event Dx(N) one knows that A1
def.
= {BN (x)

V←→ U}c ∪ {BN (x)
V←→ V }c

occurs. On the other hand, the complement of the event {U V\BN (x)←−−−−→ V } implies that any path
in V joining U and V must intersect BN (x). Since the occurrence of such a path in V is disjoint

from A1, the event {U V←→ V } cannot occur, and (6.20) follows.
Now, recalling the relevant definition(s) relative to monotonicity from above Lemma 4.2,

abbreviate F = FLB(x,M(N)) and observe that Dx(N) ∈ F is decreasing in B(x,M(N)) (under

Pσ̃). Moreover, defining Fx(N) = {U S←→ V } where S
def.
= V ∪ B(x, M̃(N)), the event Fx(N) ∩

{U V\BN (x)←−−−−→ V }c is decreasing in B(x,M(N)) by our choice of M̃(N) as well as the radii of the
boxes in B̃ and B (cf. (4.30)). In view of (1.32), we thus obtain by monotonicity and Lemma 4.2
that

P
[

Piv
x,M̃(N)

(V)
] (6.20)

≥ P
[
Dx(N), U

V\BN (x)

6←→ V, Fx(N)
] (4.31)

≥ Eσ̃[f(σ̃)g(σ̃)],(6.21)

where f(σ̃) = Pσ̃[Dx(N)] and g(σ̃) = Pσ̃
[
U
V\BN (x)

6←→ V, Fx(N)
]
. Now recalling that (ΣL

K)c =

{σBB′ : B,B′ ∈ B, B ∩ K = ∅} where B def.
= B̃ ∪ B, consider the σ-algebra Σ̃c generated by

((ΣL
K)c,UKc) for K = B(x,M(N)). The function f is clearly increasing in (σ \ (ΣL

K)c, 1− UK)

under P σ̃[ · | Σ̃c]. The same is true of g as M̃(N) = M(N) + 10L. Since f(σ̃) is independent of
Σ̃c and Eσ̃[f(σ̃)] = P[Dx(N)], it follows by the FKG-inequality for independent variables that

Eσ̃[f(σ̃)g(σ̃) | Σ̃c] ≥ P[Dx(N)]P
[
U
V\BN (x)

6←→ V, Fx(N) | Σ̃c
]
.
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Hence, taking expectation on both sides, we obtain that the left-hand side of (6.21) is bounded
from below by

P[Dx(N)]P
[
U
V\BN (x)

6←→ V, Fx(N)
] (6.19)

≥ cM(N)−dP [Pivx,N (V)] ,

where we used monotonicity and (1.36) in the last step. This completes the proof of (6.15).

We now show (6.17) and (6.18). We will assume that ∆ < N since otherwise both inequalities
are trivial. Let C denote the cluster of U in V∩BR. That is, C is the union of U and all connected
components of V ∩ BR intersecting U . For convenience, we set H = F∆ = Ω (the full space)
when ∆ = 10L. Recall that S = S ∪ ∂outS for S ⊂ Zd. We can then write on the event H
(cf. (6.16)), for all 10 ≤ ∆ ≤ 10L,

Pσ̃
[
F∆, Pivx,N (V)

]
≤

∑
C: C∩BN (x)6=∅,
C∩V=∅

Pσ̃[F∆,C = C, BN (x)
V\C←−→ V ]

≤
∑

y∈BN (x)

∑
C: C∩BN (x)6=∅,
C∩V=∅

Pσ̃[F∆,C = C, y V\C←−→ V ]

=
∑

y∈BN (x)

(Σ1,y + Σ2,y),

(6.22)

where Σ1,y and Σ2,y consist of the terms corresponding to C satisfying C∆−1 3 y and 63 y,
respectively; here Cr refers to the r-neighborhood of C, see §2. In fact, one immediately gets

(6.23) Σ1,y ≤ Pσ̃
[
y ∈ C∆−1, Pivy,∆(V)

]
≤ Pσ̃

[
y ∈ C∆−1,

⋃
z∈B2N (x)

Pivz,∆(V)
]
.

To deal with the case y /∈ C∆−1, we start by claiming that

(6.24) the event {F∆,C = C, y V\C←−→ V } is increasing in B2N (x) \ C∆−1

(with ‘increasing’ as defined above Lemma 4.2). Indeed, the monotonicity of {y V\C←−→ V } is
clear. To see that {C = C, F∆} is also increasing in B2N (x) \ C∆−1, first recall that V ∩ K
is measurable relative to ωu,LK (see above Lemma 6.4). Now observe that the diameter of any

trajectory in supp(ωu,LB2N (x)) is at most ∆/4 on the event F∆ when L ≥ C (the latter ensures

that u(1 + δ1(L)) ≤ u∗∗, cf. (6.16)). It follows that {C = C, F∆} is increasing since F∆ is and
on the event F∆, no trajectory can intersect both B2N (x) \ C∆−1 and C. Thus (6.24) is shown.

Now, write Σ2,y(C) for the quantity obtained from Σ2,y upon disintegrating over {C = C}.
Hence, C varies over all connected sets such that C ∩ BN (x) 6= ∅, C ∩ V = ∅ and y /∈ C∆−1. In
view of Lemma 4.2, using (6.24), for all such C we have the bound

Σ2,y(C) ≤ py(σ̃)−1Pσ̃[F∆,C = C, y V\C←−→ V, y
V\C∆−1←−−−→
B2N (x)

C∆],(6.25)

where py(σ̃)
def.
= Pσ̃[y

V\C∆−1←−−−→
B2N (x)

C∆] (here and elsewhere U
V←→
K
V = U

K∩V←−−→ V ).
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We now consider the cases ∆ < 10L and ∆ = 10L separately, and first complete the proof of
(6.17). Thus assume that ∆ < 10L. Fixing an arbitrary point y′ ∈ C ∩BN (x), one finds a point
z such that y, y′ ∈ BK(z) for some K ≤ N + 1, BK(z) ⊂ B2N (x) and one of y, y′ is contained
in ∂BK(z). Hence, we get from Lemma 6.1 that on the event H (recall (6.16)) and for any C as
above,

(6.26) py(σ̃) = Pσ̃[y
V\C∆−1←−−−→
B2N (x)

C∆] ≥ Pσ̃[y
V←−−→

BK(z)
y′] ≥ e−C(logN)2

.

Plugging this into (6.25) and summing over C, we obtain, on the event H,

(6.27) Σ2,y ≤ eC(logN)2
Pσ̃
[
y /∈ C∆−1,

⋃
z∈B2N (x)

Pivz,∆(V)
]
.

Together with (6.23) this gives the bound

Σ1,y + Σ2,y ≤ eC(logN)2
Pσ̃
[ ⋃
z∈B2N (x)

Pivz,∆(V)
]

on H,

which then leads to (6.17) for all ∆ < 10L in view of (6.22) and the bound on N .

Returning to (6.25), we now assume that ∆ = 10L and supply the proof of (6.18). The

functions py(σ̃) and Σ2,y(C) (= Pσ̃[C = C, y V\C←−→ V ] since F∆ = Ω) are both decreasing in the
variables (Σ \ ΣL

C , 1 − UCc). This is plain in the former case. In the latter simply observe that

the event {C = C} does not depend on the variables (Σ \ ΣL
C ,UC

c) by definition. Therefore,

Eσ̃
[
Pσ̃[C = C, y V\C←−→ V, y

V\C∆−1←−−−→
B2N (x)

C∆]
∣∣σ(ΣL

C ,UC)
]

(6.25)

≥ Eσ̃
[
Σ2,y(C) · py(σ)

∣∣σ(ΣL
C ,UC)

]
≥ Eσ̃

[
Σ2,y(C)

∣∣σ(ΣL
C ,UC)

]
· P[y

V\C∆−1←−−−→
B2N (x)

C∆],

(6.28)

where for the last inequality, we have used the FKG-inequality for independent random variables
and the fact that Eσ̃[py(σ) |σ(Σ,UC)] = Eσ̃[py(σ)] by independence (recall that ∆ = 10L). In
order to obtain a lower bound on this probability, we use the same line of argument as the
one used for (6.26). To thid end, foregoing the restriction to stay outside C∆−1, fixing a point
in ∂C∆, shrinking the ball B2N (x) suitably (see the argument preceding (6.26)) and using the
bound (6.3) in its annealed version, the last term in (6.28) is readily seen to be bounded from
below by e−C(logN)2

(cf. (6.26)). Rearranging in (6.28), summing over C and taking expectations
with respect to Eσ̃, one readily deduces that Eσ̃[Σ2,y] is bounded by the right-hand side of (6.27)
with P in place of Pσ̃. Together with (6.23), this yields (6.18).

6.3. Proof of Lemma 5.5. We have now gathered all the tools required to prove Lemma 5.5,
which, among other things, makes frequent use of Lemma 6.4. Recall the notions of pivotality
(Piv) and closed pivotality (Piv) introduced in (1.32), (1.36). Roughly speaking, by a combina-
tion of (6.15) and (6.18), one replaces the pivotal probability f (see (5.10)) to be bounded by a
nearby closed pivotality f̄ , see (6.29), at the same scale. The reduced cluster separation inherent
to q on the right-hand side of (5.31) is then engineered by application of (6.17) for the choice
∆ = RT (see (5.28)). An important intermediate step is to enforce the conditioned measure
from (5.26), which along with the noise warrants a slightly subtle use of correlation inequalities,
and to switch into the configuration Vk+1 entering q(·) in (5.29). We return to the necessity for
this switching at the end of the proof; see Remark 6.5.
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Proof of Lemma 5.5. The proof consists of three steps.

Step 1: from Piv to nearby Piv. By analogy with (5.10), we define

(6.29) f̄(x)
def.
= P

[
Pivx,50L(Vk+1/2)

]
, x ∈ L.

As we now explain, combining (6.15) with the choice N = 50L and (6.18) with N = M̃(50L)(≤
1
10M0(L)) to bound the resulting P[Piv

x,M̃(50L)
(Vk+ 1

2
)], one obtains for all dyadic L ≥ C that

(6.30) f(x) ≤ eC(logM)2
∑

y∈BL(x,3M̃(50L))

f̄(y)

(with M = M(L) as defined in (1.24)). Let us briefly elaborate on the last part of our reasoning.
We will perform similar arguments tacitly in the remainder of this section. In deducing (6.30),

applying (6.18) first yields a sum over y′ ∈ B(x, 2M̃(50L)) of pivotal events similar to f̄ in
(6.29) but at scale ∆ = 10L. Using monotonicity of PivK in K ⊂ Zd and the fact that for any
y′ ∈ Zd, one finds y ∈ L with |y−y′| ≤ 5L such that B(y′, 10L) ⊂ B(y, 20L), which produces an
inconsequential multiplicity factor CLd when passing from a sum over y′ to a sum over y, the
bound (6.30) follows.

Step 2: modifying Vk+1/2. Next, we switch the configuration inherent to f̄ in (6.29) from
Vk+1/2 to the (smaller) set Vk+1(⊂ Vk+1/2), cf. (4.21) and (4.28), thereby slightly increasing the
pivotality radius and triggering the sprinkling, i.e. enforcing the conditioned measure from (5.26).
The final outcome of this will be to replace the bound (6.30) by (6.36) below. Accordingly, let

(6.31) ¯̄f(y)
def.
= Pεy

[
Pivy,90L(Vk+1)

]
,

for y ∈ L. With b as defined in (5.11), we claim that

f̄(y) ≤ ¯̄f(y) + (πεy)
−1eC(logL)2

b, y ∈ L.(6.32)

To see this, first note that, on account of (1.36) and since Vk+1 ⊂ Vk+1/2, the intersection of the

events Pivy,50L(Vk+1/2) and {U ←→ V in (Vk+1∪B̃)} with B̃ = Cy is contained in Pivy,90L(Vk+1),
hence

Pεy
[

Pivy,50L(Vk+ 1
2
), U

Vk+1∪B̃←−−−−→ V
]
≤ ¯̄f(y), y ∈ L.(6.33)

As we are about to show, one further has that

Pεy
[

Pivy,50L(Vk+ 1
2
), U

Vk+1∪B̃
6←→ V

]
≤ (πεy)

−1eC(logL)2
b, y ∈ L.(6.34)

Once (6.34) is shown, one concludes as follows. The sprinkling s(·) (see below (5.25)) underlying
the definition of Pεy is independent of Vk+ 1

2
, which follows upon recalling (4.21), (4.28) and the

sentence immediately following the latter. Hence, one obtains that f̄(y) = Pεy[ Pivy,50L(Vk+ 1
2
) ],

cf. (6.29), and (6.33) and (6.34) immediately yield (6.32).
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We now explain (6.34). First, retaining only the event {U
Vk+1/2∪B←−−−−−→ V } ⊃ Pivy,50L(Vk+1/2)

with B = B(y, 50L), we bound

Pεy
[

Pivy,50L(Vk+ 1
2
), U

Vk+1∪B̃
6←→ V

]
≤

∑
u,v∈∂outB

Pεy
[
u
V
k+ 1

2←−−→ U, v
V
k+ 1

2←−−→ V, U
Vk+1∪B̃
6←→ V

]
.(6.35)

Let Σy refer to the union of the collections {σB′′B′ : B′, B′′ ∈ B, B′ ∩ B̃c 6= ∅} and {σBkB′ : B′ ∈ B};
recall that Bk refers to the box of radius L/2L depending on the model and centered at xk. Note
that the sprinkling s defined below (5.25) is a function of the latter collection and abbreviate
s|Cy = ε by s = ε in the sequel; note that this event has non-zero probability because ε in
(5.25) is an integer multiple of εL∗ . The event appearing on the right-hand side of (6.35) and

Cu,v = {u
Vk+1/2∩B←−−−−−→ v} being both increasing in B(= B ∪ ∂outB) for any u, v ∈ ∂outB under Pσ̃,

we see that

b
(5.11)

≥ Eσ̃
[
Pσ̃
[
u
V
k+ 1

2←−−→ U, v
V
k+ 1

2←−−→ V, U
Vk+1∪B̃
6←→ V, Cu,v

]
1{s=ε}

]
(4.31)

≥ Eσ̃
[
Pσ̃
[
u
V
k+ 1

2←−−→ U, v
V
k+ 1

2←−−→ V, U
Vk+1∪B̃
6←→ V

]
Pσ̃
[
Cu,v

]
1{s=ε}

]
≥ Eσ̃

[
P
[
u
V
k+ 1

2←−−→ U, v
V
k+ 1

2←−−→ V, U
Vk+1∪B̃
6←→ V

∣∣σ(Σy,UB̃c)
]
P
[
Cu,v

∣∣σ(Σy,UB̃c)
]
1{s=ε}

]
,

where, in passing from the second to the third line, we have conditioned on σ(Σy,UB̃c) under
P σ̃, whence 1{s=ε} can be pulled out, applied the FKG-inequality to the independent family of
random variables (σ \ Σy, (1 − Ux)

x∈B̃) (the two functions in question are both decreasing in

these random variables). Now, using the fact that Vk+ 1
2
∩B is independent from σ(Σy,UB̃c) in

view of the discussion preceding (4.30) and applying Lemma 6.1, one obtains that

P[Cu,v|σ(Σy,UB̃c)] = P[Cu,v] ≥ e−C(logL)2
, P σ̃-a.s.

Substituting the last two estimates into (6.35) readily gives (6.34). Overall this completes the
verification of (6.32). Substituting the latter into (6.30) yields that

(6.36) f(x) ≤ eC(logM)2
∑

y∈BL(x,3M̃(50L))

( ¯̄f(y) + (πεy)
−1eC(logL)2

b
)
.

Step 3: reducing the cluster separation. On account of (6.36) and in view of the
desired estimate (5.31), it remains to reduce the range of pivotality in ¯̄f(y) in (6.31) from 90L
down to RT . On the one hand, writing F∆ = F∆,N (y), H = HN (y) for a given y ∈ L for the
events in (6.16) and applying (6.17) with N = 90L, ∆ = RT , yields that

Pεy
[
F∆, H, Pivy,90L(Vk+1)

]
= (πεy)

−1Eσ̃
[
Pσ̃
[
F∆, Pivy,90L(Vk+1)

]
1{H,s=ε}

]
≤ eC(log 90L)2

∑
z∈B(y,180L)

(πεy)
−1Eσ̃

[
Pσ̃
[

Pivz,∆(Vk+1)
]
1{H,s=ε}

]
≤ eC′(logL)2

∑
z∈B(y,180L)

q(z)

(6.37)

(see (5.29) regarding q(·)), where the last inequality follows by omitting H, observing that
B(z,∆) ⊂ B(z, 20L) and noting that by choice of ∆, the event Pivz,∆(Vk+1) implies in particular
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that dz(CU (Vk+1),CV (Vk+1)) ≤ RT must occur. On the other hand, as we now explain, for all

y ∈ B(x, 3(M̃(50L)) and L large enough,

(6.38) Pεy
[

(F∆ ∩H)c,Pivy,90L(Vk+1)
]
≤ e−c(logL)2γ2∧γ(

b+Af(x)
)
.

To see this, first note that Pivy,90L(Vk+1) ⊂ Pivy,360L(Vk+1) and the latter is independent of
{F∆, H, s|Cy = ε} under P on account of (6.16), see also (6.2) and (4.36) regarding the events
entering the definition of H and (4.17), (4.25) (recall that s(·) = (sk+1 − sk)(·)). Thus,

(6.39) Pεy
[

(F∆ ∩H)c,Pivy,90L(Vk+1)
]
≤ Pεy

[
(F∆ ∩H)c] · P

[
Pivy,360L(Vk+1)

]
.

We consider each factor on the right-hand side of (6.39) separately. Regarding P[Pivy,360L(Vk+1) ],
applying a similar argument as the one leading to (6.30), which combines (6.15) and (6.18), then
applying Lemma 6.3 to change configurations from Vk+1 to Vk+1/2 in the resulting closed pivotal

configurations, and using the fact that 3(M̃(50L) + M̃(360L)) + 5L ≤M1/2, one arrives at

(6.40) P
[

Pivy,360L(Vk+1)
]
≤ eC(logM)2(

b+Af(x)
)
,

(for all y ∈ B(x, 3(M̃(50L))) with f as in (5.10). We now bound Pεy
[

(F∆ ∩ H)c] which will
produce a (desired) small prefactor in (6.39). Observing that F∆ is independent of Fσ̃ and
recalling that ∆ = RT and N = 90L, we can bound the number of trajectories in supp(ωu∗∗,LB2N (x))

by CuLd−1 up to an exponentially small error in L using the Poissonian tail estimate (4.37).
Combined with the fact that a single trajectory has diameter exceeding ∆ with probability at
most

∑
|y|>∆ pCL(0, y) ≤ e−c(∆)2/L, one deduces with the help of (5.28) that

(6.41) Pεy[(F∆)c] = P[(F∆)c] ≤ e−c(logL)2γ2
.

Bounding Pεy[Hc] requires a small amount of care because H is not independent of the event
{s = ε} entering the conditioning under Pεy. Recalling the definition of H = HN (y) from (6.16),
(6.2) and (4.36), we see that H involves the fields UVk′ , rk′ and sk′ for suitable k′ (such that xk′

is within a certain distance from y ∈ L, which is arbitrary). In particular, k′ bears no relation to
k, which indexes the configuration Vk+1 of interest and to which s = sk+1 − sk refers. Whereas
UVk′ and rk′ are independent of s for any k, k′ (cf. (4.17), (4.25) and recall from above (4.13)
that σL and σ2L are independent), the fields sk′ and s won’t be when k′ ≥ k. To deal with

this, first observe that ε in (5.25) is bounded by δ2(2L)
200 = δ1(2L)

200C3
for all L large enough owing

to the definitions of ε, εL and δ1(L) as laid out in (4.6) and (4.22), respectively. Thus, writing
sk′ = (sk′ − s) + s for k′ ≥ k, noting that the term in parentheses is both non-negative and

independent of s, one deduces that on the event {s = ε}, the excess deviation sk′ ≥ δ2(2L)
100

implied by Hc (cf. (4.36)) implies that (sk′ − s) ≥ δ2(2L)
200 , which is independent of {s = ε}, thus

inducing the desired decoupling. Putting the pieces together and applying a union bound, it
follows that Pεy[Hc] is bounded by∑

z,K

∑
z′, z′′

(
P
[
u(ε2Lσ2L(z′′) ∨ εLσL(z′′)) ≥ δ2(2L)

200

]
+ P

[
Uz′′ /∈ [ e

−L

2 , 1− e−L

2 ]
])
,

where the first sum ranges over z ∈ Cy, 1 ≤ K ≤ 90L and the second one over z′ ∈ L such that
B10L(z′) ∩ BK(z) 6= ∅ and z′′ ∈ B50L(z′). Now, with a similar calculation as the one leading to
(4.39) (see (4.38) in particular), one sees that

(6.42) Pεy[Hc] ≤ e−c(logL)γ .
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Combining (6.40), (6.41) and (6.42) gives (6.38) for large enough L, since 2γ2 ∧ γ > 3γM .

Finally, we put everything together to conclude the proof. Using (6.37) and (6.38) to bound
¯̄f(y) on the right hand side of (6.36) we obtain, for all L large enough,

(6.43) f(x) ≤ eC(logM)2
b

∑
y∈BL(x, 3

4
M2)

(πεy)
−1 + e−c(logL)2γ2∧γ

Af(x) + eC(logM)2
∑

y∈BL(x,M2)

q(y)

where we used the relations γM > 1 and 2γ2 ∧ γ > 3γM to arrive at the prefactors and the
definition of M2 = 4M̃(50L) for the limit of the last summation. On the other hand, since

M2
1 + 3M̃(50L) ≤ 2M2

1 and (πεx)−1 is increasing in the distance |x − xk|∞, see (5.27), we have
from the relation γ − γ1 + 3γM < αγ implied by (5.30) that for L large enough,

eC(logM)2
∑

y∈BL(x, 3
4
M2)

(πεy)
−1 ≤

{
e(logL)αγ

10 , if |x− xk|∞ ≤M2
1 ,

e(logL)C8γ |x− xk|
C8(logL)αγ

∞ , if |x− xk|∞ > M2
1 .

However the right-hand side is readily seen to be at most gα,β(x)/2 in view of the assumption
that β > 2C8, thus yielding (5.31) after substituting into (6.43).

Remark 6.5 (Vk+ 1
2

vs. Vk+1). In the sequel we will switch several times between the (closed)

pivotal events in two different configurations in the proof of Lemma 5.6 in Section 8. Such
switchings will take place in the process of progressively reducing the distance between CU (Vk+1)
and CV (Vk+1) from RT , see (5.29), to some power of logL, see (5.32). However, it is equally
important that the underlying pivotal region be preserved at all scales below RT while we switch
(much in the spirit of (5.31)). This turns out to be possible at all scales only when one switches
from an (‘almost’) smaller configuration, see Lemma 8.1, cf. also Lemma 6.3. This explains
the choice of starting (the proof of) Lemma 5.6 in the smallest possible configuration in the
continuum (cf. (5.34)) of models lying between Vk+1 and Vk+ 1

2
.

7 The model VT
In this section we prepare the ground for the proof of Lemma 5.6. As opposed to the previous
section, which dealt with super-diffusive scales, the surgery employed to further reduce the
cluster separation is effectively a critical problem at near-diffusive scales RT = RT,m0 and below
(see (5.28) and (5.32)), and correspondingly (much) more involved; we will return to this in the
next section, where the actual surgery is performed. Matters are even worse because a welcome
result to achieve separation of scales, such as suitable a conditional decoupling property akin to
[37, Proposition 2.3] (see also [5, 56]), is not readily available around diffusive length scales ≈ RT
for the walks of length ≈ L involved in the configurations Vk,m of interest, which interpolate
between the models Vk,m0 = Vk+1 and Vk,0 = Vk+ 1

2
introduced in Section 4. In a sense, the

truncation to a finite time horizon ≈ L is most severely felt around spatial scales RT,m ≈
√
L,

because the trajectories are neither random walks, nor are they pure noise, i.e. really small.
Refining the considerations of Section 4, the task of the present section is thus to modify the

models Vk,m suitably inside a tubular region T (in which the surgery will eventually occur), in
a manner as to obtain a configuration VT that

i) has good conditional decoupling properties, yet
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ii) remains close to Vk,m.

The model VT is a local modification of Vk,m in which ‘time runs for free’ inside T (cf. (7.4) and
(7.5)). This is designed to facilitate i), but ii) may a-priori be completely out of control. Cru-
cially, the tubular region T , see (7.3) below, has in fact narrow (near- but sub-diffusive) width,
so the walks tend to quickly exit T , which deep down is the reason why the local modification
does not spoil proximity to Vk,m, and ii) is preserved.

We begin by introducing in §7.1 the tubes T and defining the model VT . The two key features,
Properties i) and ii) above, are encapsulated in Lemmas 7.1 and 7.2 below, respectively. The
reader could choose to advance directly to Section 8 at the end of §7.1 in order to proceed
more quickly through the proof of Lemma 5.6 and return to the proofs of Lemmas 7.1 and 7.2
afterwards. The remainder of Section 7 is devoted to the proofs of these two lemmas. We start
with some preparation in §7.2, which contains crucial a-priori random walk estimates related to
T . The proof of each lemma has a designated subsection among §7.3 and §7.4 below.

Whereas the decoupling property i) (see Lemma 7.1) is relatively straightforward to deduce
(the definition of VT is tailored to it), the proximity requirement inherent to ii) (Lemma 7.2)
is more involved. The statement is formulated as a coupling, which roughly corresponds to a
more elaborate version of Proposition 4.3 that concerned the ‘base’ model Vk. Its proof draws –
yet again – heavily on our coupling results of [38], see also §3.2 (the philosophy is superficially
similar to that underlying the proof of Proposition 4.3, but it involves different models, notably
VT ). Among these couplings, the harder Theorem 3.4 requires working against a suitably large
background configuration Iρ (cf. Def. 3.3 and (3.19)); recall that this is non-negotiable as it
supplies the necessary environment configuration for the obstacle set. This also specifies the
role of the disconnection estimate, i.e. the condition u & ũ (see (5.24)) in the surgery argument
of the next section.

7.1. Definition and main properties. We begin by introducing the relevant tubes, which

come in two types, `∞- and `2-tubes. Let z ∈ Zd, 1 ≤ j ≤ d a coordinate direction and
N,L ≥ 0 be integers. The cross-section of B(z, L) through z orthogonal to ej is defined as

Bj
⊥(z, L) = B(z, L)∩ {z′ ∈ Zd : z′j = zj} and B2,j

⊥ (z, L) is defined accordingly, replacing B(z, L)

by the `2-ball B2(z, L). The (`∞-)tube of length N + 2L and (cross-sectional) radius L in the
j-th coordinate direction is the set

(7.1) T jL,N (z)
def.
=

⋃
0≤n≤N

B(z + nej , L) =
⋃

−L≤n≤N+L

Bj
⊥(z + nej , L);

the corresponding `2-tube T 2,j
L,N (z) is defined similarly, with B2/B2,j

⊥ in place of B/Bj
⊥ in (7.1).

We now introduce three axis-aligned tubes T ⊂ T ′ ⊂ T ◦, the outermost of which will be
of `2-type, which will play a central role in what follows. Recalling from (5.28) that RT =
bL1/2(logL)γ2c where γ2 > 1, let

(7.2) rT = 4dL1/2(logL)−γ̄2e, with γ̄2 ≥ 3γ2, r′T = 2rT , r◦T = 4dL1/2(logL)−2γ2e

and with the notation of (7.1), define

(7.3) T = T jrT ,RT (z), T ′ = T j
r′T ,RT

(z), T ◦ = T 2,j
r◦T ,RT

(z).

The specification of T, T ′ and T ◦ thus depends on the choice of a vertex z ∈ Zd, a direction
j ∈ {1, . . . , d} and the parameters γ2, γ̄2. The ‘thin width’ alluded to in the above discussion
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is thus quantified by (7.2). We will later perform certain geometric constructions inside T for
suitable choices of these parameters.

We now introduce the model VT associated to T in (7.3), which will be obtained by suitable
modification of Vk,m in (8.9). First recall that Vk,t is declared under the measure Pσ̃ (and P)
introduced below (4.14), and involves four i.i.d. Poisson processes ωi, 1 ≤ i ≤ 4 (see (4.18), (4.26)
and (5.34)), each having intensity ν given by (1.25). In order to meaningfully manipulate the
(time-)length of individual trajectories, we first restore a label corresponding to this information.
Thus, to a realization of the point measure ωi =

∑
j δ(uj ,wj), we associate the extended point

measure ω̂i =
∑

j δ(uj ,`j ,wj) which carries a (length) label `j ∈ N∗. By taking the product of
ν in (1.25) with a measure µi on N∗, this induces a Poisson process on R+ × N∗ ×W+. Upon
choosing µi = δ3L−L∗ for i = 1, 2 and µi = δL∗ for i = 3, 4 with L∗ as in (5.23), the random
sets Jk,t, Ik,t, in (5.34)–(5.35) can naturally be viewed as a function of ω̂ = (ω̂1, . . . ω̂4). With
a slight abuse of notation, we assume henceforth that Pσ̃ (and P) carry the processes ω̂i and
we view Jk,t, Ik,t as functions of ω̂ under Pσ̃. Now set ΦT (ω̂) = (ΦT (ω̂1), . . . ,ΦT (ω̂4)), where,
writing ω̂i =

∑
j δ(uj ,`j ,wj) for a generic realization, we let

(7.4) ΦT (ω̂i)
def.
=
∑
j

δ(uj ,φT (`j ,wj))1{wj(0) /∈ T ◦},

with φT (`, w) = (τ, w) and

(7.5) τ = τ(`, w)
def.
= inf{`′ ∈ N : |{w(n) : 0 ≤ n < `′}| ∩ (Zd \ T ′) ≥ `}.

With this we define

(7.6) JT = J uT (ω̂) = Jk,m− 1
4
(ΦT (ω̂))

(cf. (5.34) regarding u) and define IT in terms of JT exactly as in (5.35), that is, replacing Jk,t
by JT everywhere in (5.35). The set VT of interest is then simply its complement, VT = Zd \IT .
In words, JT removes all trajectories underlying Jk,m−1/4 that start inside T ◦, and ‘lets time
run for free inside T ′’, i.e. the remaining trajectories wi (starting outside T ◦) run until time `i
has been accumulated outside T ′.

All the triplets of tubes (T, T ′, T ◦) we will consider in (7.3) will have the property that

(7.7) (T ⊂ T ′ ⊂) T ◦ ⊂ B(y, 60L),

where y ∈ L refers to the point implicit in the construction of Jk,t in (5.34); this is the same y
appearing in the statement of Lemma 5.6, which we eventually want to prove. Condition (7.7)
will always be assumed to hold from here onwards. As a consequence of (7.7) and by definition
of VT we also have, using the property in the second line of (5.36),

(7.8) VT ∩B(y, 130L)c = Vk+1 ∩B(y, 130L)c.

For K ⊂ Zd, let ω̂K denote the process obtained by keeping the points (v, `, w) ∈ supp(ω̂i) with
w[0, `− 1] ∩K 6= ∅ for all 1 ≤ i ≤ 4. It then follows in view of (7.4)–(7.6) that, under Pσ̃,

(7.9) VT ∩K is measurable relative to ω̂K∪T ′ and independent of (ω̂K∪T ′)
c def.

= ω̂ − ω̂K∪T ′

(here with hopefully obvious notation the subtraction is meant coordinatewise, i.e. individually
for each i).
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The key properties of VT are encapsulated in the next two lemmas, the first of which states
that VT has good conditional decoupling features. Let FK = σ(1{x′ ∈ VT } : x′ ∈ K). We further
denote by Φloc

T (ω̂) = (Φloc
T (ω̂1), . . . ,Φloc

T (ω̂4)) the localized version of ΦT (ω̂), defined exactly as in
(7.4) but retaining only starting points satisfying wj(0) ∈ B(T ◦, 2L) \ T ◦. Observe that Φloc

T (ω̂)
is measurable with respect to ω̂B(y,70L) on account of (7.7).

Lemma 7.1 (Conditional decoupling for VT ). For all u, δ > 0, some C15(δ) ≥ 3, all γ̄2 ≥ C15 γ2,
L ≥ C(γ2, γ̄2), 1 ≤ r ≤ rT and x′ ∈ Zd satisfying B = B(x′, r) ⊂ T , the following holds: there
exists an event GB ∈ σ(Φloc

T (ω̂)) depending only on Σ (given σ̃) such that

(7.10) Eσ̃[ f(VT ) |σ(FZd\B̃, 1GB ) ] ≥
(
E[f(Vu(1+δ))]− Ce−crc10

)
1GB

(with c10 ∈ (0, 1
2)), for any increasing f : {0, 1}Zd → [0, 1] depending only on the coordinates in

B, where VT = VuT (cf. (7.6)), B̃
def.
= B(x′, r + dr1−c10e), and

(7.11) Pσ̃[GB] ≥ 1− e−crc10

holds on the event (recall (5.25) regarding ε and that Cy = B(y, 90L))

(7.12) Fy ≡ Fy(σ̃)
def.
=
{

(sk ∨ rk+1)|Cy ≤ δ
10 ,UB(y,170L) ∈ [ e

−L

2 , 1− e−L

2 ], s|Cy = ε
}
.

From here onwards, we fix the parameter γ̄2 governing the length of the short side rT of the
tube T in (7.2)-(7.3) to be

(7.13) γ̄2 = C15 γ2 (≥ 3γ2, as required in (7.2)),

so in particular, the conclusions of the previous result (Lemma 7.1) hold. The second result
relates VT from below (7.6) and the models Vk,m from (5.35) (which we are ultimately interested
in) by means of a suitable coupling. The equalities in law in (7.14) below refer to the quenched
laws under Pσ. Let Dy = B(y, 170L) and D̃y = B(y, 250L). Recall (5.24), which is in force.

Lemma 7.2. Assume that γ2 ≥ γ1 + 5. Then for every 1 ≤ m ≤ m0, there exists a coupling
Qσ̃,y of five {0, 1}Zd-valued random variables (V̂p : 1 ≤ p ≤ 5) such that the following hold:

(V̂5, V̂1)
law
= (Vk+ 1

2
,Vk+1), (V̂4, V̂2)

law
= (Vk,m− 1

2
,Vk,m) and V̂3

law
= VT (under Pσ̃)(7.14)

V̂p ∩Dc
y = V̂1 ∩Dc

y, for p = 2, 3, 4,(7.15)

σ(V̂p(x′), x′ ∈ D̃c
y, 1 ≤ p ≤ 5) is independent from σ(V̂p(x′), x′ ∈ Dy, 1 ≤ p ≤ 5)(7.16)

(not.: V̂p(x′) = 1{x′ ∈ V̂p}), and for some c11 = c11(δ, γ2, γ3, γM , γ) > 0, with Fy as in (7.12),

(7.17) Qσ̃,y

[
C ∂
Dy

(
V̂p
)
⊂ C ∂

Dy(V̂p+1) for all p = 1, 2, 3, 4
]
≥ (1− e−c11(logL)γ2

)1Fy .

The proofs of both Lemmas 7.1 and 7.2 absolutely essential to our argument, and by no
means standard, as we now explain. As alluded to above, the definition of VT in (7.4)–(7.6) is
tailored for the arguments lurking behind [37, Proposition 2.3,ii)], which concern Vu, to carry
over. But whereas (7.4)–(7.6) is readily written down, it is crucial for the resulting model VT
to act as a valid surrogate for Vk,m (else it is completely useless) and Lemma 7.2 valid for the
delicate choice of tubes T in (7.3) essentially asserts that we are not tampering too much with
the trajectories. Its proof is not at all an off-the-shelf result; indeed its main ingredients are the
key coupling results derived in [38], from which Theorems 3.2 and 3.4 above are excerpted.
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7.2. Escape from narrow cylinders. We begin with preliminary estimates that will serve

the proofs of Lemmas 7.1 and 7.2. Recall the `2-tube T 2,j
L,N (z) ≡ T ◦L,N introduced below (7.1).

Its ‘long’ boundary ∂longT
◦
L,N ⊂ ∂T ◦L,N refers to the set of all points y ∈ Zd such that y ∈

∂d−1Bj
⊥(z + nej , L) for some n with −L ≤ n ≤ N +L, where ∂d−1 refers to the inner boundary

in the affine ((d−1)-dimensional) space z+nej+(ej)⊥, and (ej)⊥ ⊂ Zd is the subspace isomorphic
to Zd−1 orthogonal to ej . The following pointwise lower bound on the equilibrium measure of
T ◦L,N on its long boundary will be used to prove Lemma 7.6 below.

Lemma 7.3 (z ∈ Zd, 1 ≤ j ≤ d, T ◦L,N ≡ T
2,j
L,N (z)). For all N ≥ 2L ≥ 2 and x ∈ ∂longT

◦
L,N ,

(7.18) eT ◦L,N (x) ≥

{
c12

L logN/L , if d = 3
c12
L , if d ≥ 4.

Proof. By invariance of Px under translations and lattice rotations, it is enough to consider the
case z = 0 and j = 1. In the sequel, for any point y ∈ Zd we write y = (y1, y

?), where y? denotes
its projection onto coodinates 2, . . . , d and |y?| for its (d− 1)-dimensional Euclidean norm. By
elementary geometric considerations, involving ‘chopping up’ T ◦L,N into (possibly overlapping)

translates of the cylinder T 1,◦
L,0(0), one sees that

for any point y ∈ Zd satisfying |y?| = M ≥ L, one can write T ◦L,N as the union

of ‘cylinders’ T ∗k = T 1,◦
L,0(yk) ; −K1 ≤ k ≤ K2 such that |K1|, |K2| ≤ 3 + N

L

and d(y, T ∗k ) ≥ |k|L ∨ (M − L) for all k

(7.19)

(recall that d(·, ·) refers to the `∞-distance between sets). Since T ◦L,N ⊂ {z ∈ Zd : |z?| ≤ L}, one
has by the strong Markov property:

(7.20) Px[H̃T ◦L,N
=∞] ≥ Px[HSM (X?) < H̃SL(X?) ] inf

y∈SM
Py[HT ◦L,N

=∞]

for any M > L where SL := {x ∈ Zd : |x?| = L}. Applying [47, Exercise 1.6.8] to the projection
(X?

n)n≥0, which has the law of a (lazy) (d − 1)-dimensional simple random walk, one finds, in
case d = 3 and M ≥ CL (recall that |x?| = L), for any α ≥ 1, by forcing the walk along a
deterministic path to a distance C ′(α) away from SL, leading to the prefactor c(α) below,

(7.21) Px[HSM (X?) < H̃SL(X?) ] ≥ c(α)
(

1 ∨ log(L+ α)− logL− CL−1

logM − logL+ C

)
≥ c

L log(M/L)
,

where the second bound follow by choosing α large enough so that the numerator is ≥ L−1 say.
Similarly, for d ≥ 4, using [47, Proposition 1.5.10], one obtains when M ≥ CL,

(7.22) Px[HSM (X?) < H̃SL(X?) ] ≥ c
(

1 ∨ L
2−d − (L+ 1)2−d − CL1−d

L2−d −M2−d

)
≥ c

L
.

We now to bound the second factor in (7.20). Combining (7.19) and (2.3), one has the bound
maxz∈∂Bk g(y, z) ≤ C(|k|L + M)2−d valid for all M ≥ 2L. Using this along with (2.7) and
the bounds on the capacity of a box given by (2.9) in the third step below together with the
monotonicity of capacity, see (2.6), one infers that

(7.23) Py[HT ◦L,N
=∞] = 1−

∑
z∈∂T ◦L,N

g(y, z)eT ◦L,N (z)

(7.19)

≥ 1−
∑

−K1≤k≤K2

∑
z∈∂Bk

g(y, z) eByk (L)(z) ≥ 1− C
∑

−K1≤k≤K2

(|k|+ML−1)2−d
(7.19)

≥ c,
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provided one chooses M = CL when d ≥ 4 in the last step, and M = CN + L when d = 3
(observing that

∑
−K1≤k≤K2

(|k|+ML−1)−1 ≤ (K1 +K2 + 1) LM and subsequently using (7.19)).
Plugging (7.23) and (7.21) (resp. (7.22)) into (7.20), one deduces (7.18).

Next, recall the the three cylinders T ⊂ T ′ ⊂ T ◦ introduced in (7.3), which satisfy (7.7).
Their size depends on two parameters γ2 and γ̄2 satisfying (7.2), which govern the aspect ratios
of the cylinders. Let fi : Zd → R+, 1 ≤ i ≤ 4 be given, by f1 = gk+1, f2 = rk+1, f3 = hk+1

and f4 = s′k + m−1/4
m0

s′, respectively; see (4.16)-(4.17), (4.24)-(4.25) (recall the convention (4.29)
by which we treat both cases at once), see also (5.33) regarding s′k and s′. The functions fi
naturally relate to Jk,m− 1

4
, cf. (5.34) and the discussion following (7.38) below. Further, let

L1 = L2 = 3L− L∗ (see (5.23)) and L3 = L4 = L∗ and define, for ` ≥ 1 and x ∈ Zd,

(7.24) ρ(`, x) =
4d u

`

∑
1≤i≤4

δLi(`) · fi(x)1{x /∈ T ◦}

and the measure ν : Zd → R+ given by

(7.25) ν(x)
def.
=
∑
`≥0

Ex
[
ρ(`+ N∗, X`)1{H̃T ′>`}

]
1{x ∈ ∂T ′}, x ∈ Zd.

The measure ν will soon be seen to correspond to a re-routing of trajectories upon first entrance
in T ′ (cf. (3.6)). Note that both ρ and ν depend through f4 on Σ, part of the (quenched) disorder
σ̃ in (4.14). The following pointwise comparison between ν(·) and the equilibrium measure eT ′(·)
will be important. This result will later allow us to compare IT with Iu′ for u′ close to u. Recall
the event Fy = Fy(σ̃) from (7.12).

Lemma 7.4 (under (7.7)). For u > 0, δ ∈ (0, 1), γ̄2 ≥ C15(δ) γ2 and L ≥ C(γ2, γ̄2), on Fy,

(7.26) ν(x) ≤ u(1 + δ/5)eT ′(x), x ∈ ∂T ′.

Proof. Starting with (7.25), using first that ρ(A, z) = 0 for any z ∈ T ◦ and A ⊂ N∗, which
follows from (7.24), then applying the strong Markov property at time H∂T ◦ , one obtains

(7.27) ν(x) =
∑
`≥0

Ex
[
ρ(`+ N∗, X`)1{H̃T ′ >`>H∂T◦}

]
≤ Ex

[
1{H̃T ′>H∂T◦}

∑
`′≥0

EXH∂T◦
[
ρ(N∗ +H∂T ◦ + `′, X`′)

]]
(3.8)

≤ 4dEx
[
1{H̃T ′>H∂T◦}

¯̀
XH∂T◦

]
≤ 4d

(
max
z∈∂T ◦

¯̀
z

)
· Px[H̃T ′ > H∂T ◦ ],

for any x ∈ ∂T ′. We now bound each of the two factors in the last bound individually, starting
with the average occupation time ¯̀

z ≡ ¯̀
z(ρ). For clarity, we focus on the case V· = Ṽu,L· from

now on. The other case is treated similarly.
By considering separately the contributions to ρ in (7.24) stemming from f1 and f2 on the

one hand, and f3 and f4 on the other, recalling the relevant definitions (4.15)–(4.16) (see also
the discussion below (4.21) and (4.22) regarding the choice of δ1), one sees that

(7.28) ρ ≤ (1 + δ1)ρ1 + ρ2,
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where

`ρ1(`, ·) def.
=

∑
j≥k+1

(1 + PL
2

)
u1B2L(x̃j)(·) δL(`) +

∑
j<k+1

u1B2L(x̃j)(·) δ2L(`),

`ρ2(`, ·) def.
= u

(
r̃k+1(·) δL(`) + s̃k+1(·) δ2L(`)

)
,

and, in obtaining ρ2, we also used that f4 ≤ sk+1, as follows on account of (5.33) and since
m ≤ m0. Repeating the calculation of (4.49) yields that

(7.29) ¯̀
z(ρ1) = u, z ∈ Zd.

On the other hand, on the event Fy in (7.12), one has that `ρ2(`, x) ≤ 4d uδ9 (δL + δ2L)(`) for
all x ∈ Cy = B(y, 90L) whenever L ≥ C. Now recall that T ◦ ⊂ B(y, 70L) by (7.7), which is
in force, and hence ¯̀

z depends only the restriction of ρ2 to B70L(y) in the second coordinate.
Consequently, by a similar computation as for ρ1, one gets that ¯̀

z(ρ2) ≤ uδ
9 for all z ∈ ∂T ◦, for

all L ≥ C. Combining with (7.29), one obtains that

(7.30) max
z∈∂T ◦

¯̀
z(ρ) ≤ (1 + δ1) max

z∈∂T ◦

(
¯̀
z(ρ1) + ¯̀

z(ρ2)
)
≤ u(1 + δ/8), L ≥ C.

As to the term Px[H̃T ′ > H∂T ◦ ] in (7.27), one first observes, applying the strong Markov
property at time H∂T ◦ , that for all x ∈ ∂T ′,

Px[H̃T ′ > H∂T ◦ ]− (4d)−1 eT ′(x) = Px[H∂T ◦ ≤ H̃T ′ <∞] ≤ p · Px[H̃T ′ > H∂T ◦ ],

where p
def.
= maxz∈∂T ◦ Pz[HT ′ <∞]. Solving for Px[H̃T ′ > H∂T ◦ ] thus yields that

(7.31) Px[H̃T ′ > H∂T ◦ ] ≤ (4d(1− p))−1eT ′(x), x ∈ ∂T ′.

In order to estimate p, one uses a last-exit decomposition, see (2.7), similarly as in the proof of
Lemma 7.3. Note however that this somewhat delicate because the ratios of the widths of T ′

and T ◦ differ by powers of logL only, cf. (7.2). This is where the condition on the parameters
γ2, γ̄2 comes into play. To start with, similarly as in the argument leading to (7.19), for any

point z ∈ ∂T ◦, the set T ′ can be covered by (possibly overlapping) `∞-tubes T ∗k
def.
= T 1

rT ′ ,r
◦
T

(zk),

with −K1 ≤ k ≤ K2 such that |K1|, |K2| ≤ 2 + (logL)3γ2 and d2(z, T ∗k ) ≥ Lk
def.
=

r◦T
2 (|k|+ 1) for

all k. Thus, by (2.7), one writes with T ∗ = T 1
rT ′ ,r

◦
T

,

(7.32) p ≤
∑

−K1≤k≤K2

max
|z−z′|≥Lk

g(z, z′) cap(T ∗k )
(2.3)

≤ C cap(T ∗)
∑

−K1≤k≤K2

(r◦T )2−d(|k|+ 1)2−d,

where the first step used monotonicity of K 7→ eK , which follows from the definition (2.4). It
remains to bound the capacity of the tube T ∗. From the definition of rT and r◦T in (7.2), one
gets that T ∗ is contained in a union of at most Cr◦T r

−1
T many boxes of radius rT ′ . Thus, by

subadditivity, cap(T ∗) ≤ Cr◦T r
−1
T cap(BrT ) ≤ C ′r◦T r

d−3
T . Plugging this into the right hand side

of (7.32) gives, with γ̄2 = 3γ2, i.e. C15 = 3 and when d ≥ 4,

(7.33) p ≤ C
(rT
r◦T

)d−3
≤ C(logL)2γ2−γ̄2 ≤ δ

100
, (d ≥ 4)
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whenever L ≥ C. The case d = 3 requires a slightly more careful analysis. In this case, using
(2.8) and the Green function asymptotics (2.3), one gets (see e.g. (7.47) below for a similar
computation) that

cap(T ?) ≤ C
r2
T r
◦
T

r2
T γ̄2 log logL

≤ C
r◦T

γ̄2 log logL
.

Plugging this into (7.32) and using the upper bound |K1|, |K2| ≤ 2 + (logL)3γ2 one obtains

(7.34) p ≤ Cγ2 log logL

γ̄2 log logL
≤ C ′γ2

γ̄2
≤ δ

100
, (d = 3)

when γ̄2 ≥ Cδ−1γ2, i.e. with C15 = Cδ−1, whenever L ≥ C. Plugging the bound on p given by
(7.33) and (7.34) into (7.31), one deduces that

Px[H̃T ′ > H∂T ◦ ] ≤ (4d)−1eT ′(x)
(

1 +
δ

100

)
,

for L ≥ C and γ̄2 ≥ C15γ2 with the above choice of C15. Feeding this and (7.30) into (7.27)
yields (7.26), which completes the proof.

7.3. Conditional decoupling for VT . We now set the stage for the (short) proof of Lemma 7.1.
Recall the process ω̂ = (ω̂1, . . . ω̂4) from above (7.4). We start by re-rooting relevant trajectories
in the support of ω̂ at their first entrance point in T ′ in much the same way as in the proof
(3.7), cf. also [38, Lemma 3.1], to obtain η̂ = (η̂1, . . . η̂4), which depends implicitly on T ′; that
is, for x ∈ T ′ and ` ∈ N∗, let A`,x ⊂ (R+ × N∗ ×W+) consist of all triplets (u, t, w) such that
` ≤ t <∞, HT ′(w) = t− ` and w(t− `) = x. Given ω̂i define the new point measures

(7.35) η̂i,`,x =
∑

(u,t,w)∈(supp(ω̂i)∩A`,x):
w(0)∈B(T ◦,2L)\T ◦

δ(u,w(0),`,w̃), η̂i =
∑
x∈T ′

∑
1≤`(≤2L)

η̂i,`,x,

where w̃(·) = θt−`w(·). The processes η̂i,`,x’s are independent Poisson point processes, hence so
are the η̂i under Pσ̃. The point measure ΦT (η̂i) is then defined exactly as in (7.4) but foregoing
the constraint wj(0) /∈ T ◦ and leaving w(0) unchanged. In fact all trajectories w̃ in the support
of η̂i start on ∂T ′.

We now collect two properties of this re-rooted framework, which will soon be used in the
proof of Lemma 7.1. It follows with ΦT (η̂) = (ΦT (η̂1), . . . ,ΦT (η̂4)) that

(7.36) ΦT (η̂) is measurable relative to Φloc
T (ω̂);

indeed, in view of (7.35), a point (u′, x′, τ ′, w′) ∈ supp(ΦT (η̂i)) is precisely obtained from some
point (u, τ, w) ∈ supp(Φloc

T (ω̂i)) – recall that ‘loc’ is precisely restricting ω̂i to triplets with
w(0) ∈ B(T ◦, 2L) \ T ◦, see below (7.9) – with u′ = u, x′ = w(0) and w′ = θHT ′ (w)(w). To argue
measurability of τ ′, first note that the original (time-)length t ≥ 1 such that τ = τ(t, w) can be
re-constructed from τ and w (indeed, since w starts outside T ′ it is simply the total amount of
time spent outside T ′). From this one obtains measurably the new label ` since ` = t−HT ′(ω)
and finally τ ′ = τ(`, w′).

Furthermore, as we now explain, ΦT (η̂) hasn’t lost any relevant information, in that

(7.37) (JT ∩ T ′)
(7.6)
=
(
Jk,m− 1

4
(ΦT (ω̂)) ∩ T ′

)
=
(
Jk,m− 1

4
(ΦT (η̂)) ∩ T ′

)
,
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where, with a slight abuse of notation,

Jk,m− 1
4
(ΦT (η̂))

def.
=
⋃
i

⋃
(v,y,τ,w)∈ΦT (η̂i:)

v≤ 4du
Li

fi(y)

w[0, τ − 1].

To see (7.37), first observe that one can safely replace ΦT (ω̂) by Φloc
T (ω̂) in the middle expression:

the restriction to starting points w(0) ∈ B(T ◦, 2L) inherent to ‘loc’ is inconsequential since any
triplet (u, `, w) ∈ ω̂i such that range(w[0, τ(`, w) − 1]) ∩ T ′ 6= ∅ (recall the definition of τ from
(7.5)) must also satisfy w(0) ∈ B(T ◦, 2L). The second equality in (7.37) then follows because
the trace w′[0, τ ′ − 1] ∩ T ′ of any point (u′, x′, τ ′, w′) ∈ supp(ΦT (η̂i)) in T ′ coincides with the
trace of the corresponding point in supp(Φloc

T (ω̂i)) it originates from: indeed the new label `
in (7.35) is exactly subtracting the time-length needed by the non re-rooted trajectory to first
enter T ′. The definition of τ in (7.5) thus implies that the two traces in question are equal.

To complete our setup, we now link ΦT (η̂) to the intensity measure ν introduced in (7.25), by
counting the number of starting points w(0) of trajectories w belonging to points (u, x, τ, w) in
the support Φloc

T (η̂i) with appropriate label u, i.e. relevant for the construction of Jk,m− 1
4
(ΦT (ω̂)).

Recall fi and Li from above (7.24). Then define

(7.38) χ = χ(ΦT (η̂)) =
∑
i

∑
(v,y,τ,w)∈ΦT (η̂i):

v≤ 4du
Li

fi(y)

δw(0).

It then follows by applying (3.7) (see also [38, (3.9) and (3.10)] for a similar calculation) individ-
ually to each χ(ΦT (η̂i,`,x)) and summing over i, `, x while keeping in mind the definitions (4.18),
(4.26) and (5.34)–(5.35), that χ is a Poisson point process under Pσ̃ whose intensity measure is
given by ν in (7.25), with ρ as in (7.24).

Proof of Lemma 7.1. We will make frequent reference to [37, §2.2], in particular to matters
surrounding Proposition 2.3 therein. With B = B(x′, r) ⊂ T , define A and U in terms of B
exactly as in the proof of [37, Proposition 2.3]. Note that necessarily r ≤ rT , cf. (7.3). In
particular, with B̃ as above (7.11), one has the chain of inclusions

(7.39) B ⊂ A ⊂ U ⊂ B̃ ⊂ T ′

on account of (7.2). Recall now the Poisson point process ω on W ∗×R+ from (2.11)-(2.12), along
with its induced set of excursions between A and ∂outU from [37, (2.13)], and the associated
multi-set Cu = CA,Uu (ω) from the discussion preceding Proposition 2.3 in the same reference.
Notice that Iu ∩B is conditionally independent of σ(1{z ∈ Vu} : z ∈ Zd \ B̃) given Cu.

Now consider (u′, x′, τ ′, w′) ∈ ΦT (η̂i) with η̂i as in (7.35), where 1 ≤ i ≤ 4. By definition
of τ and the fact that w′(0) ∈ ∂T , we can define excursions of w′[0, τ ′ − 1] between A and
∂outU just as in [37, (2.13)] since both A and ∂outU are contained in T ′ by (7.39). We denote
by Ĉ = ĈA,U (ΦT (η̂)) the multi-set of endpoints of excursions thereby obtained, for any of the
trajectories underlying supp(ΦT (η̂i)) with label at most 4d

Li
fi(w(0)) and as i varies (i.e. as in the

sum in (7.38)).
By construction of the interlacement, it follows that the conditional law of Iu ∩ B given

{Cu = ζ} is independent of u > 0. We denote it as Pζ in the sequel. Recalling that ‘time runs
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for free’ inside T ′ by the definition of τ in (7.5), it follows from (7.37) and the Markov property
for simple random walks that, for any ζ such that Pσ̃[Ĉ = ζ] > 0,

(7.40)
under Pσ̃, JT ∩B is distributed independently of FZd\B̃
conditionally on {Ĉ = ζ} and the conditional law is equal to Pζ .

Moreover, as we now explain, on the event Fy = Fy(σ̃),

(7.41) Ĉ ≤st Cu(1+δ/5)

(with Ĉ sampled under Pσ̃ on the left-hand side), for all γ̄2 ≥ C15(δ) γ2 and L ≥ C(γ2, γ̄2), which
will be tacitly assumed from here on. To see (7.41), first observe that the multi-set Ĉ is obtained
by evolving independent random walks starting from each point in the support of the Poisson
process χ introduced in (7.38), and retaining the pairs of entrance and exit points in A× ∂outU
performed by each of the walks until a certain time (namely τ −1, with τ as in (7.38) associated
to the starting point w(0) of each walk). In view of the representation for Iu ∩ T ′ given by
(2.13), the multi-set Cu(1+ δ

5
) is obtained in a similar way, except that starting points now follow

a Poisson process χu(1+ δ
5

) with intensity u(1 + δ
5)eT ′ and the time horizon for each walk w is

unrestricted, i.e. one retains the pairs in A× ∂outU induced by all excursions in w[0,∞) rather
than w[0, τ). One then applies Lemma 7.4 to couple χ and χu(1+ δ

5
) so that χ ≤ χu(1+ δ

5
) and

runs the same walks for both processes to deduce (7.41).
Combining (7.40), (7.41) and [37, Proposition 2.3, item ii)], one thus obtains the conditional

decoupling inequality (7.10) upon letting (see [37, (2.17)] for the notation Ξ·,·B)

(7.42) GB
def.
= {Ĉ ∈ Ξ

u(1+δ/5),uδ/5
B }.

Note that the decoupling inequality a priori concerns the vacant set of JT ∩ B but the noise
(cf. (5.35) and below (7.6)) does not interfere on the event Fy, i.e. (IT ∩ T ) = (JT ∩ T ) Pσ̃-

a.s. for σ̃ ∈ Fy. The claim that GB ∈ σ(Φloc
T (ω̂)) follows from the fact that Ĉ = ĈA,U (ΦT (η̂))

and by (7.36). Finally the asserted lower bound for Pσ̃[GB] on the event Fy (needed for (7.41)
to hold) is inherited from [37, (2.18)] on account of (7.41) and by monotonicity of Ξ·,·B , see [37,
Remark 2.4,1)].

7.4. Coupling for VT . In this section we prove the coupling relating VT , which has desirable
technical features (such as the conditional decoupling proved in the previous paragraph), to the
actual vacant sets of interest, as stated in Lemma 7.2. By convention, throughout the proof,
which occupies the remainder of this section, unlabeled constants may depend implicitly on
δ, γ2, γ3, γM , γ. Length parameters like L(logL)−Cγ2 etc. appearing in the sequel are routinely
rounded off to the nearest larger integer power of 2 (i.e. f(L) is identified with 2dlog2 f(L)e), so
that they always divide L, which is dyadic.

Proof of Lemma 7.2. We will only discuss the case of Iu,L· = Iu,L· as the proof for Ĩu,L· is similar
(in fact, simpler, see below (7.64)). We will routinely suppress the condition L ≥ C. We will
also implicitly assume σ̃ ∈ Fy, for otherwise we can just set Qσ̃ = Pσ̃, which is a coupling of (V̂p :

1 ≤ p ≤ 5). Since on the event Fy, see (7.12), one has V̂1 ∩Dy
law
= V(Ik+1)∩Dy = V(Jk+1)∩Dy

and similarly for 2 ≤ p ≤ 5 (see (5.34)–(5.35) and (7.6)), we only need to prove the desired
inclusion for the ‘non-noised’ versions of all processes. We will produce the couplings for V̂p,
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p = 2, 3, and V̂p, p = 3, 4 in (7.17) separately (the other two being direct consequences of the
definitions) and concatenate them using [38, Lemma 2.4] at the end. In fact, we obtain each
of these couplings by chaining several ‘elemental’ couplings that crucially rely on Theorems 3.2
and 3.4. We start with the more involved of the two.

Coupling between V(Jk,m)
law
= V̂2 and V(JT )

law
= V̂3. Since t 7→ Jk,t is increasing, see

(5.34), and JT is obtained from Jk,m− 1
4

by a mechanism letting trajectories run for a longer time,

see (7.4)-(7.5), the task is to account for this over-shoot in terms of the additional ‘sprinkled’
trajectories generated when passing from m − 1

4 to m. We first provide some intuition. A
crucial observation is that the mechanism in (7.4)-(7.5) by which one ‘forgets the clock’ inside
T ′ actually results in very little additional total time for the trajectories. This is ultimately due
to the geometric features of T ′, see (7.3), whose short direction scales sub-diffusively relative to
the time length (≈ L) of the walks involved. Intuitively, the thin width entails that trajectories
in T ′ will tend to quickly exit T ′, whence forgetting the clock is really a perturbation.

We proceed to make this rigorous, by showing that with very high probability, the extra
time caused by applying (7.4)-(7.5) is accounted for by letting every trajectory in Jk,m−1/4 that
visits T ′ run for an additional time

(7.43) ∆L
def.
= dy(L(logL)−4γ2),

where dy(t) = 2dlog2 te for t > 0. This is the content of Lemma 7.5 below. In order to formulate
this precisely, we fix any point z ∈ L (cf. below (4.29)) such that T ◦ ⊂ B2L(z) and set, with
B = B6L(z),

L+(·) = dy(L+ (∆L) 1B(·)),

u+(·) = uL
+(·)
L ,

and set L̄+ = dy(L + (∆L)), ū+ = u L̄
+

L , which are scalar. We now extend the definition of
J µ,` in (1.26) to include functions ` : Zd → N∗ corresponding to spatially inhomogeneous time
lengths depending on the starting point of the walk, i.e.

J f,`(ω)
def.
=

⋃
i :ui≤ 4d

L
f(wi(0))

wi[0, `(wi(0))− 1].

With this we define (cf. (5.34), (4.26) and above (7.24) regarding fi)

(7.44) Ĵ0 =
⋃

1≤i≤4

J u+fi,L
+
i (ωi),

with L+
1 = L+

2 = 2L+ and L3 = L4 = L+ (for the case of Ĩu,L· not discussed here, one simply
exchanges the roles of L+

i , i = 1, 2 and i = 3, 4). The increase from u to u+ in (7.44) is precisely
ensuring that the actual intensity of walks remains unaffected as their lengths increases, cf. (1.26).

Lemma 7.5. With ∆L as in (7.43) and on the event Fy, one has

(7.45) Pσ̃[JT ⊂ Ĵ0] ≥ 1− e−c(logL)−γ2
.

Proof of Lemma 7.5. Recalling T ′ from (7.3), let `T ′(w) =
∑

n≥0 1{w(n)∈T ′} denote the time
spent in T ′ by w ∈W+ and `T ′ = `T ′(X). With ∆L as in (7.43), we first argue that

(7.46) Px[`T ′ ≥ ∆L] ≤ e−c(logL)γ2
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holds for all x ∈ Zd. To verify (7.46), first note that, using the fact that g(x, y) is equal to
Ex[g(XHT ′ , y)1{HT ′<∞}], performing the ensuing sum

∑
y∈T ′ g(z, y) for a given z ∈ T ′ first by

summing over points in B(z, 4rT ), then over points at distance at least ≥ rT from z while using
the asymptotics (2.3) for g, one finds that

(7.47) Ex[`T ′ ] =
∑
y∈T ′

g(x, y) ≤ sup
z∈T ′

∑
y∈T ′

g(z, y)

≤ Cr2
T + Crd−1

T

∑
rT≤n≤RT

n2−d
(5.28),(7.3)

≤ C ′(γ2)L(logL)−6γ2 log logL.

But by the strong Markov property for X and Markov’s inequality, we have that

Px
[
`T ′ ≥ 2t sup

z
Ez[`T ′ ]

]
≤ 2−btc,

from which (7.46) follows upon combining with (7.47) and taking t = C ′(γ2)−1 (logL)2γ2

log logL .

Consider now Λ, the collection of all walks underlying Jk,m−1/4 starting inside B(T ′, 2L),
i.e. Λ is the collection of all w ∈ W+ such that (v, w) ∈ ωi with w(0) ∈ B(T ′, 2L) and
v ≤ 4du

Li
fi(w(0)) for some 1 ≤ i ≤ 4; cf. above (7.24) regarding Li and fi. Then

(7.48) {JT 6⊂ Ĵk,m−1/4} ⊂ {`T ′(w) ≥ ∆L for some w ∈ Λ}.

However, since B(T ′, 2L) ⊂ B(y, 70L) on account of (7.7) it follows that on the event Fy (which
controls fi), the variable |Λ| which is Poisson under Pσ̃ has mean bounded by 4u

L |B(T ′, 2L)| ≤
CLd−1. Thus, returning to (7.48), using the Poisson tail bound (4.37) we obtain that

Pσ̃[JT 6⊂ Ĵk,m−1/4] ≤ CLd−1 sup
x
Px[`T ′ ≥ ∆L] + e−cL

d−1
,

from which Lemma 7.5 follows by virtue of (7.46).

Continuing with the proof of Lemma 7.2, we focus in view of Lemma 7.5 on producing a
coupling Q2 = Q2,σ̃ between the laws of V(Ĵ0) and V(Jk,m) with ‘good’ properties, that is,

satisfying a restricted version of (7.14)-(7.17) to p = 2, 3 only, with V(Ĵ0) playing the role of

VT (
law
= V̂3). Similarly as in the proof of Proposition 4.3, Q2 will be constructed by concatenating

a chain of couplings Q2,a through a sequence of intermediate configurations (Ĵa : 0 ≤ a ≤ A)
with A = d2

δ e that we will momentarily introduce. This slicing indexed by a is owed to the fact
that Theorem 3.4 requires working against a suitable environment configuration.

We proceed to give the precise definition of Ĵa and start with an informal description. Recall
from (5.34) that the sequence of configurations (Jk,m− 1

4
(1− a

A
) : 0 ≤ a ≤ A) interpolate naturally

between Jk,m−1/4 and Jk,m through the addition of independent point processes with intensity

profile a
4Am0

s′ at each step. The configuration Ĵa is obtained by changing the lengths of the
‘last (1 − a

A)-fraction’ of the (labelled) trajectories underlying Jk,m with starting point inside
B from (L, 2L) to (L+, 2L+) respectively. In particular, for a = 0 the resulting configuration is
precisely Ĵ0 in (7.44). Formally, with B = B(z, 6L) as before, B̄ = B(y, 90L), whence B ⊂ B̄
by choice of z and due to (7.7), and letting U = Zd \ B̄, the set Ĵa splits into the union of three
independent ‘background’, ‘current’ and ‘outside’ configurations,

(7.49) Ĵa
def.
= Ĵ curr

a ∪ Ĵ back
a ∪ Ĵ out,
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defined as (see (4.20) for notation)

Ĵ out =
⋃

1≤i≤4

J ufi1U ,Li(ωi),

Ĵ curr
a =

⋃
1≤i≤4

J I
+
a fi1B ,L

+
i (ωi),

Ĵ back
a =

⋃
1≤i≤3

(
J uafi1B̄ ,Li(ωi) ∪ J I

+
a+1,Afi1B ,L

+
i (ωi)

)
∪
(
J uf4,a,L4(ω4) ∪ J I

+
a+1,Af41B ,L

+
4 (ω4)

)

(7.50)

where I+
a,b = ( aA , (

b
A ∧ 1)]u+ and I+

a = I+
a,a+1 for 0 ≤ a, b ≤ A, I+

a,b = ∅ if a > b and

(7.51) ua =
ua

A
1B + u1Bc , f4,a = f41B̄∩Bc +

a

A
f41B +

a

4Am0
s′.

We first make a few elementary observations about Ĵa. First, the union in (7.49) and (7.50)
is over independent sets under Pσ̃. To see this, just observe that the relevant intensity profiles
correspond to disjoint subsets of (0,∞)×W+ when applied to the same underlying configuration
ωi. From this point onwards, all the configurations appearing in a union such as (7.49) will be
tacitly implied to be independent under Pσ̃. Next, observe that any two successive configurations
in the sequence (Ĵa : 0 ≤ a ≤ A) differ only inside B̄; this follows by direct inspection of (7.50)
upon recalling that supp(s′) ⊂ B̄. Finally, one verifies using that L+

i = Li outside U and

u+ = u outside B that (7.49) is consistent with the definition of Ĵ0 in (7.44), and similarly that
ĴA = Jk,m, cf. (5.34).

The desired measure Q2,a will couple Ĵa and Ĵa+1 in such a way that an analogue of (7.17)
holds for these two configurations, cf. (7.66) below. Once this is achieved Q2 will readily follow,
by chaining the resulting couplings over a. The measure Q2,a will itself be built by concatenation
of two measures Q2,a,1 and Q2,a,2, which bring into play an intermediate configuration Ja,a+1

comprising shorter trajectories, that will be introduced shortly. The coupling Q2,a,1, which we
define next, relates Ĵa and Ja,a+1 in essence by means of Theorem 3.4. The coupling Q2,a,2 will

then link Ja,a+1 with Ĵa+1 in three more (sub-)steps, giving rise to Q(k)
2,a,2, k = 1, 2, 3.

We now define Q2,a,1. In preparation of the application of Theorem 3.4, we note that Ĵ back
a

will act as environment configuration Iρ. In fact the full configuration Ĵ back
a is unnecessarily

complicated so we first exhibit a part of it that will suffice to meet the constraint of satisfying

(Cobst), see Definition 3.3. To this end observe that Ĵ back
a = Ĵ back

a,1 ∪ Ĵ back
a,2 with Ĵ back

a,1
law
= Iρ

and Ĵ back
a,2

law
= Iρ′ , see (3.3) for notation, where ρ : N∗ × Zd → R+ is given by

(7.52) ρ(`, x) = 4du
(
1−A−1

)(
1

2L12L(`)ḡk+1(x) + 1
L1L(`) h̄k+1(x)

)
1B̄(x)

(recall to this effect that f1 = ḡk+1, f3 = h̄k+1 and L+
1 (·) ≥ 2L, L+

3 (·) ≥ L). The specifics of ρ′

are of no importance, Ĵ back
a,2 (which is independent of Ĵ back

a,1 ) will not be involved in the coupling.
In the next paragraph, we will apply Theorem 3.4 for K = 6L (recall that B = B(z, 6L)) with
Ĵ back
a,1 as background configuration. Hence, we need conditions (3.16)-(3.17) to hold on the box

B(z, 6L + 5 × 2L) = B(z, 16L), which, in view of (7.52) and (4.46), follows by the very same
computations that we did in the proof of Proposition 4.3; see, in particular, (4.48) and (4.49).

The coupling Q2,a,1 will have the effect of ‘covering’ all trajectories present in Ĵ curr
a , which

have length L+ or 2L+, by (shorter) trajectories of length ∆L as in (7.43). To fit the setup of
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Theorem 3.4, which is designed for exactly such purpose, we first observe that by (7.50),

(7.53) Ĵ curr
a ≤st. J f

+
1,2,2L

+

∪ J f
+
3,4,L

+

,

where

f+
i,j(·)

def.
= ū+

A

(
fi(·) + fj(·)

)
1B(·) + u

Aε
21B10L(z)(·)(7.54)

(recall ε from (5.25) and (4.6)). Notice that, due to the presence of the second term in (7.54),
which is a-priori unnecessary for (7.53) to hold, one has since γ2 ≥ (γ1 +5) that on the event Fy,
the bound u ≥ f+

1,2, f
+
3,4 ≥ u (logL)−2γ2 holds pointwise on B10L(z), so the required ellipticity

condition (3.13) is indeed satisfied for all L ≥ C with γ̄ = 32γ2 (our implicit choice in all
subsequent applications of Theorems 3.2 and 3.4). Thus overall, Theorem 3.4 is in force, and
applies separately to the functions f = f1,2 and f = f3,4 with K = 6L, centering at z rather
than 0, and the choices L′ = ∆L, which divides L̄+ since ∆L is dyadic and with Ĵ back

a,1 as the
background configuration Iρ (see the discussion leading to (7.52)). By first applying Theorem 3.4
quenched on Iρ (see (3.18)) separately to f1,2 and f3,4, then integrating over Iρ and finally
concatenating the resulting coupling with the one implicit in (7.53)), we thus obtain a measure

Q2,a,1 satisfying the following property. Letting l = L
∆L and l+ = L̄+

∆L (cf. (3.12)) and

(7.55) Ĵa,a+1
def.
= Ĵ curr

a,a+1 ∪ Ĵ back
a ∪ Ĵ out, Ĵ curr

a,a+1
law
= J (1+C16l−1/2)f ′,∆L,

all sampled independently, for suitable C16 = C16(δ, γ2, d), with

(7.56) f ′ = (l+)−1
(1

2

∑
0≤k<2l+

Pk∆L(f+
1,2) +

∑
0≤k<l+

Pk∆L(f+
3,4)
)
,

the measure Q2,a,1 is a coupling between Ĵa and Ĵa,a+1 such that

(7.57) Q2,a,1

[
C ∂
Dy

(
V(Ĵa)

)
⊃ C ∂

Dy

(
V(Ĵa,a+1)

)]
≥ 1− e−c(logL)γ2

,

for suitable c = c(δ, γ2, γM , d) > 0. We emphasize that Theorem 3.4 only gives us the inclusion

between the boundary clusters of Ĵ curr
a ∪Ĵ back

a,1 and Ĵ curr
a,a+1∪Ĵ back

a,1 , where Ĵ back
a,1

law
= Iρ plays the

role of the background configuration. However, such inclusions are preserved if we take union
on both sides of (7.57) with some common J ⊂ Zd, in this case Ĵ back

a,2 ∪ Ĵ out. We will use this
observation implicitly in the sequel.

Next we define Q2,a,2, which will couple Ĵa,a+1 and Ĵa+1 in such a way that a feature similar
to (7.57) holds. The coupling Q2,a,2 is a bit more involved (we return to this at the end of

the proof) and will be obtained by concatenating Q(k)
2,a,2, k = 1, 2. In a nutshell, Q(1)

2,a,2 is an

application of Theorem 3.2 and does the bulk of transforming Ĵ curr
a,a+1 back into longer trajectories

underlying Ĵa+1, but some error terms arise along the way, which require a slightly fine-tuned

application of Theorems 3.4 and 3.2, giving rise to Q(2)
2,a,2.

We start by introducing the configuration (Ĵ curr
a+1 )′, defined in such a way that the equality

(7.58) (Ĵ curr
a+1 )′ ∪ Ĵ back

a = Ĵ curr
a+1 ∪ Ĵ back

a+1 .

holds. In particular, it follows from (7.58) and (7.49) that Ĵa+1 = (Ĵ curr
a+1 )′ ∪ Ĵ back

a ∪ Ĵout.

In view of (7.58), our task can be reformulated as comparing the laws of Ĵ curr
a,a+1 ∪ Ĵ back

a and
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(Ĵ curr
a+1 )′ ∪ Ĵ back

a . The benefit of (7.58) is thus to retain the background configuration Ĵ back
a ,

which will be useful since Theorem 3.4 is still to be used. With a bit of effort one checks that

(7.59) (Ĵ curr
a+1 )′ =

( ⋃
1≤i≤3

J Iafi1B ,L
+
i (ωi)

)
∪ J u[f4,a,f4,a+1],L4(ω4)

where Ia = [ aA , (
a+1
A ∧ 1)]u is defined exactly as below (7.50), but with u in place of u+.

Instead of comparing directly Ĵ curr
a,a+1 with (Ĵ curr

a+1 )′, cf. below (7.58), the coupling Q(1)
2,a,1 will

compare the former with a bulk contribution (Ĵ curr
a+1 )′′ to (Ĵ curr

a+1 )′, tailored to the application of
Theorem 3.2, and given by

(7.60) (Ĵ curr
a+1 )′′

law
= J f1,2,2L ∪ J 2L

ε ∪ J f3,4,L ∪ J Lε , J rε
law
= J

uε
20Am0

1B(z,15L),r,

where the union on the right-hand side of (7.60) is over independent sets and

fi,j(·)
def.
=

u

A

(
fi(·) + fj(·)

)
1B(·).(7.61)

We now claim that there exists a coupling Q(1)
2,a,2 of (Ĵ curr

a+1 )′′ and Ĵ curr
a,a+1 such that

(7.62) Q(1)
2,a,2

[
(Ĵ curr

a+1 )′′ ⊃ Ĵ curr
a,a+1

]
≥ 1− e−c(logL)γ2

.

Indeed, this is an application of Theorem 3.2, as we now explain. Letting f εi,,j = fi,j+
u
Aε

21B10L(z),
with fi,j as in (7.61), first notice in view of (7.54) and (7.56) that we can write

f ′ = (l+)−1
(1

2

2l+−1∑
k=0

Pk∆L(f+
1,2) +

l+−1∑
k=0

Pk∆L(f+
3,4)
)
≤ u+

u
l−1
(1

2

2l+−1∑
k=0

Pk∆L(f ε1,2) +

l+−1∑
k=0

Pk∆L(f ε3,4)
)

=
u+

u
l−1
(1

2

2l−1∑
k=0

Pk∆L(f ε1,2) +

l−1∑
k=0

Pk∆L(f ε3,4)
)

+
u+

u
l−1
(1

2

2l+1∑
k=2l

Pk∆L(f ε1,2) + PL(f ε3,4)
)
.

We will refer to the two terms in parentheses as g′1 and g′2 respectively, so that f ′ ≤ u+

u l
−1(g′1+g′2).

Since f ′ is the profile controlling Ĵ curr
a,a+1 (7.55), this gives a domination in terms of configurations

involving g′1 and g′2. Theorem 3.2 only deals with g′1. Since f ε1,2, f
ε
3,4 ≤ u pointwise on Zd

on the event Fy, we can apply Theorem 3.2 separately for the triplets (f, L′, L) = (u
+

u f1,2 +
uε

40Am0
1B15L(z),∆L, 2L) and (u

+

u f3,4 + uε
40Am0

1B15L(z),∆L,L) to get a coupling Q(1)
2,a,2 between

J1
law
= J (1+C16 l−1/2)g′1,∆L and

(7.63) J2
law
= J (1+C16l−1/2)f1,2,2L ∪ J 2L

ε/2 ∪ J
(1+C16l−1/2)f3,4,L ∪ J Lε/2

(recall that u+

u = 1+l−1), in such a way that {J2 ⊃ J1} holds with high probability, as in (7.62).
To deal with g′2, observe that on the event Fy, Pk∆L(f εi,i+1) ≤ u

A pointwise on Zd (i = 1, 3).
Moreover, owing to our assumptions on γ1, γ2 and ε and the fact that m0 = C9blogLc, see
(5.32), we have l−1/2 = (logL)−2γ2 ≤ 2ε1.5 (see (5.25) and (4.6) and recall that γ2 ≥ γ1 + 5).

This implies in particular that J (1+C16l−1/2)g′2,∆L is dominated by J Lε/4 ∪ J
2L
ε/4. Together with

(7.63), (7.59), and recalling that Ĵ curr
a,a+1 ≤st J (1+C16l−1/2)(g′1+g′2),∆L, the desired inclusion (7.62)

readily follows upon suitably extending the probability space underlying Q(1)
2,a,2.
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With (7.62) at hand, the remaining task is effectively to couple (Ĵ curr
a+1 )′′ with (Ĵ curr

a+1 )′ in an
increasing fashion with high probability. This will be achieved against the joint environment

Ĵ back
a through two further couplings Q(2.1)

2,a,2 and Q(2.2)
2,a,2, involving Theorem 3.4 (for which Ĵ back

a

is needed) and Theorem 3.2, respectively. To this effect, returning to the explicit formula (7.59)
for (Ĵ curr

a+1 )′ and recalling fi,j from (7.61), we see that

(7.64) J f1,2,2L ∪ J f3,4,L ∪ J̃ L2.5ε ≤st. (Ĵ curr
a+1 )′, J̃ L2.5ε

law
= J

uε
8Am0

1B(z,20L),L.

As opposed to J L2.5ε as declared by (7.60), J̃ L2.5ε stands for a slightly larger support (radius
20L instead of 15L) for the intensity function. Comparing (7.64) and (7.60), we deduce that it
is enough to couple J 2L

ε ∪ J Lε ∪ Ĵ back
a with J̃ L2.5ε ∪ Ĵ back

a in an increasing manner with high
probability. The configuration J Lε is readily dispensed with but the longer length-2L trajectories
comprising J 2L

ε remain and we only have length-L trajectories within J̃ L2.5ε at our disposal. In

fact this step would simplify had we worked instead with Iu,L· = Ĩu,L· . For, in that case the
length of trajectories within J u[f4,a,f4,a+1],L4(ω4) appearing in (7.59), which lead to J̃ L2.5ε in the
present case, would instead have length L4 = 2L, which then trivially covers all trajectories
(length L and 2L) present.

We now first apply Theorem 3.4 to the function f
def.
= uε

20Am0
1B17L(z) with K = 15L (centering

at z, i.e. replacing BK by BK(z)), with L′ = ∆L and the background Ĵ back
a as environment

configuration (recall that this is stochastically larger than Iρ defined in (7.52), which satisfies

the required condition (Cobst)), to obtain a measure Q(2.1)
2,a,2 coupling J1

law
= J 2L

ε ∪ Ĵ back
a and

J2
law
= J (1+C(l′)−1/2)f ′,∆L ∪ Ĵ back

a with l′ = L
L′ and

f ′ = (2l′)−1
∑

0≤k<2l′

Pk∆L(f) = (l′)−1
∑

0≤k<l′
Pk∆L

(1 + PL
2

)
f

(not to be confused with (7.56), which is unrelated), in such a way that Q(2.1)
2,a,2

[
C ∂
Dy

(
V(J1)

)
⊃

C ∂
Dy

(
V(J2)

)]
≥ 1 − e−c(logL)γ2 . In view of the second formula for f ′ and given that (1 +

C(l′)−1/2)1+PL
2 f ≤ uε

19Am0
holds pointwise on Zd by our assumptions on γ1, γ2 and ε, Theorem 3.2

immediately applies to the triplet (f, L′, L) = ( uε
19Am0

1B20L(z), L
′, L) and yields a coupling Q(2.2)

2,a,2

between J2 and J3
law
= J̃ L20ε/19 such that Q(2.2)

2,a,2[J3 ⊃ J2] ≥ 1− e−c(logL)γ2 . Thus, concatenating

Q(2.1)
2,a,2 and Q(2.2)

2,a,2 by virtue of [38, Lemma 2.4], recalling (7.60), restoring by suitable extension

the independent configurations J f1,2,2L ∪ J f3,4,L as well as J Lε (≤st.)J̃ Lε while keeping in mind

(7.64), one arrives at the coupling Q(2)
2,a,2 with the property that

(7.65) Q2,a,2

[
C ∂
Dy

(
(Ĵ curr

a+1 )′ ∪ Ĵ back
a

)
⊃ C ∂

Dy

(
(Ĵ curr

a+1 )′′ ∪ Ĵ back
a

)]
≥ 1− e−c(logL)γ2

.

We now put together all the elements. Restoring the (independent) configuration Ĵ out

in Q2,a,2, recalling that (Ĵ curr
a+1 )′ ∪ Ĵ back

a ∪ Ĵ out = Ĵa+1, see (7.58), and concatenating with the

coupling Q(1)
2,a,2 from (7.62), by which one effectively replaces the configuration (Ĵ curr

a+1 )′′∪Ĵ back
a ∪

Ĵ out in (7.65) by the (smaller) configuration Ĵ curr
a,a+1 ∪ Ĵ back

a ∪ Ĵ out, which is precisely Ĵa,a+1

(in law), see (7.55), and concatenating with Q2,a,1, which links Ĵa and Ĵa,a+1, see (7.57), one
obtains the coupling Q2,a with the property that

(7.66) Q2,a

[
C ∂
Dy

(
V(Ĵa+1)

)
⊃ C ∂

Dy

(
V(Ĵa)

)]
≥ 1− e−c(logL)γ2

.
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Finally, chaining Q2,a over integers a with 0 ≤ a < A and recalling (7.45) yields the desired

coupling Q2, for which an analogue of (7.66) holds, with ĴA
law
= Jk,m and JT (≤st. Ĵ0) in place of

Ĵa+1 and Ĵa, respectively. Inspection of the proof reveals that the coupling is in fact conditional
on Ĵ out in (7.50), which implies that Q2 satisfies versions of (7.15) and (7.16) for p = 1, 2, 3
(whereby V̂1 is defined in terms of V̂2 by suitable extension).

Coupling between V(JT )
law
= V̂3 and V(Jk,m−1/2)

law
= V̂4. We now separately construct a

coupling Q3 = Q3,σ̃ such that an analogue of (7.17) holds for p = 3, 4, which entails on Fy(σ̃)
that Jk,m− 1

2
⊂ JT holds under Q3 with high probability. On account of (7.6) and (5.34) this

coupling should have been immediate since ‘forgetting the clock’ can only increase the length of
trajectories. However, one also has to take into account the effect of removing all trajectories
underlying Jk,m−1/4 that start inside T ◦, cf. (7.4). The following result is key to this. Recall T ◦

from (7.3) and B = B(z, 6L) (⊃ T ◦) with z ∈ L minimizing d(L, T ◦).

Lemma 7.6. For any v > 0 and L ≥ C(γ2),

J v(logL)2γ21T◦ , 2L ≤st. J v1B\T◦ , 4L (see (1.26) for notation).

Proof of Lemma 7.6. Consider the function ρ : N∗×Zd → R+ given by ρ(`, x) = dv
L 1{` = 4L, x ∈

B\T ◦} so that, in the notation of Section 3, see (3.5), the set Iρ has the same law as J v1B\T◦ , 4L.
It then follows by the second item in (3.7) that

(7.67) IρT◦ ≤st. Iρ
( law

= J v1B\T◦ , 4L
)
,

where ρT ◦ is as defined in (3.6) with K = T ◦. Now letting η =
∑

i δ(`i,wi) refer to a generic
realization of the Poisson point process underlying IρT◦ , whose intensity is νρT◦ as in (3.2),
consider the derived point process

ηhom
def.
=
∑
i

δ(`i−th, wi[th,∞))1{`i ≥ th + 2L,wi(th) ∈ T ◦},

where th = (r◦T )2 (recall from (7.2)-(7.3) that r◦T denotes the radius of the cylinder T ◦). In
words, ηhom takes the walks (originally starting in B \ T ◦) hitting T ◦ that have at least th + 2L
units of time left on their clock after re-rooting, and records the trajectory and time left after
letting them evolve freely for an extra (homogenization) time th. Clearly, by construction,

(7.68) Iρhom
law
=

⋃
(`,w)∈ηhom

w[0, 2L− 1] ⊂ IρT◦ ,

where

(7.69) ρhom(`, x)
def.
=

∑
y∈∂T ◦

( ∑
`′≥th+2L

ρT ◦(`
′, y)

)
Py[Xth = x]1{` = 2L, x ∈ T ◦}.

In particular, by (7.67) and (7.68) we get

(7.70) Iρhom ≤st. J v1B\T◦ , 4L.
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We will now separately show that for L ≥ C(γ2),∑
`′≥th+2L

ρT ◦(`
′, y) ≥ (4d)−1veT ◦(y), y ∈ ∂T ◦,(7.71)

inf
x∈T ◦

PeT◦ [Xth = x] ≥ (4d)2L−1(logL)2γ2 .(7.72)

Indeed, feeding (7.71) and (7.72) into (7.69) immediately yields that ρhom(2L, x) ≥ 4dv (logL)2γ2

L
for all x ∈ T ◦, which concludes the proof on account of (3.5). It thus remains to argue that
(7.71) and (7.72) hold. With regards to the former, using the explicit formula (3.6) for ρT ◦(·, ·)
and recalling ρ from above (7.67), we get that for any y ∈ ∂T ◦ and L ≥ C(γ2),∑

`≥th+2L

ρT ◦(`, y) ≥
∑

2L−th≥`′≥0

Ey
[
ρ(N + th + 2L+ `′, X`′)1{H̃T◦>`′}

]
=

∑
2L−th≥`′≥0

dv

L
Py[H̃T ◦ > `′] ≥ 2L− th

L
(4d)−1v eT ◦(y) ≥ (4d)−1veT ◦(y).

To verify (7.72), we use the lower bounds from Lemma 7.3. Recalling ∂longT
◦ from above

Lemma 7.3 we can estimate for any x ∈ T ◦, using a standard heat kernel lower bound,∑
y∈∂T ◦

eT ◦(y)Py[Xth = x] ≥ c(r◦T )d−1 inf
y∈∂longT ◦

eT ◦(y) inf
|y−x|≤2r◦T

Py[Xth = x]

≥ c

r◦T
inf

y∈∂longT ◦
eT ◦(y)

(7.18)

≥ c(γ2)

th log logL
≥ (4d)2 (logL)2γ2

L
,

for all L ≥ C(γ2), where in the final step we used that th = (r◦T )2 with r◦T = 4L1/2(logL)−2γ2 .

With Lemma 7.6 at our disposal, we proceed to define Q3. Let ω̂in
T ◦ be obtained from

ω̂ = (ω̂1, . . . , ω̂4), see above (7.4), by retaining for each point measure ω̂i only those points
(u, `, w) ∈ ω̂i such that w(0) ∈ T ◦. Write ω̂ = ω̂in

T ◦ + ω̂out
T ◦ (understood coordinatewise). The

processes ω̂in
T ◦ and ω̂out

T ◦ are independent under Pσ̃. Let J in
k,t = Jk,t(ω̂in

T ◦) and similarly J out
k,t so

that Jk,t = Jk,t(ω̂) = J in
k,t ∪ J out

k,t , the union being over independent sets. By definition of JT ,
see (7.4) and (7.6), one has that

(7.73) JT = JT (ω̂) = JT (ω̂out
T ◦ ) = J (1)

T ∪ J (2)
T ,

where J (1)
T = Jk,m− 1

2
(ΦT (ω̂)) and J (2)

T = JT \ J (1)
T . In view of (5.34), the union on the

right-hand side of (7.73) is over independent sets. Now,

(7.74) J (1)
T = Jk,m− 1

2
(ΦT (ω̂out

T ◦ )) ⊃ Jk,m− 1
2
(ω̂out
T ◦ ) = J out

k,m− 1
2

.

The inclusion in (7.74) is plain by construction of ΦT . In view of (7.73), (7.74), (5.34) and by
independence, it is thus enough to argue that there exists a coupling Q3 = Q3,σ̃ of Jk,m− 1

2
and

J ∪ J out
k,m− 1

2

, where J law
= J uI·1B\T◦ ,L(ω4) ⊂ J (2)

T with I =
[
us′k + m−1/2

m0
us′, us′k + m−1/4

m0
us′
]
,

independent of J out
k,m− 1

2

, with the property that on the event Fy(σ̃),

(7.75) Q3

[
C ∂
Dy

(
V(J in

k,m− 1
2

∪ J out
k,m− 1

2

)
)
⊃ C ∂

Dy

(
V(J ∪ J out

k,m− 1
2

)
)]
≥ 1− e−c(logL)γ2

.
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Indeed, in view of (7.73) and (7.74), Q3 can be extended to a coupling between JT and Jk,m−1/2

such that C ∂
Dy

(V(JT )) ⊂ C ∂
Dy

(V(Jk,m− 1
2
)) with high probability.

To obtain (7.75), recalling that ε ≤ 2(logL)−(γ1+5) by (5.25), m0 = C9blogLc by (5.32) and
γ2 ≥ (γ1 + 5) by the hypothesis of Lemma 7.2, one first applies Lemma 7.6 on the event Fy with
v = uε

(logL)γ2m0
to deduce, as we now explain, that

(7.76) J in
k,m− 1

2

≤st. J (logL)
−γ2

uε
m0 1B , 4L;

to see this, one simply notes that the intensity of relevant starting points of trajectories for
J in
k,m− 1

2

is bounded on the event Fy by (see above (7.24) for notation) by u1T ◦
∑

i fi ≤ Cu1T ◦ ,

which is bounded by v(logL)2γ21T ◦ for the above choice of v.

In view of (7.76) and (7.75), it is enough to suitably couple (J (logL)−γ2 uε
m0

1B̃ , 4L, J uI·1B̃ ,L(ω4))
with B̃ = B(z, 17L), in the presence of J out

k,m− 1
2

as in (7.75). This is achieved by successive

application of Theorems 3.4 and 3.2 with K = 6L, following a similar line of argument as in

the construction of Q(2.1)
2,a,2 and Q(2.2)

2,a,2 above (leading up to (7.65)). We now specify the relevant
intensity profile, called ρ̃ in the sequel, which plays the role of ρ in Theorem 3.4 and needs
to satisfy (Cobst). Whereas in principle, the presence of J out

k,m−1/2 allows for an application of

Theorem 3.4 with the same background configuration Iρ as defined in (7.52), the superscript
‘out’ forces one to replace 1B̄ in (7.52) by 1B̃\T ◦ . The absence of trajectories starting in T ◦

may spoil the lower bound on the average local time in (3.16). It also violates the ellipticity
assumption in (3.17).

To cope with this, we sacrifice a small proportion A−1 of the trajectories present in J out
k,m−1/2

when defining ρ̃ and only start looking at them after they evolve for a time dy(th + t′h) = o(L)
introduced shortly. As will become clear, this solves both afore mentioned problems at once.
Let L̂/2 = L − dy(th + t′h) with th = L(logL)−2γ2 and t′h = th(logL)γ2 . We will have ρ̃(`, ·) =
ρ̃(`, ·)1`∈{L̂,L̂/2}. With ρ given by (7.52), define for x ∈ Zd

(7.77) ρ̃(βL̂, x) = (1−A−1)ρ(2βL, x)1B̃\T ◦(x) + ρ′(βL̂, x), β ∈ {2−1, 1}.

The intensity ρ′ is obtained as follows. First ρ′(L̂, x) = 0. To obtain ρ′(L̂/2, x), one con-
siders walks of either length 2βL, β ∈ {2−1, 1}, with intensity of starting points equal to
A−1ρ(2βL, ·)1B̃\T ◦(·), keeps only those trajectories which hit T ◦ before time t′h and lets these

evolve for another th units of time. The resulting points lying in T ◦ form ρ′(L̂/2, ·), and one
attaches to each such point a random walk trajectory of length βL̂. Thus, ρ′ is spatially sup-
ported in T ◦. In view of (7.77) and by construction of ρ′, the set I ρ̃ is dominated by Iρ1B̃\T◦ in
an obvious manner, and can thus be exhibited as part of J out

k,m− 1
2

. We now claim that

(7.78) ρ′(L̂/2, x) ≥ c(δ)L−1(logL)γ2 , x ∈ T ◦,

for all L ≥ C(γ2). To see this, one retraces the argument in the proof of Lemma 7.6, thereby
witnessing ρ′ as being equal to the homogenization ρhom of a suitable measure ρ corresponding
to (7.52) up to a factor A−1 and spatial support restricted to B̃ \ T ◦. One thereby deduces
(7.78) similarly as below (7.72). In doing so (7.72) remains pertinent as is (due to our choice of
th), but the left-hand side of (7.71) is replaced by a sum over (L ≥)`′ ≥ L− t′h, which effectively

leads to a factor
t′h
L = (logL)−γ2 on the right-hand side of (7.71). Overall (7.78) follows.
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Together with (7.77), (7.78) is more than enough to conclude that ρ̃ satisfies (Cobst), since
in particular (7.78) guarantees an intensity (much) larger than 8du

L̂
of length-L̂/2 trajectories

starting inside T ◦, which makes up for the afore mentioned loss. Theorems 3.4 and 3.2 now apply
as desired with ρ̃ as background configuration (part of J out

k,m−1/2). We omit further details.

We now conclude the proof of Lemma 7.2. Concatenating Q2,Q3 and Q1 = Q4 = Pσ̃, we
obtain a coupling Q = Qσ̃ between the laws of Jk+1/2(ω̂in

B̄
),Jk,m−1/2(ω̂in

B̄
),JT (ω̂in

B̄
),Jk,m(ω̂in

B̄
)

and Jk+1(ω̂in
B̄

) satisfying the analogue of (7.17) for these configurations where ω̂in
B̄

comprises
all triplets (u, `, w) ∈ ω̂ such that w(0) ∈ B̄; to be precise, one checks by inspection of the
proof that Q2,Q3 really define couplings of the restricted configuration ω̂in

B̄
. Now incorporating

ω̂out
B̄

= ω̂ − ω̂in
B̄

into the underlying probability space, we obtain (7.17) as a consequence of
the corresponding properties for Q2,Q3, along with properties (7.15) and (7.16), which are
immediate by construction of Q since B̄ = B(y, 90L).

8 Near- and sub-diffusive scales

We now carry out the proof of Lemma 5.6, which is the most technically involved segment
of this article. The proof roughly splits into three stages, each of which has a designated
subsection among §8.1-§8.3 below. All resort on the preparatory results of Section 7 concerning
the model VT , which features prominently in the proof (albeit absent from the statement of
Lemma 5.6). In doing so, the proof thus implicitly relies on the findings of [38]. The actual
(short) proof of Lemma 5.6 appears in §8.4 and assembles the various elements.

We first provide an overview of these three individual stages, in order to convey the main
lines of the argument, which we hope will ease the reading. The reduced cluster separation
RT,m inherent to qm in (5.37) obtained at the outcome of of the first m ≤ m0 steps should be
thought of as a partial reconstruction, in which an ‘almost-path’ has been created, joining the
two clusters in questions up to a distance of at most RT,m, while preserving the desired pivotal
configuration in Vk,m, which involves a dual disconnecting interface. The iteration over m, of
which Lemma 5.6 represents a single step, is a matter of convenience. For simplicity, the reader
may choose to ignore this feature and imagine instead that Lemma 5.6 takes her directly from
Vk,m0 = Vk+1 to Vk,0 = Vk+ 1

2
in a single step.

The separation between the two clusters is removed by constructing a connecting path in
the pivotal configuration. We will return to this shortly when discussing stages 2 and 3 of
the construction. An apparent difficulty with this surgery is the necessity to leave gaps when
building (pieces of) paths. This is owed to degeneracies in the conditional laws, an enemy already
faced in [37], which warrant a buffer zone when conditioning on any part of the configuration
such as the pivotal one to be preserved, whose geometry can be very wild – these are de facto
pieces of critical clusters. The design of VT , cf. Lemma 7.1, is precisely tailored to address this
issue. To be able to actually work with VT (rather than Vk,m for instance), Lemma 7.2 is applied
to switch in and out of pivotal configurations involving VT . This important feature is derived
separately in §8.1, see Lemma 8.1. It corresponds to a more elaborate version of Lemma 6.3.

The second part, which is the content of §8.2, consists of forcing a connection, thereby
reducing the overall separation while preserving pivotality. The buffer constraints stemming from
decoupling naturally lend themselves to a hierarchical construction, and we build a deterministic
(hierarchical) bridge inside the tubular region T to this effect, which resorts on a construction
introduced in [37, Section 4]; see also Fig. 1 therein. The bridge roughly delimits safe zones
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within regions with possibly very rough boundaries (obtained from already explored (critical)
clusters), in which pieces of paths can be safely added conditionally on a partially reconstructed
configuration. It is here that the polynomial connectivity lower bounds inherited from Lemma 6.1
(via the implicit condition u . u∗∗) come into play. We note in passing that a similar - albeit
streamlined (because applying directly for the full model Vu rather than the more intricate
model VT ) construction already played a central role in [37].

At the outcome of §8.2 is a fully reconstructed path, save for gaps at the smallest scale,
corresponding to the bottom level in our hierarchical construction. These gaps have poly-
logarithmic size (logL)C and are called holes. The holes are dealt with separately with ad-hoc
arguments in §8.3. From this, the proof of Lemma 5.6 quickly follows.

We now draw up the above sketch. Throughout the remainder of this article, as in the
statement of Lemma 5.6, we always (implicitly) work under the assumption (5.24).

8.1. Pivotality switching reloaded. To set the stage, we start by explaining how the results
of Section 7 concerning VT come into play in the context of Lemma 5.6. Lemma 7.1 will be used
extensively in the bridge construction presented in the next paragraph. Lemma 7.2 is used as a
vehicle in the proof of the following key ‘pivotality switching’ result, which roughly states that
the pivotal region implicit in qm, see (5.37), can in fact be preserved – up to a multiple of b
and a small additive error term as in (5.31) – when switching in and out of VT , cf. Remark 6.5.
This should be viewed as a refinement of Lemma 6.3 to the case where one does not have a
perfect inclusion between V ′ and V, but rather a property like (7.17). The precise statement is
as follows. Recall from §5.3.2 that Γ = (δ, γ, γ1, γ2, γ3).

Lemma 8.1 (Pivotality switching). Let γ ≥ γ2 ≥ (γ1 + 5) ∨ 3γM , (V ′,V) = (Vk,m,VT ) or

(VT ,Vk,m− 1
2
) for some 1 ≤ m ≤ m0 and K ⊂ D̃y. For all dyadic L ≥ L0(Γ),

Pεy
[

PivK(V ′)
]
≤ C(πεy)

−1 b+ Pεy
[

PivK(V)
]

+ e−c(logL)γ2
Af(y),(8.1)

for some c, C depending on Γ (see (7.17), (5.11), (5.10) and below (5.31) regarding π(·), b, f,
and A, respectively).

While much simpler, the proof of Lemma 6.3 (referred to multiple times below) captures the
key idea behind the proof of Lemma 8.1, which could be omitted upon first reading.

Proof of Lemma 8.1. We start with a reduction step. We claim that, under the hypotheses of
Lemma 8.1, recalling that D̃y = B(y, 250L), it is enough to argue that

(8.2) Pεy
[

PivK(V ′)
]
≤ (πεy)

−1 b+ Pεy
[

PivK(V)
]

+ e−c(logL)γ2 P
[

Piv
D̃y

(Vk+1)
]
;

Indeed, if (8.2) holds one completes the proof using Lemma 6.4 as follows. First note that (6.15)
is in force with N = 250L. Hence, applying (6.15) and subsequently (6.18), we obtain, in much
the same way as (6.30) was deduced, that

P
[
Piv

D̃y
(Vk+1)

]
≤ eC(logM)2

∑
z∈BL(y,2M(260L))

P
[

Pivz,50L(Vk+1)
]
.

Using Lemma 6.3 and the monotonicity of K 7→ PivK , each summand in the above display is
bounded by b + f(z). Plugging the resulting estimate into the right-hand side of (8.2) yields
(8.1) upon noticing that γ2 > 3γM and 8M(260L) ≤M1(= M(650L)) for large enough L.
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We now return to the proof of (8.2). Invoking Lemma 7.2, on account of (7.14), (V ′,V) =
(Vk,m,VT ) has the same law under Pσ̃ as (V̂2, V̂3) under Qσ̃,y. We focus on (V ′,V) = (Vk,m,VT ) in
what follows; the other case is treated very similarly, the minor changes required when adapting
the arguments below essentially boil down to exploiting different inclusions provided by (7.17).
Let Qε

y[ · ] = P σ̃[Qσ̃,y[ · ] | s|Cy = ε], with Qσ̃,y as given by Lemma 7.2, and let F̃y ⊃ Fy refer to
the event comprising the requirements inherent to Fy in (7.12) except for {s|Cy = ε}. That is,

F̃y = F̃y(σ̃) =
{

(sk ∨ rk+1)|Cy ≤ δ
10 ,UDy ∈ [ e

−L

2 , 1 − e−L

2 ]
}

. By independence between s|Cy and(
(sk ∨ rk+1)|Cy ,UDy

)
, we have that

Qε
y[ · ] ≥ P σ̃[Qσ̃,y[ · ] |Fy]P σ̃[F̃y]

(4.37),(4.38),(4.6)

≥ (1− e−c(logL)γ )P σ̃[Qσ̃,y[ · ] |Fy].

Together with (7.17), abbreviating by Coup the event on the left-hand side of the latter and
using that γ2 ≤ γ, this is readily seen to imply the bound

(8.3) Qε
y[Coupc] ≤ e−c(logL)γ2

,

to which we will soon refer. We start – much like in (6.12) but now using Qε
y in absence of an

immediate relation between V and V ′, where (V ′,V) = (Vk,m,VT ) – by partitioning the event on
the left-hand side of (8.2) according to

(8.4) Pεy
[

PivK(V ′)
] (7.14)

= Qε
y

[
Coupc, PivK(V̂2)

]
+ Qε

y

[
Coup, PivK(V̂2), U

V̂3←→ V
]

+ Qε
y

[
Coup, PivK(V̂2), U

V̂3

6←→ V
]
.

We consider the three terms on the right-hand side of (8.4) separately, each of which will give
rise to precisely one of the terms appearing on the right-hand side of (8.2).

By monotonicity, PivK(V̂2) ⊂ Piv
D̃y

(V̂2) (cf. the definition in (1.36) and recall that K ⊂ D̃y)

and Piv
D̃y

(V̂2) is measurable relative to σ(V̂2(x′), x′ ∈ D̃c
y). It follows by means of (7.16) and

independence of the σBB′ ’s, see (4.12), that Coupc and Piv
D̃y

(V̂2) are independent under Qε
y (to

see this one also uses the fact that Qσ̃,y[Piv
D̃y

(V̂2)] = Pσ̃[Piv
D̃y

(Vk+1)] and 1{s|Cy = ε} are

independent under P σ̃), whence

(8.5) Qε
y

[
Coupc, PivK(V̂2)

]
≤ Qε

y

[
Coupc, Piv

D̃y
(V̂2)

]
= Qε

y[Coupc] · Qε
y

[
Piv

D̃y
(V̂2)

]
(8.3)

≤ e−c(logL)γ2 Qε
y

[
Piv

D̃y
(V̂2)

] (7.15),(7.14)

≤ e−c(logL)γ2 P
[
Piv

D̃y
(Vk+1)

]
.

We now consider the second term on the right-hand side of (8.4), which we will treat in a manner
similar as (6.13) except that we need to be careful due to the restricted nature of our coupling.
To this end, we begin with the following observation. Since Dy can not intersect both U and V
owing to the hypothesis R ≥ 2 max(r,M0) (recall the statement of Proposition 5.1), we get in a

similar fashion as (5.14) that for any ω ∈ {0, 1}Zd ,

1{U
ω←→V } is an increasing function of

(
ω ∩Dc

y,C
∂
Dy(ω)

)
,(8.6)
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where the underlying partial order (call it �) is by inclusion as subsets of Zd. Now V̂2 ∩Dc
y =

V̂1 ∩Dc
y by (7.15) and on the event Coup we have that C ∂

Dy
(V̂1) ⊂ C ∂

Dy
(V̂2). Therefore, on the

event Coup, we see that (
V̂1 ∩Dc

y,C
∂
Dy(V̂1)

)
�
(
V̂2 ∩Dc

y,C
∂
Dy(V̂2)

)
and consequently, owing to (8.6), it follows that

{
Coup, PivK(V̂2)

} (1.36)
⊂ {Coup, U

V̂2

6←→ V } ⊂ {U
V̂1

6←→ V }.

On the other hand, from (4.21) and (4.28) we have that V̂1 ⊂ V̂5 holds almost surely as (V̂5, V̂1)
law
=

(Vk+1/2,Vk+1) by (7.14). Using a similar reasoning as above, we then obtain

{
U
V̂3←→ V,Coup

}
⊂ {U V̂5←→ V }.

Combining the previous two displays, we deduce, writing Qy[·] = Eσ̃[Qσ̃,y[·]], that

(8.7) πεy Qε
y

[
Coup, PivK(V̂2), U

V̂3←→ V
]

= Qy

[
Coup, PivK(V̂2), U

V̂3←→ V, Fy
]

≤ Qy

[
U
V̂5←→ V,U

V̂1

6←→ V
] (7.14)

= P[U
V
k+ 1

2←−−→ V ]− P[U
Vk+1←−−→ V ]

(5.11)
= b.

We proceed similarly with the last term in (8.4). Taking hint from (6.14), we start by
observing that , since V̂p ∩Dc

y = V̂1 ∩Dc
y for p = 2, 3 in view of (7.15) and C ∂

Dy
(V̂2) ⊂ C ∂

Dy
(V̂3)

on the event Coup, we have that(
V̂2 ∩Dc

y,C
∂
Dy(V̂2)

)
�
(
V̂3 ∩Dc

y,C
∂
Dy(V̂3)

)
.

Using (8.6) to compare ω = V̂2 ∪K and V̂3 ∪K, we then get{
Coup, PivK(V̂2)

}
⊂
{

Coup, U
V̂2∪K←−−→ V

}
⊂ {U V̂3∪K←−−→ V }.

Taking intersections on either side with the complement of the event U
V̂3←→ V , the right-hand

side equals PivK(V̂3) and averaging over Qε
y yields that

(8.8) Qε
y

[
Coup, PivK(V̂2), U

V̂3

6←→ V
]
≤ Qε

y

[
PivK(V̂3)

] (7.14)
= Pεy

[
PivK(V)

]
.

Substituting (8.5), (8.7) and (8.8) into (8.4) leads to (8.2), which concludes the proof.

We conclude this paragraph by explaining how Lemma 8.1 is used. We apply it as follows.
Recalling qm from (5.37), for any integer m with 1 ≤ m ≤ m0, by a union bound, we have that

qm ≤
∑

z,w∈B(y,20L),
|z−w|1≤RT,m

qm(z, w), where

qm(z, w)
def.
= Pεy

[
U
Vk,m
6←→ V, z ∈ CU (Vk,m), w ∈ CV (Vk,m), |z − w|1 = dy(CU (Vk,m),CV (Vk,m))

]
.

(8.9)
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with dy as in (5.37). We attach to this setup a triplet of tubes (T, T ′, T ◦) as follows. For any
z, w as in (8.9), fix an `1-geodesic π′ between z and w consisting of d axis-aligned segments,
and choose the direction j ∈ {1, . . . , d} which contains the longest segment in π′ (if there are
several such j’s we pick the smallest one). By ‘reordering’ the segments comprising π′ we may
assume that the longest segment has one endpoint at z. Let w′ denote its other endpoint. By
construction, we have |w−w′| ≤ RT,m(1−d−1) = Rm−1. We then let T ⊂ T ′ ⊂ T ◦ be the tubes
declared by (7.3) attached to this choice of z and coordinate direction j. Henceforth, the relevant
tubes will always refer to this specific triplet. Note that (7.7) holds whenever L ≥ C(γ2), which
will tacitly be assumed from here on. Since by construction, any path connecting z and w yields
a connection between Cm(U) and CV (Vk,m) on the event in (8.9), we have the bound

qm(z, w) ≤ Pεy
[

PivT∪π(Vk,m)
]
, 1 ≤ m ≤ m0,

where π = πw′,w is an `1-geodesic between w′ and w, which is tacitly identified with its range in

writing T ∪ π. Applying (8.1) with K = T ∪ π, which has the required property K ⊂ D̃y since
z, w ∈ B(y, 50L) and T satisfies (7.7), allows one to pass from Vk,m to VT , thus obtaining

(8.10) qm(z, w) ≤ C(πεy)
−1 b+ Pεy

[
PivT∪π(VT )

]
+ e−c(logL)γ2

Af(y)

(with c as in (7.17)) for all 1 ≤ m ≤ m0 and L ≥ C ′(Γ), whenever γ ≥ γ2 ≥ (γ1 + 5) ∨ 3γM .

8.2. Bridge and construction of an almost-path. We now reduce the pivotal region T ∪π,
π = πw′,w, to a smaller region H ∪ π where H refers to a collection of (small) holes in the tube
T ; the main result is Lemma 8.2, which bounds the quantity Pεy[PivT∪π(VT )] appearing above

in terms of Pεy[PivH∪π(Vk,m− 1
2
)] and similar additive error terms as those appearing in (8.10).

This will bring to bear the notion of a hierarchical bridge B introduced in [37, Section 4], to
which we will frequently refer in the sequel. The bridge B represents the support on which the
relevant (almost-)path is to be constructed.

Broadly speaking, a (hierarchical) bridge B is a collection of boxes organized as an ordered
family of sub-collections (Bj)1≤j≤J that altogether form a chain of boxes between two sets of
interest; in the present case these will be CU (VT ) and CV (VT ). Here CU (V) refers here to
the cluster of U in V, i.e. the union of U and all connected components of V adjacent to it.
Intuitively, the higher j the smaller the scale, so (Bi)1≤i≤j indicates a finer resolution as j
grows. Importantly, for all j < J , a given box B ∈ Bj of radius r, say, enjoys the additional
property that it maintains a distance of at least dr1−c10e from all the other boxes comprised
in
⋃
j′≤j Bj as well as the sets CU (VT ) ∪ CV (VT ). This property will be useful for decoupling

certain crossing events below; cf. the proof of Lemma 8.2. The decoupling concerns VT and is
facilitated by Lemma 7.1, which is also the source of the exponent 1− c10 determining the size
of the gap around B; cf. also B̃ above (7.11).

We now give a precise meaning to this outline. We will associate a bridge B = B(CU , CV )
to any realization (CU , CV ) of (CU (VT ),CV (VT )). In fact we are only interested in realizations
(CU , CV ) giving rise to a configuration in PivT∪π(VT ) (recall that pivotality relates to the con-
nection event {U ↔ V }, cf. above (5.10)). For definiteness, if {(CU (VT ),CV (VT )) = (CU , CV )} 6⊂
PivT∪π(VT ), we set J = 1 and B = B1 = ∅.

Now suppose {(CU (VT ),CV (VT )) = (CU , CV )} ⊂ PivT∪π(VT ). Note that CU and CV are
necessarily disjoint if the event Piv.(VT ) occurs. We distinguish three mutually exclusive cases
to define B = B(CU , CV ). Case i): both CU ∪ T and CV ∪ T are connected sets (i.e. CU , CU each
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intersect T = T ∪ ∂outT ). In this case, referring to the beginning of [37, Section 4] for notation
(see above (B.1) therein), we declare B to be the bridge associated to the septuple

(8.11) (C,D, 200(logL)4γ3 , (logL)γ3 , C17, ξ, T ), ξ = 1− c10,

with C = CU , D = CV , and C17 = m(ξ) as supplied by [37, Proposition 4.1], which is in force
whenever L ≥ C, as tacitly assumed from here on; also recall that γ3 ≥ 10 is a parameter, see
(5.32), and c10 ∈ (0, 1

2) was defined in Lemma 7.1. The statement of [37, Proposition 4.1] being
a pure existence result, if more than one bridge B associated to (8.11) exist we simply choose
one according to some deterministic ordering.

Case ii): CU ∪ CV ∪ π is a connected set and case i) does not occur. In this case we take
J = 1, B1 = ∅ and B = B1. Case iii): neither case i) or ii) occurs. Then since CU ∪ CV ∪ π ∪ T is
connected on the event PivT∪π(VT ), it follows that T and π = π ∪ ∂outπ each intersect exactly
one of CU or CV . Let CU intersect T . The sets CU and CV ∪π are disjoint and both must intersect
T . Thus [37, Proposition 4.1] applies and yields a bridge B associated to the tuple in (8.11) with
C = CU , D = CV ∪ π. If instead CV intersects T one chooses C = CU ∪ π, D = CV in (8.11).

We now collect the properties of bridges that will be used in the sequel, referring to [37,
Section 4] for the items listed below. It follows from the above construction that in all cases,

(8.12)
B = B(CU (VT ),CV (VT )) satisfies properties (B.1), (B.3) and (B.4) appearing
in [37, Section 4] for C,D as above, N = RT , L = rT , s = (200)4(logL)4γ3 ,
s′ = (logL)γ3 , m = C17 and ξ = 1− c10

(in particular, in case the bridge is empty all these properties hold trivially). For a given bridge

B, we refer to the union of boxes in H def.
= BJ as holes, which we abbreviate by H (=

⋃
B∈HB),

and define H to be the collection of all sets H obtained in this way from B = B(CU (VT ),CV (VT ))
as CU (VT ),CV (VT ) range over all their possible realizations. Notice that H may well be empty.
As we now explain, by the above construction, it then follows that on the event PivT∪π(VT ),
abbreviating B = B(CU (VT ),CV (VT )),

(B2’)
(Connectivity). For any path πB connecting the two marked vertices of B for each
B ∈ B \H, the union of all πB’s along with H and π connects CU (VT ) and CU (VT ).

Indeed, in cases i) and iii) property (B2’) boils down to [37, (B.2)], which [37, Proposition 4.1]
guarantees. In case ii), (B2’) remains valid since H = B \ BJ = ∅ and the union of CU (VT ),
CV (VT ) and π is a connected set. The characteristics (8.12) and (B2’) are the only features of
bridges that will be used in the sequel.

Returning to the quantity qm(v, w) in (8.10) we aim to bound, we now reduce the pivotal
region for the event on the right-hand side of (8.10) using the above construction and employing
the properties of VT exhibited in §7.1 to reconstruct pieces of open path between CU (VT ) and
CV (VT ) while retaining the relevant pivotal configuration. The key relevant features of VT
include for one the conditional decoupling of Lemma 7.1, as well as the pivotality switching
involving VT supplied by Lemma 8.1.

Lemma 8.2 (y ∈ L). If (cf. Lemma 7.1 regarding c10)

(8.13) γ2 ≥ (γ1 + 5) ∨ 3γM ∨ C(d) and γ ∧ c10γ3 ≥ 5γ̄2

( (7.13)
= 5C15 γ2

)
,
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then for all dyadic L ≥ L0(Γ),

(8.14) Pεy
[

PivT∪π(VT )
]

≤ eC(logL)4γ̄2
(

sup
H∈H

Pεy
[

PivH∪π(Vk,m− 1
2
)
]

+ (πεy)
−1 b

)
+ e−c(logL)γ2

Af(y).

Proof. We will localize on the bridge B(CU (VT ),CV (VT )). To this end, for a given deterministic
bridge B we abbreviate Pσ̃,B[ · ] = Pσ̃[ ·, B(CU (VT ),CV (VT )) = B] and PB[ · ] = Eσ̃[Pσ̃,B[ · ]]. All
subsequent arguments operating under either Pσ̃,B or PB are tacitly implied to hold for any
realization B such that ∅ 6= {B(CU (VT ),CV (VT )) = B} ⊂ PivT∪π(VT ).

We will prove that under (8.13) and for any σ̃ ∈ Fy (see (7.12)) and L ≥ C(Γ), one has

Pσ̃,B
[

PivT∪π(VT )
]
≤ eC(logL)3γ̄2Pσ̃,B

[
PivH∪π(VT )

]
+ e−c(logL)5γ̄2 · Pσ̃

[
Piv

D̃y
(Vk+1)

]
.(8.15)

Let us first argue how (8.15) implies the claim (8.14). Averaging (8.15) over Eσ̃ on the event
Fy = Fy(σ̃) and using that the latter is independent of Piv

D̃y
(Vk+1), which follows upon recalling

(7.12), (1.32), the discussion preceding (4.30) and that D̃y = B250L(y), one deduces that

(8.16) PB
[

PivT∪π(VT ), Fy
]

≤ eC(logL)3γ̄2PB
[

PivH∪π(VT ), Fy
]

+ e−c(logL)5γ̄2 · P
[

Piv
D̃y

(Vk+1)
]
P[Fy].

In a similar vein, using that the three fields 1{Piv
D̃y

(Vk+1)}, s|Cy (where s = sk+1−sk, cf. above

(5.26)) and ((sk ∨ rk+1)|Cy ,UDy) are independent, writing F̃y ⊃ Fy for the event obtained from

(7.12) when removing the condition s|Cy = ε (so Fy = F̃y∩{s|Cy = ε}), one gets for all L ≥ C(Γ),

(8.17) PB
[

PivT∪π(VT ), s|Cy = ε, F cy
] (7.7),(7.8)

≤ P
[

Piv
D̃y

(Vk+1)
]
P[F̃ cy , s|Cy = ε]

(4.37),(4.6)

≤ e−c(logL)γπεy P
[

Piv
D̃y

(Vk+1)
] (6.40)

≤ e−c(logL)5γ̄2
πεy
(
b+Af(y)

)
,

where the last bound is obtained using the fact that γ ≥ 5γ̄2 > 2γM implied by (8.13)
(omitting the localization inherent to the subscript B might seem overly wasteful but isn’t;
see below). Adding (8.16) and (8.17), observing that their left-hand sides combine to form
PB[ PivT∪π(VT ), s|Cy = ε], and dividing the resulting inequality by πεy, thereby replacing the
occurrences of Fy stemming from (8.16) by {s|Cy = ε}(⊃ Fy), and applying (6.40) yet again to
control the factor P[ Piv

D̃y
(Vk+1)] appearing on the right-hand side of (8.16), it follows that

Pεy,B
[

PivT∪π(VT )
]
≤ eC(logL)3γ̄2Pεy,B

[
PivH∪π(VT )

]
+ e−c(logL)5γ̄2

(
b+Af(y)

)
,(8.18)

for all L ≥ C(Γ), where with hopefully obvious notation πεyPεy,B[·] = P[ · ,B(CU (VT ),CV (VT )) =
B, s|Cy = ε]. To arrive at (8.14) one now proceeds as follows. Upon summing over all possible re-

alizations B of B(CU (VT ),CV (VT )), the left-hand side of (8.18) yields Pεy[ PivT∪π(VT )], as desired.

On the right-hand side of (8.18) one first bounds Pεy,B[ PivH∪π(VT )] by supH∈H Pεy[ PivH∪π(VT )],
thereby omitting the bridge localization. The resulting combinatorial complexity when summing
over bridges is accounted for as follows. Let B denote the set of all possible bridges B that can
arise as realizations of B(CU (VT ),CV (VT )) on the event PivT∪π(VT ). Since any box B, part of
a bridge B ∈ B, is determined by its radius, which is at most s due to [37, (B.3)] (see also (8.12)
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regarding s) and its center, a point in B(T, s) with T as in (7.2)-(7.3), and the number of boxes
comprising B is controlled by [37, (B.4)] (with N , L as in (8.12)), it follows that

|B| ≤
(
(8L)dC(logL)4γ3

)(logL)3γ̄2 ≤ e(logL)3γ̄2+C(d)
,

for all L ≥ C. The claim (8.14) now readily follows from (8.18) followed by an application of
Lemma 8.1 to pass from VT to Vk,m− 1

2
.

The remainder of the proof is devoted to establishing (8.15). To pass from PivT∪π(VT ) to
PivH∪π(VT ), we will leverage (B2’) to build connections on the bridge B at a preferential cost.
Exhibiting this cost will in turn rely on the decoupling for VT supplied by Lemma 7.1. Recall
that B =

⋃
1≤j≤J Bj and that any box B ∈ B \ H (where H = BJ) comes with two associated

marked points zi,B ∈ B, i = 1, 2, see (B2’). For such B, let

EB =
{
z1,B

VT∩B←−−→ z2,B

}
and define

(8.19) Ej =
⋂
B∈Bj

EB, Ej− =
⋂

1≤k<j
Ek, 1 ≤ j ≤ J.

The occurrence of EB for any B ∈ B\H implies the existence of a path πB ⊂ (VT ∩B) connecting
the two marked vertices of B. Thus, owing to property (B2’) and by definition of PivK , see
(1.32) and (1.36), it follows that

Pσ̃,B
[

PivH∪π(VT )
]
≥ Pσ̃,B

[
PivT∪π(VT ), EJ−

]
.(8.20)

We will recursively bound the right-hand side of (8.20) by removing the ‘excess’ events Ej
forming part of Ej− in steps. Specifically, we will show that for all 1 ≤ j < J ,

Pσ̃,B
[

PivT∪π(VT ), E(j+1)−

]
≥ e−C(logL)2γ̄2 Pσ̃,B

[
PivT∪π(VT ), Ej−

]
− q,(8.21)

where q = e−c(logL)5γ̄2 · Pσ̃[ Piv
D̃y

(Vk+1) ]. Iterating (8.21) over 1 ≤ j < J , using the fact that

J ≤ C log logL on account of [37, (B.4)] and (8.12), and combining the resulting estimate with
(8.20) (see also (7.2) regarding the value of rT ), the claim (8.15) follows.

To deduce (8.21), it will be convenient to fix an arbitrary ordering B1, . . . , Bn, where n = |Bj |,
of the boxes in Bj . Following the notation of Lemma 7.1 (see above (7.11), see also (8.12)

regarding the value of ξ), if Bm = B(x, r) for some x ∈ Zd and r > 0, we write B̃m =
B(x, r + drξe) in the sequel. Recall from above Lemma 7.1 that FK = σ(1{x′ ∈ VT } : x′ ∈ K)
and let Fm = FZd\B̃m . We first observe that for all m (under Pσ̃)

(8.22)
{

PivT∪π(VT ),B(CU (VT ),CV (VT )) = B
}
∈ FK(⊂ Fm),

where K = Zd \
⋃
B∈(B\H) B̃; in words, FK amounts to revealing the configuration of VT every-

where except in the enlargement of the boxes forming the bridge B, save for the holes. This
can be seen by writing the event in question in (8.22) as a disjoint union over realizations
{CU (VT ) = CU ,CV (VT ) = CV } of the clusters of U and V in VT , where (CU , CV ) range over all
configurations such that the associated bridge equals B and such that PivT∪π(VT ). One then
notices that the event {CU (VT ) = CU ,CV (VT ) = CV } is FK-measurable owing to property [37,
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(B.1)] which is in force on account of (8.12). This also takes care of the event PivT∪π(VT )
appearing in (8.22), which is a function of (CU (VT ),CV (VT )), see (1.36).

Now recall the eventGB from Lemma 7.1 and abbreviateGm = GBm and Ej,m =
⋂

1≤k≤mEBk ,
so that Ej,n = Ej , see (8.19). We now argue that for all 1 ≤ m ≤ n, on the event in (8.22) and
for any σ̃ ∈ Fy (cf. (7.12)),

Pσ̃
[
Ej− , Ej,m, Gm

∣∣σ(Fm, 1Gm)
]
≥ e−C(logL)2

1{Ej− ∩Ej,m−1 ∩Gm}.(8.23)

Indeed (8.23) follows directly from Lemma 7.1, using the fact that the event {Ej− , Ej,m−1, Gm}
is measurable relative to σ(Fm, 1Gm) in view of (8.19) and property [37, (B.1)] and because

Pσ̃
[
EBm |σ(Fm, 1Gm)]

(6.1),(7.10)

≥ e−C(logL)2
1Gm ;

here, in applying (6.1), (7.10), we used the (crude) bound that the radius of the boxBm ⊂ B(T, s)
(cf. the beginning of [37, Section 4]) is at most CrT s ≤ L for L ≥ C ′ on account of (7.2)-(7.3)
and (8.12). Using (8.23), we now complete the proof of (8.21). To this effect, we first claim that

(8.24) Pσ̃,B
[

PivT∪π(VT ), Ej− , Ej,m−1, Gm
]

≥ Pσ̃,B
[

PivT∪π(VT ), Ej− , Ej,m−1

]
− Pσ̃[Gcm] · Pσ̃

[
Piv

D̃y
(Vk+1)

]
.

To see this, one first notices that PivT∪π(VT ) ⊂ Piv
D̃y

(Vk+1) because of (7.8) and by monotonic-

ity of K 7→ PivK , using the fact that T∪π ⊂ Cy ⊂ D̃y (= B(y, 250L)). By definition of pivotality
and (7.9), we have that Piv

D̃y
(Vk+1) is independent of ω̂B(y,130L). On the other hand, the event

Gm is measurable relative to σ(Φloc
T (ω̂)) ⊂ σ(ω̂B(y,130L)) by Lemma 7.1 and the observation im-

mediately preceding it. Therefore, considering the quantity Pσ̃,B[PivT∪π(VT ), Ej− , Ej,m−1, G
c
m],

foregoing the events Ej− , Ej,m−1 and the localization on B, then using independence, one obtains
that this probability is bounded by Pσ̃

[
Gcm] · Pσ̃

[
Piv

D̃y
(Vk+1)

]
, and (8.24) follows.

Now, integrating (8.23) on the event in (8.22) and combining with (8.24) leads to

Pσ̃,B
[

PivT∪π(VT ), Ej− , Ej,m
]

≥ e−C(logL)2
Pσ̃,B

[
PivT∪π(VT ), Ej− , Ej,m−1

]
− Pσ̃

[
Gcm] · Pσ̃

[
Piv

D̃y
(Vk+1)

]
.

Iterating this inequality over all m ≤ n = |Bj |, recalling that Ej,n = Ej whence Ej− ∩ Ej,n =
E(j+1)− in view of (8.19), we obtain that

(8.25) Pσ̃,B
[

PivT∪π(VT ), E(j+1)−

]
≥ e−C|Bj |(logL)2

Pσ̃,B
[

PivT∪π(VT ), Ej−
]
− Pσ̃

[
Piv

D̃y
(Vk+1)

] ∑
B∈Bj

Pσ̃[GcB].

To deduce (8.21) from (8.25), it thus remains to suitably bound the exponential pre-factor and
the sum over B ∈ Bj . We start with the former. Using [37, (B.4)] along with (8.12), it follows

that |Bj | ≤ (logL)C(d)+γ2+γ̄2 , yielding that e−C|Bj |(logL)2 ≥ e−C(logL)2γ̄2 since γ̄2 ≥ 3γ2 ≥ C(d)
by assumption, see (8.13) and (7.13).

On the other hand, since σ̃ ∈ Fy, the bound (7.11) from Lemma 7.1 applies to the box B ∈ Bj ,
the radius of which is bounded from below by s′ = (logL)γ3 due to [37, (B.3)] and (8.12). This
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gives that Pσ̃[GcB] ≤ e−c(logL)c10γ3 . Combining this with the previously obtained bound on |Bj |
and using the second assumption in (8.13), which implies in particular that c10γ3 > 2γ̄2 (and
more), it follows that ∑

B∈Bj

Pσ̃[GcB] ≤ e−c(logL)c10γ3

for L ≥ C. Plugging this along with the afore lower bound on e−C|Bj |(logL)2
back into (8.25)

then leads to (8.21), using now the full strength of (8.13), which implies that c10γ3 ≥ 5γ̄2.

8.3. Holes at small scales. We start with a brief summary of where things stand. With our
final goal of showing (5.39) in mind, the combination of (8.10) (outcome of §8.1) and Lemma 8.2
(proved in §8.2) yields an estimate for qm in terms of the quantity Pεy[ PivH∪π(Vk,m− 1

2
)] appearing

on the right of (8.14). The final step is to convert this quantity into qm−1 defined in (5.37),
which compared to qm, has a slightly bigger vacant configuration, see the last line of (5.36), and
importantly, a reduced cluster separation RT,m−1, see (5.32). This will be achieved by removing
the holes H from the pivotal region H ∪ π as Vk,m− 1

2
is transformed into Vk,m−1. Indeed the

resulting pivotal region, corresponding to the range of π, entails a cluster separation between
CU (Vk,m−1) and CV (Vk,m−1) bounded by diam(π) ≤ RT,m−1 (recall to this effect from below
(8.9) that π = πw,w′ is an `1-geodesic between the two points w,w′, which are separated by a
distance at most Rm−1). The ‘removal’ of H to obtain qm−1 is the object of the next lemma.

Let NB(ω̃) (under Pσ̃, cf. below (4.13) regarding ω̃) denote the number of trajectories under-
lying Jk,m−1/2 that intersect B ⊂ Zd; more precisely, NB is the sum of four independent Poisson
variables N i

B, one for each ωi, 1 ≤ i ≤ 4. With a view towards (5.34) and (4.18) (and similarly
for (4.26)), N1

B counts for instance the number of points (v, w) ∈ ω1 such that v ≤ u4d
L g̃k+1(w(0))

and w[0, L− 1] ∩B 6= ∅. We will be interested in the events

(8.26) Hy,m =
{
NB ≤ (logL)8dγ3 : B = B(x, r) ⊂ B(y, 70L) for some x ∈ Zd and r ≤ s

}
(recall from (8.12) that s = (200)4(logL)4γ3).

Lemma 8.3 (Removing holes). Under (8.13), for all integer 1 ≤ m ≤ m0, y ∈ L and dyadic
L ≥ C(Γ), one has (see (7.12) regarding Fy)

(8.27) sup
H∈H

Pεy[ PivH∪π(Vk,m− 1
2
), Hy,m, Fy] ≤ e(logL)25dγ3

(
qm−1 + (πεy)

−1b
)
.

The proof of Lemma 8.3 makes use of the following simple result.

Lemma 8.4. Let (S, 2S , P ) be a probability space with S at most countable and P (s) > 0 for
all s ∈ S. Then for all E,E′ ⊂ S and R ⊂ E × E′ one has that

(8.28) P [E] ≤ P [E′] · sup
s′∈E′

∑
s∈R−1(s′)

P (s)

P [R(s)]
,

where R−1(s′) = {s ∈ E : (s, s′) ∈ R} and R(s) = {s′ ∈ E′ : (s, s′) ∈ R}.

Proof. Referring to the supremum in question as β, one observes that

P [E] =
∑
s∈E

P (s) =
∑
s∈E

P (s)

P [R(s)]

∑
s′∈R(s)

P (s′) =
∑
s′∈E′

P (s′)
∑

s∈R−1(s′)

P (s)

P [R(s)]
≤ βP [E′].
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Let us now move to:

Proof of Lemma 8.3. In view of the event appearing on the left hand side of (8.27), we introduce,
for H ∈ H,

(8.29) E = PivH∪π(Vk,m− 1
2
) ∩Hy,m, E′ = {U

Vk,m−1∪π←−−−−−→ V,U

V
k,m− 1

2

6←→ V }.

We will prove by application of Lemma 8.4 that on the event Fy given by (7.12)

(8.30) Pσ̃[E] ≤ e(logL)25dγ3Pσ̃[E′].

To see this implies (8.27), observe that by partitioning the event E′ according to whether U and
V are connected in Vk,m−1 or not, one obtains that

Pεy[E′] ≤ Pεy[U
Vk,m−1←−−−→ V,U

V
k,m− 1

2

6←→ V ] + Pεy
[

Pivπ(Vk,m−1)
]
≤ (πεy)

−1b+ qm−1

where in the last step we used the fact that Vk,m−1 ⊂ Vk+ 1
2

and Vk+1 ⊂ Vk,m− 1
2
, cf. (5.36)),

which leads to the factor b upon recalling (5.11), and the event defining qm−1 in (5.37) is implied
by Pivπ(Vk,m−1) because diam(π) ≤ Rm−1 and range(π) ⊂ B(y, 20L) by construction, see below
(8.9), which implies a similar bound for the separation between CU (Vk,m−1) and CV (Vk,m−1) as
measured by dy. Integrating (8.30) suitably over σ̃ on the event Fy and combining the resulting
estimate with the last display readily gives (8.27).

We now show (8.30), and start by preparing the ground in order to fit the discrete setup of
the previous lemma. The inequality (8.27) we aim to prove solely deals with the restriction to
BR (see e.g. the statement of Proposition 5.1; this is the box in which the relevant connection
event is occuring) of the two configurations Ik,m− 1

2
and Ik,m−1 ⊂ Ik,m− 1

2
, see (5.36), for some

1 ≤ m ≤ m0. On account of (5.34) and (5.35), one has the decomposition

(8.31) Jk,m− 1
2

= J a ∪ J b,

where J a = Jk,m−1 and

J b =

{
J [usk,us

′
k+ 1

2m0
us′], L∗

(ω4), when m = 1,

J [us′k+m−1
m0

us′,us′k+ 2m−1
2m0

us′], L∗
(ω4), when m > 1.

Let W+
R,L denote the set of all finite-length (forward) trajectories in Zd starting from BR+100L,

and having time-length at most 2L; here, as in (2.10), a trajectory may at each step either jump
to a neighbor or stay put. Now define S = Ξ2, where

Ξ =
{
η =

∑
1≤i≤n δwi : n ∈ N∗, wi ∈W+

R,L ∀ 1 ≤ i ≤ n
}
,

which is the set of all finite point measures of finite-length trajectories originating inside BR+100L.
We use (ηa, ηb) to denote canonical coordinates on S in the sequel. We now consider the
two Ξ-valued random variables under Pσ̃, cf. below (4.14), obtained by retaining all points
(v, w) ∈ R+×W+ in the support of ωi, 1 ≤ i ≤ 4, underlying J a∩BR and J b∩BR, respectively,
trimming them to their relevant time-length (either L∗ or 3L− L∗; we explain this in the next
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sentence) while forgetting their label v. For instance, in the case of J b ∩BR, the only relevant
process is ω4 (unlike J a ∩ BR, cf. (4.18) and (4.26)) and the underlying points (v, w) ∈ ω4 are
precisely those for which w[0, L∗− 1]∩BR 6= ∅ and v · L∗4d ∈ [usk, us

′
k + 1

2m0
us′] (when m = 0) or

v · L∗4d ∈ [us′k + m−1
m0

us′, us′k + 2m−1
2m0

us′] (when m ≥ 1). The relevant trimming here is L∗, as can

be seen from the definition of J b. Note also that the two random variables just defined indeed
have values in Ξ, i.e. the relevant trajectories w always belong to W+

R,L. We then set P = Pσ̃

to be the induced law on S of the above Ξ-valued random variables under Pσ̃, by which (ηa, ηb)
are distributed as two independent Poisson processes on W+

R,L of a certain intensity. We will

soon apply Lemma 8.4 with the choice of measure space (S, 2S , P ). Note to this effect that S is
a countable set and that P has full support.

Next, we observe from (8.31) that the restriction of the two vacant sets Vk,m−1 and Vk,m− 1
2

to BR and with them the events E and E′ in (8.29) are all measurable with respect to the above
two random variables; to reach this conclusion in the case of E one notes in addition that the
same measurability claim holds for the event Hy,m introduced in (8.26): indeed the relevant
variable NB counts precisely the number of trajectories in the support of ηa + ηb intersecting
B. In particular, setting J (η) =

⋃
w∈η range(w) for η ∈ Ξ and defining V(η) in terms of J (η)

in exactly the same manner as Vk,t in terms of Jk,t in (5.35), one sees that(
Vk,m−1 ∩BR,Vk,m− 1

2
∩BR

) law
=
(
V(ηa) ∩BR,V(ηa + ηb) ∩BR

)
.

Thus, with a slight abuse of notation, the events E = E(ηa, ηb), E′ = E′(ηa, ηb), are all naturally
declared under P and have the same joint law as their respective counterparts under Pσ̃. For
example, E′(ηa, ηb) is simply obtained by replacing Vk,m−1 by V(ηa) and Vk,m− 1

2
by V(ηa + ηb)

in (8.29). We emphasize that the sets V(·) are obtained from J (·) by action of the noise operator
as in (5.35), which is deterministic under P (= Pσ̃). Thus, on the event Fy, henceforth always
tacitly assumed (as for (8.30)), due to the inactiveness of the noise inherent to (7.12) and on
account of (4.1)-(4.2), we have that

(8.32) V(·) ∩B(y, 90L) =
(
Zd \ J (·)

)
∩B(y, 90L).

We now introduce the relation R that will be relevant to our application of Lemma 8.4. To
this end, we first define a sequence of trajectories π1, π2, . . . and a random time τ that will play
a prominent role. Let (ηa, ηb) ∈ E. We attach to every point in the support of ηa and ηb an
independent label sampled uniformly in (0, 1). Let π1, π2, . . . denote the trajectories (elements
of W+

R,L) in the support of ηa intersecting H – recall that H ⊂ B(T, s) ⊂ T ′ ⊂ B(y, 60L), see

[37, Section 4] and (7.3), (7.7) – ordered according to increasing label. Since PivH∪π(V(ηa+ηb))
occurs on E, (8.32) and the property [37, (B.4)] (see (8.12)) of bridges imply that there exists
an integer 0 ≤ τ <∞ such that

U , V are conn. in V
(
(ηa \ {πn : n ≤ τ})

)
∪ π, but not in V

(
(ηa \ {πn : n < τ})

)
∪ π;(8.33)

here, with hopefully obvious notation, ηa \ {πn : n ≤ N} refers to the element of Ξ obtained
from ηa by removing the points corresponding to πn, n ≤ N , from its support. The second
requirement in (8.33) is a minimality condition on τ . If τ = 0 this simply means that U and
V are already connected in V(ηa) ∪ π. Now, owing to the event Hy,m inherent to E, see (8.29),
we obtain from (8.26), which yields an upper bound on the number of walks in the support of
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ηa hitting any box in BJ , and the fact that H is composed of at most |BJ | ≤ (logL)C(d)+γ2+γ̄2

many such boxes, which follows from [37, (B.4)] along with (8.12), that

(8.34) τ ≤ (logL)γτ , γτ = (8d+ 1)γ3,

where we used that γ3 ≥ 5γ̄2 and γ̄2 ≥ Cγ2(≥ C ′).
We can now define R ⊂ E × S, i.e. for each (ηa, ηb) ∈ E we specify the configurations

(ψa, ψb) ∈ S constituting R(ηa, ηb). We will verify a posteriori that R(ηa, ηb) ⊂ E′. For a given
(ηa, ηb) ∈ E we set ψa = ηa \ {πn;n ≤ τ} with τ as defined by (8.33). A point measure ψb is
defined as follows. If τ = 0 then ψb = ηb. If τ ≥ 1 and |πτ | = L∗, we simply set ψb = ηb + δπτ .
Otherwise, we distinguish two cases. First, if V· = Ṽu,L· , then |πτ | = 3L − L∗ = L on account
of (5.23), and we let ψb be any point measure of the form ψb = ηb + δπτ∪π′τ where πτ ∪ π′τ
is the concatenation of πτ with any nearest-neighbor path of length L starting at πτ (L − 1).

Secondly, if V· = V
u,L
· , whence |πτ | = 2L, we set ψb = ηb + δπτ [0,L−1] + δπτ [L,2L−1]. The set of all

(ψa, ψb) ∈ S thereby obtained defines R(ηa, ηb). This fully specifies R.
We now claim R ⊂ E × E′, i.e. for a given (ηa, ηb) ∈ E, any pair (ψa, ψb) constructed by

the above procedure satisfies (ψa, ψb) ∈ E′. Indeed, by definition of ψa and the first condition
in (8.33), we know that {U ←→ V in V(ψa) ∪ π}. On the other hand, the fact that (ηa, ηb) ∈ E
implies that {U 6←→ V in V(ηa + ηb)}, and owing to the second property in (8.33) and the
definition of ψb, which retains πτ , it follows that the disconnection persists in V(ψa + ψb).
Overall, in view of (8.29), we obtain that (ψa, ψb) ∈ E′, hence ψ : E → E′, as desired.

Now, Lemma 8.4 applies and (8.28) yields (on the event Fy),

(8.35) Pσ̃[E] ≤ Pσ̃[E′] · max
ψ=(ψa,ψb)∈E′

∑
η=(ηa,ηb)∈R−1(ψ)

P (η)

P [R(η)]
.

We now bound the maximum on the right-hand side of (8.35) and focus on the case V· = V
u,L
· .

The other case is dealt with similarly. In the sequel we write p(π) for the probability attached
to any path in π ∈W+

R,L under Pπ(0). Let ψ ∈ E′. We first bound the ratio appearing in (8.35)
and then perform the sum over η separately. As we now explain, we get with ε as in (5.25), for
any η as appearing in the sum in (8.35) with τ = τ(η) 6= 0 that

P (η)

P [R(ηa, ηb)]
≤

∏
1≤n≤τ

p(πn)
∏

π̃∈(ηa+ηb)\{πn:1≤n≤τ}

p(π̃)

p(πτ )
∏

π̃∈(ηa+ηb)\{πn:1≤n≤τ}

p(π̃)
× CL2(logL)2γτ

ε2

≤ CL2(logL)18dγ3
∏

1≤n<τ
p(πn), since γ3 ≥ 5γ̄2, γ̄2 ≥ 3γ2 and γ2 ≥ γ1 + 5.(8.36)

The second factor in the first line corresponds to a bound on the ratio of the relevant (Poisson)
intensities. In obtaining this bound, we first used that the intensities of walks starting at any
x′ ∈ Zd for J (ηa) are bounded by 1 for large enough L so that removal of trajectories leading
to ψa comes at no multiplicative cost. We then used that the intensity λx′ of walks for J (ηb)
starting at any x′ ∈ B = B(y, 60L) satisfies λx′ ≥ ε/2C9blogLc (recall to this effect that

J (ηb) ∩ B law
= J b ∩ B and see below (8.31); then use (5.32) and recall that s′ = ε on the event

Fy). The bound on λx′ implies that adding at most two trajectories to produce ψb costs no
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more than CL2(logL)2N2
B/ε

2, where NB is the maximum number of walks in the support of
ηb intersecting B. However, since η ∈ E, we have NB ≤ (logL)8dγ3 . Together, the previous
observations lead to the first step in (8.36). The second one is immediate by (5.25). We also
note that (8.36) remains valid if τ(η) = 0 since by definition R acts trivially and the ratio is
equal to 1 in this case.

Next, we perform the sum over η in (8.35). By (8.34) we have the bound, valid for any
ψ ∈ E′,

∑
η∈R−1(ψ)

∏
1≤n<τ

p(πn) ≤
(logL)γτ∑
t=1

∑
(w1∪w2)∈ψb:

(w1∪w2)∩H 6=∅,
|w1|=|w2|=L

∑
(x′n,sn,`n)n

∑
∗

∏
1≤n<t

p(πn),(8.37)

where the triplets (x′n, sn, `n), 1 ≤ n < t, range over all x′n ∈ H, `n ∈ {L, 2L}, and sn ∈
{0, 1, . . . , 2L− 1}. The summation ∗ is over all configurations η ∈ R−1(ψ) satisfying τ = t with
πn having length `n and first entering H at time sn through the point x′n for all 1 ≤ n ≤ t− 1,
and with πτ arising by concatenating w1 and w2 (πτ = w1 if w1 = w2). Crucially,∑

∗

∏
1≤n<t

p(πn) ≤ 1.

Then one bounds each of the two preceding sums in (8.37) individually, by noting that∑
(x′n,sn,`n)n

1 ≤ (C(logL)dγτL2)(logL)γτ , and
∑

(w1∪w2)∈ψb:
(w1∪w2)∩H 6=∅,
|w1|=|w2|=L

1 ≤ ((logL)8dγ3)2,

where, we used again the fact that η ∈ E, which implies in particular a bound on the number
of relevant trajectories. Plugging the two bounds into the right hand side of (8.37) yields that

(8.38)
∑

η∈R−1(ψ)

∏
1≤n<τ

p(πn) ≤ e(logL)2γ̃
.

Summing (8.36) over η, substituting (8.38), and combining with (8.35) yields (8.30).

8.4. Proof of Lemma 5.6. Combining (8.9), (8.10) with Lemmas 8.2 and 8.3, we supply the
last missing piece.

Proof of Lemma 5.6. Assume that (8.13) is satisfied, as required for the conclusions of Lem-
mas 8.2 and 8.3 to hold. Let λB denote the mean of the Poisson variable NB (under Pσ̃)
introduced above (8.26). By definition of Jk,m and on the event Fy, which allows to bound the
relevant intensity profiles in (5.34) by C(logL)γ3 , one has that P σ̃-a.s., for any B as in (8.26),

(8.39) λB ≤
Cu

L
(logL)γ3

∑
z∈Zd

Pz[HB < 2L] ≤ C ′(logL)γ3 |∂B| ≤ C ′(logL)4dγ3 ,

where the penultimate step follows by disintegrating Pz[HB < 2L] over the discrete time n < 2L
at which B is hit, the position y = Xn(∈ ∂B), using reversibility, which allows to sum over z,
and bounding the resulting probabilities Py[H̃B > n] by 1; the last inequality in (8.39) is because
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rad(B) ≤ s = (200)4(logL)4γ3 . Using (8.39) together with the tail estimate (4.37) and a union
bound over the balls B in (8.26), it follows that

Pεy[(Hy,m ∩ Fy)c] ≤ Pεy[F cy ] +
1

πεy

∑
B

P σ̃
[
Pσ̃[NB ≥ (logL)8dγ3 ]1Fy

]
≤ e−c(logL)γ∧dγ3

(8.40)

for L ≥ C(Γ), where the last step implicitly used the bound Pεy[F cy ] ≤ e−c(logL)γ already at

work in (8.17). Recalling that Dy = B(y, 170L) and D̃y = B(y, 250L), one now observes that
the events Hy,m, Fy and {s|Cy = ε} resp. given by (8.26), (7.12) and (5.26) are all measurable

relative to (ωLDy ,Σ
L
Dy
,UDy) whereas the event Piv

D̃y
(Vk,m− 1

2
) is independent (under P) of this

triplet. Noting that (H ∪ π) ⊂ D̃y, which follows from (7.7), the fact that H ⊂ B(T, s) and by
construction of π (cf. (8.9) and below), one further has the chain of inclusions PivH∪π(Vk,m− 1

2
) ⊂

PivH∪π(Vk,m− 1
2
) ⊂ Piv

D̃y
(Vk,m− 1

2
) = Piv

D̃y
(Vk+1), where the equality is due to the second line

of (5.36). Combining with the previous observation thus yields that

(8.41) sup
H∈H

Py[PivH∪π(Vk,m− 1
2
), (Hy,m ∩ Fy)c]

≤ Pεy[(Hy,m ∩ Fy)c]P
[

Piv
D̃y

(Vk+1)
] (6.40),(8.40)

≤ e−c(logL)γ∧dγ3
(b+Af(y)).

for all L ≥ C(Γ), where we used that (γ ∧ dγ3) > 3γM which follows from (8.13). Adding (8.41)
to (8.27) and plugging the resulting bound into the right hand side of (8.14) gives

(8.42) Pεy
[

PivT∪π(VT )
]
≤ e(logL)30dγ3

(qm−1 + (πεy)
−1 b) + e−c(logL)γ2

Af(y)

for L ≥ C(Γ), where we used that (γ ∧ γ3) ≥ Cγ2 implied by (8.13).
Finally we select the constants in (5.38) as C10(δ, d) = 5C15

c10∧1 , C11 = 5C15 and C12(d) =
C(d) ∨ 40d with C(d) as in the statement of Lemma 8.2, so that the conditions in (5.38) imply
(8.13), and (8.42) is in force (recall that the latter was derived under the hypothesis that (8.13)
holds). Plugging (8.13) into (8.10) and subsequently into (8.9), one deduces (5.39). Or, in more
vivid terms, cf. the beginning of Section 6: the arrow has traversed all axe heads.
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