
A UNIFIED ANALYSIS FRAMEWORK FOR ITERATIVE1

PARALLEL-IN-TIME ALGORITHMS ∗2

MARTIN J. GANDER† , THIBAUT LUNET‡ , DANIEL RUPRECHT‡ , AND ROBERT3

SPECK§4

Abstract. Parallel-in-time integration has been the focus of intensive research efforts over5
the past two decades due to the advent of massively parallel computer architectures and the scaling6
limits of purely spatial parallelization. Various iterative parallel-in-time (PinT) algorithms have been7
proposed, like Parareal, PFASST, MGRIT, and Space-Time Multi-Grid (STMG). These methods8
have been described using different notations, and the convergence estimates that are available are9
difficult to compare. We describe Parareal, PFASST, MGRIT and STMG for the Dahlquist10
model problem using a common notation and give precise convergence estimates using generating11
functions. This allows us, for the first time, to directly compare their convergence. We prove that all12
four methods eventually converge super-linearly, and also compare them numerically. The generating13
function framework provides further opportunities to explore and analyze existing and new methods.14

Key words. Parallel in Time (PinT) methods, Parareal, PFASST, MGRIT, space-time15
multi-grid (STMG), generating functions, convergence estimates.16

AMS subject classifications. 65R20, 45L05, 65L2017

1. Introduction. The efficient numerical solution of time-dependent ordinary18

and partial differential equations (ODEs/PDEs) has always been an important re-19

search subject in computational science and engineering. Nowadays, with high-20

performance computing platforms providing more and more processors whose indi-21

vidual processing speeds are no longer increasing, the capacity of algorithms to run22

concurrently becomes important. As classical parallelization algorithms start to reach23

their intrinsic efficiency limits, substantial research efforts have been invested to find24

new parallelization approaches that can translate the computing power of modern25

many-core high-performance computing architectures into faster simulations.26

For time-dependent problems, the idea to parallelize across the time direction27

has gained renewed attention in the last two decades1. Various algorithms have been28

developed, for overviews see the papers by Gander [18] or Ong and Schroder [41].29

Four iterative algorithms have received significant attention, namely Parareal [36]30

(426 citat. since 2001)2, the Parallel Full Approximation Scheme in Space and Time31

(PFASST) [11] (228 citat. since 2012), Multi-Grid Reduction In Time, (MGRIT) [16,32

14] (238 citat. since 2014) and a specific form of Space-Time Multi-Grid (STMG) [25]33

(122 citat. since 2016). Other algorithms have been proposed, e.g. the Parallel (or34

Parareal) Implicit Time integration Algorithm PITA [15] (264 citat. since 2003)35

which is very similar to Parareal, the diagonalization technique [38] (50 citat. since36

2008), Revisionist Integral Deferred Corrections (RIDC) [6] (108 citat. since 2010),37

∗Submitted to the editors DATE.
Funding: This project has received funding from the European High-Performance Computing

Joint Undertaking (JU) under grant agreement No 955701. The JU receives support from the Euro-
pean Union’s Horizon 2020 research and innovation programme and Belgium, France, Germany, and
Switzerland. This project also received funding from the German Federal Ministry of Education and
Research (BMBF) grant 16HPC048.

†University of Geneva, Switzerland.
‡Hamburg University of Technology, Germany (thibaut.lunet@tuhh.de).
§Forschungszentrum Jülich GmbH, Germany.
1See also https://www.parallel-in-time.org
2Number of citations since publication, according to Google Scholar in July 2022.

1

This manuscript is for review purposes only.

mailto:thibaut.lunet@tuhh.de
https://www.parallel-in-time.org

2 M.J GANDER, T. LUNET, D. RUPRECHT AND R. SPECK

ParaExp [20] (89 citat. since 2013) or parallel Rational approximation of EXponential38

Integrators (REXI) [46] (23 citat. since 2018).39

Parareal, PFASST, MGRIT and STMG have all been benchmarked for large-40

scale problems using large numbers of cores of high-performance computing sys-41

tems [33, 35, 37, 48]. They cast the solution process in time as a large linear42

or nonlinear system which is solved by iterating on all time steps simultaneously.43

Since parallel performance is strongly linked to the rate of convergence, understand-44

ing convergence mechanisms and obtaining reliable error bounds for these iterative45

PinT methods is crucial. Individual analyses exist for Parareal [2, 21, 26, 43, 49],46

MGRIT [8, 32, 47], PFASST [3, 4], and STMG [25]. There are also a few combined47

analyses showing equivalences between Parareal and MGRIT [14, 22] or connec-48

tions between MGRIT and PFASST [39]. However, no systematic comparison of49

convergence behaviour, let alone efficiencies, between these methods exists.50

There are at least three obstacles to comparing these four methods: first, there51

is no common formalism or notation to describe them; second, the existing analy-52

ses use very different techniques to obtain convergence bounds; third, the algorithms53

can be applied to many different problems in different ways with many tunable pa-54

rameters, all of which affect performance [28]. Our main contribution is to address,55

at least for the Dahlquist test problem, the first two problems by proposing a com-56

mon formalism to rigorously describe Parareal, PFASST, MGRIT3 and the Time57

Multi-Grid (TMG) component4 of STMG using the same notation. Then, we ob-58

tain comparable error bounds for all four methods by using the Generating Function59

Method (GFM) [34]. GFM has been used to analyze Parareal [21] and was used60

to relate Parareal and MGRIT [22]. However, our use of GFM to derive common61

convergence bounds across multiple algorithms is novel, as is the presented unified62

framework. When coupled with a predictive model for computational cost, this GFM63

framework could eventually be extended to a model to compare parallel performance64

of different algorithms, but this is left for future work.65

Our manuscript is organized as follows: In Section 2, we introduce the GFM66

framework. In particular, in Section 2.1, we give three definitions (time block, block67

variable and block operator) used to build the GFM framework and provide some68

examples using classical time integration methods. Section 2.2 contains the central69

definition of a block iteration and again examples. In Section 2.3, we state the main70

theoretical results and error bounds, and the next sections contain how existing algo-71

rithms from the PinT literature can be expressed in the GFM framework: Parareal72

in Section 3, TMG in Section 4, and PFASST in Section 5. Finally, we compare in73

Section 6 all methods using the GFM framework. Conclusions and an outlook are74

given in Section 7.75

2. The Generating Function Method. We consider the Dahlquist equation76

(2.1)
du

dt
= λu, λ ∈ C, t ∈ (0, T], u(0) = u0 ∈ C.77

The complex parameter λ allows us to emulate problems of parabolic (λ < 0), hyper-78

bolic (λ imaginary) and mixed type.79

3We do not analyze in detail MGRIT with FCF relaxation, only with F relaxation, in which
case the two level variant is equivalent to Parareal. Our framework could however be extended to
include FCF relaxation, see Remark 3.1.

4Since we focus only on the time dimension, the spatial component of STMG is left out.

This manuscript is for review purposes only.

GENERATING FUNCTION METHOD 3

2.1. Blocks, block variables, and block operators. We decompose the80

time interval [0, T] into N time sub-intervals [tn, tn+1] of uniform size ∆t with n ∈81

{0, ..., N − 1}.82

Definition 2.1 (time block). A time block (or simply block) denotes the dis-83

cretization of a time sub-interval [tn, tn+1] using M > 0 grid points,84

(2.2) τn,m = tn +∆tτm, m ∈ {1, ...,M},85

where the τm ∈ [0, 1] denote normalized grid points in time used for all blocks.86

We choose the name “block” in order to have a generic name for the internal steps87

inside each time sub-interval. A block could be several time steps of a classical time-88

stepping scheme (e.g. Runge-Kutta, cf. Section 2.1.1), the quadrature nodes of a89

collocation method (cf. Section 2.1.2) or a combination of both. But in every case,90

a block represents the time domain that is associated to one computational process91

of the time parallelization. A block can also collapse by setting M := 1 and τ1 := 1,92

so that we retrieve a standard uniform time-discretization with time step ∆t. The93

additional structure provided by blocks will be useful when describing and analyzing94

two-level methods which use different numbers of grid points per block for each level,95

cf. Section 4.2.96

Definition 2.2 (block variable). A block variable is a vector97

(2.3) un = [un,1, un,2, . . . , un,M]T ,98

where un,m is an approximation of u(τn,m) on the time block for the time sub-interval99

[tn, tn+1]. For M = 1, un reduces to a scalar approximation of u(τn,M) ≡ u(tn+1).100

Some iterative PinT methods like Parareal (see Section 3) use values defined at101

the interfaces between sub-intervals [tn, tn+1]. Other algorithms, like PFASST (see102

Section 5), update solution values in the interior of blocks. In the first case, the block103

variable is the right interface value with M = 1 and thus τ1 = 1. In the second case,104

it consists of volume values in the time block [tn, tn+1] with M > 1. In both cases,105

PinT algorithms can be defined as iterative processes updating the block variables.106

Remark 2.3. While the adjective “time” is natural for evolution problems, PinT107

algorithms can also be applied to recurrence relations in different contexts like deep108

learning [29] or when computing Gauss quadrature formulas [24]. Therefore, we will109

not systematically mention “time” when talking about blocks and block variables.110

Definition 2.4 (block operators). We denote as block operators the two linear111

functions ϕ : CM → CM and χ : CM → CM for which the block variables of a112

numerical solution of (2.1) satisfy113

(2.4) ϕ(u1) = χ(u01I), ϕ(un+1) = χ(un), n = 1, 2, . . . , N − 1,114

with 1I := [1, . . . , 1]T . The time integration operator ϕ is bijective and χ is a trans-115

mission operator. The time propagator updating un to un+1 is given by116

(2.5) ψ := ϕ−1χ.117

2.1.1. Example with Runge-Kutta methods. Consider numerical integra-118

tion of (2.1) with a Runge-Kutta method with stability function119

(2.6) R(z) ≈ ez.120

Using ℓ equidistant time steps per block, there are two natural ways to write the121

method using block operators:122

This manuscript is for review purposes only.

4 M.J GANDER, T. LUNET, D. RUPRECHT AND R. SPECK

1. The volume formulation: set M := ℓ with τm := m/M , m = 1, . . . ,M .123

Setting r := R(λ∆t/ℓ)−1, the block operators are the M ×M sparse matrices124

(2.7) ϕ :=

 r
−1 r

. . .
. . .

 , χ :=


0 . . . 0 1
...

... 0
...

...
...

 .125

2. The interface formulation: set M := 1 so that126

(2.8) ϕ := R(λ∆t/ℓ)−ℓ, χ := 1.127

2.1.2. Example with collocation methods. Collocation methods are special128

implicit Runge-Kutta methods [51, Chap. IV, Sec. 4] and instrumental when defining129

PFASST in Section 5. We show their representation with block operators. Starting130

from the Picard formulation for (2.1) in one time sub-interval [tn, tn+1],131

(2.9) u(t) = u(tn) +

∫ t

tn

λu(τ)dτ,132

we choose a quadrature rule to approximate the integral. We consider only Lobatto133

or Radau-II type quadrature nodes where the last quadrature node coincides with134

the right sub-interval boundary. This gives us quadrature nodes for each sub-interval135

that form the block discretization points τn,m of Definition 2.1, with τM = 1. We136

approximate the solution u(τn,m) at each node by137

(2.10) un,m = un,0 + λ∆t

M∑
j=1

qm,jun,j with qm,j :=

∫ τm

0

lj(s)ds,138

where lj are the Lagrange polynomials associated with the nodes τm. Combining all139

the nodal values, we form the block variable un, which satisfies the linear system140

(2.11) (I−Q)un =

un,0

...
un,0

 =

0 . . . 0 1
...

...
...

0 . . . 0 1

un−1 =: Hun−1,141

with the quadrature matrix Q := λ∆t(qm,j), I the identity matrix, and H sometimes142

called the transfer matrix that copies the last value of the previous time block to143

obtain the initial value un,0 of the current block5. The integration and transfer block144

operators from Definition 2.4 then become6 ϕ := (I−Q), χ := H.145

2.2. Block iteration. Having defined the block operators for our problem, we146

write the numerical approximation (2.4) of (2.1) as the all-at-once global problem147

(2.12) Au :=


ϕ
−χ ϕ

. . .
. . .

−χ ϕ



u1

u2

...
uN

 =


χ(u01I)

0
...
0

 =: f .148

5This specific form of the matrix H comes from the use of Lobatto or Radau-II rules, which treat
the right interface of the time sub-interval as a node. A similar description can also be obtained for
Radau-I or Gauss-type quadrature rules that do not use the right boundary as node, but we omit it
for the sake of simplicity.

6The notation H is specific to SDC and collocation methods (see e.g. [3]), while the χ notation
from the GFM framework is generic for arbitrary time integration methods.

This manuscript is for review purposes only.

GENERATING FUNCTION METHOD 5

Fig. 1. kn-graphs for a generic Primary Block Iteration (left), damped Block Jacobi (middle)
and Approximate Block Gauss-Seidel (right).

Iterative PinT algorithms solve (2.12) by updating a vector uk = [uk
1 , . . . ,u

k
N]T to149

uk+1 until some stopping criterion is satisfied. If the global iteration can be written150

as a local update for each block variable separately, we call the local update formula151

a block iteration.152

Definition 2.5 (Primary block iteration). A primary block iteration is an up-153

dating formula for n ≥ 0 of the form154

(2.13) uk+1
n+1 = B0

1(u
k
n+1) +B1

0

(
uk+1
n

)
+B0

0

(
uk
n

)
, uk

0 = u01I ∀k ∈ N,155

where B0
1, B

1
0 and B0

0 are linear operators from CM to CM that satisfy the consistency156

condition7157

(2.14) (B0
1 − I)ψ +B1

0 +B0
0 = 0,158

with ψ defined in (2.5).159

Note that a block iteration is always associated with an all-at-once global problem,160

and the primary block iteration (2.13) should converge to the solution of (2.12).161

Figure 1 (left) shows a graphical representation of a primary block iteration using162

a kn-graph to represent the dependencies of uk+1
n+1 on the other block variables. The163

x-axis represents the block index n (time), and the y-axis represents the iteration164

index k. Arrows show dependencies from previous n or k indices and can only go165

from left to right and/or from bottom to top. For the primary block iteration, we166

consider only dependencies from the previous block n and iterate k for uk+1
n+1.167

More general block iterations can also be considered for specific iterative PinT168

methods, e.g. MGRIT with FCF-relaxation (see Remark 3.1). Other algorithms169

also consist of combinations of two or more block iterations, for example STMG170

(cf. Section 4) or PFASST (cf. Section 5). But we show in those sections that we171

can reduce those combinations into a single primary block iteration, hence we focus172

here mostly on primary block iterations to introduce our analysis framework.173

We next describe the Block Jacobi relaxation (Section 2.2.1) and the Approxi-174

mate Block Gauss-Seidel iteration (Section 2.2.2), which are key components used to175

describe iterative PinT methods.176

2.2.1. Block Jacobi relaxation. A damped block Jacobi iteration for the177

global problem (2.12) can be written as178

(2.15) uk+1 = uk + ωD−1(f −Auk),179

7 Condition (2.14) is necessary for the block iteration to have the correct fixed point.

This manuscript is for review purposes only.

6 M.J GANDER, T. LUNET, D. RUPRECHT AND R. SPECK

where D is a block diagonal matrix constructed with the integration operator ϕ, and180

ω > 0 is a relaxation parameter. For n > 0, the corresponding block formulation is181

(2.16) uk+1
n+1 = (1− ω)uk

n+1 + ωϕ−1χuk
n,182

which is a primary block iteration with B1
0 = 0. Its kn-graph is shown in Figure 1183

(middle). The consistency condition (2.14) is satisfied, since184

(2.17) ((1− ω)I− I)ϕ−1χ+ 0 + ωϕ−1χ = 0.185

Note that selecting ω = 1 simplifies the block iteration to186

(2.18) uk+1
n+1 = ϕ−1χuk

n.187

2.2.2. Approximate Block Gauss-Seidel iteration. Let us consider a Block188

Gauss-Seidel type preconditioned iteration for the global problem (2.12),189

(2.19) uk+1 = uk +P−1
GS(f −Auk), PGS =

 ϕ̃−χ ϕ̃
. . .

. . .

 ,190

where the block operator ϕ̃ corresponds to an approximation of ϕ. This approximation191

can be based on time-step coarsening, but could also use other approaches, e.g. a192

lower-order time integration method. In general, ϕ̃ must be cheaper than ϕ, but is193

also less accurate. Subtracting uk in (2.19) and multiplying by PGS yields the block194

iteration of this Approximate Block Gauss-Seidel (ABGS),195

(2.20) uk+1
n+1 =

[
I− ϕ̃−1ϕ

]
uk
n+1 + ϕ̃

−1χuk+1
n .196

Its kn-graph is shown in Figure 1 (right). Note that a standard block Gauss-Seidel197

iteration for (2.12) (i.e. with ϕ̃ = ϕ) is actually a direct solver, the iteration converges198

in one step by integrating all blocks with ϕ sequentially, and its block iteration is199

simply200

(2.21) uk+1
n+1 = ϕ−1χuk+1

n .201

2.3. Generating function and error bound for a block iteration. Before202

giving a generic expression for the error bound of the primary block iteration (2.13)203

using the GFM framework, we first need a definition and a preliminary result. The204

primary block iteration (2.13) is defined for each block index n ≥ 0, thus we can define205

Definition 2.6 (Generating function). The generating function associated with206

the primary block iteration (2.13) is the power series207

(2.22) ρk(ζ) :=

∞∑
n=0

ekn+1ζ
n+1,208

where ekn+1 :=
∥∥uk

n+1 − un+1

∥∥ is the difference between the kth iterate uk
n+1 and the209

exact solution un+1 for one block of (2.4) in some norm on CM .210

Since the analysis works in any norm, we do not specify a particular one here. In the211

numerical examples we use the L∞ norm on CM .212

This manuscript is for review purposes only.

GENERATING FUNCTION METHOD 7

Lemma 2.7. The generating function for the primary block iteration (2.13) satis-213

fies214

(2.23) ρk+1(ζ) ≤
γ + αζ

1− βζ
ρk(ζ),215

where α :=
∥∥B0

0

∥∥, β :=
∥∥B1

0

∥∥, γ :=
∥∥B0

1

∥∥, and the operator norm is induced by the216

chosen vector norm.217

Proof. We start from (2.13) and subtract the exact solution of (2.4),218

(2.24) uk+1
n+1 − un+1 = B0

1(u
k
n+1) +B1

0

(
uk+1
n

)
+B0

0

(
uk
n

)
−ψ(un).219

Using the linearity of the block operators and (2.14) with un, this simplifies to220

(2.25) uk+1
n+1 − un+1 = B0

1(u
k
n+1 − un+1) +B1

0

(
uk+1
n − un

)
+B0

0

(
uk
n − un

)
.221

We apply the norm, use the triangle inequality and the operator norms defined above222

to get the recurrence relation223

(2.26) ek+1
n+1 ≤ γekn+1 + βek+1

n + αekn224

for the error. We multiply this inequality by ζn+1 and sum for n ∈ N to get225

(2.27)

∞∑
n=0

ek+1
n+1ζ

n+1 ≤ γ

∞∑
n=0

ekn+1ζ
n+1 + β

∞∑
n=0

ek+1
n ζn+1 + α

∞∑
n=0

eknζ
n+1.226

Note that this is a formal power series expansion for ζ small in the sense of generating227

functions [34, Section 1.2.9]. Using Definition 2.6 and that ek0 = 0 for all k we find228

(2.28) ρk+1(ζ) ≤ γρk(ζ) + βζ

∞∑
n=1

ek+1
n ζn + αζ

∞∑
n=1

eknζ
n.229

Shifting indices leads to230

(2.29) (1− βζ)ρk+1(ζ) ≤ (γ + αζ)ρk(ζ)231

and concludes the proof.232

Theorem 2.8. Consider the primary block iteration (2.13) and let233

(2.30) δ := max
n=1,...,N

∥∥u0
n − un

∥∥234

be the maximum error of the initial guess over all blocks. Then, using the notation of235

Lemma 2.7, we have236

(2.31) ekn+1 ≤ θkn+1(α, β, γ)δ237

for k > 0, where θkn+1 is a bounding function defined as follows:238

• if only γ = 0, then239

(2.32) θkn+1 =
αk

(k − 1)!

n−k∑
i=0

k−1∏
l=1

(i+ l)βi;
240

241

This manuscript is for review purposes only.

8 M.J GANDER, T. LUNET, D. RUPRECHT AND R. SPECK

• if only β = 0, then242

(2.33) θkn+1 =


(γ + α)k if k ≤ n,

γk
n∑

i=0

(
k

i

)(
α

γ

)i

otherwise;
243

244

• if only α = 0, then245

(2.34) θkn+1 =
γk

(k − 1)!

n∑
i=0

k−1∏
l=1

(i+ l)βi;
246

247

• if neither α, nor β, nor γ are zero, then248

(2.35) θkn+1 = γk

min(n,k)∑
i=0

n−i∑
l=0

(
k

i

)(
l + k − 1

l

)(
α

γ

)i

βl.249

We call any error bound obtained from one of these formulas a GFM-bound.250

The proof uses Lemma 2.7 to bound the generating function at k = 0 by251

(2.36) ρ0(ζ) ≤ δ

∞∑
n=0

ζn+1,252

which covers arbitrary initial guesses for defining starting values u0
n for each block.253

For specific initial guesses, ρ0(ζ) can be bounded differently [21, Proof of Th. 1].254

The error bound is then computed by coefficient identification after a power series255

expansion. The rather technical proof can be found in Appendix A.256

In the numerical examples shown below, we find that the estimate from Theo-257

rem 2.8 is not always sharp, cf. Section 5.5.1. If the last time point of the blocks258

coincides with the right bound of the sub-interval8, it is helpful to define the interface259

error at the right boundary point of the nth block as260

(2.37) ēkn+1 := |ūk
n+1 − ūn+1|,261

where ū is the last element of the block variable u. We then multiply (2.25) by262

eTM = [0, . . . , 0, 1] to get263

(2.38) eTM (uk+1
n+1 − un+1) = b

0
1(u

k
n+1 − un+1) + b

1
0(u

k+1
n − un) + b

0
0(u

k
n − un),264

where bji is the last row of the block operator Bj
i . Taking the absolute value on both265

sides, we recognize the interface error ēk+1
n+1 on the left hand side. By neglecting the266

error from interior points and using the triangle inequality, we get the approximation9267

(2.39) ēk+1
n+1 ⪅ γ̄ēkn+1 + β̄ēk+1

n + ᾱēkn,268

where ᾱ := |b̄00|, β̄ := |b̄01|, γ̄ := |b̄10|.269

8This is the case for all time-integration methods considered in this paper, even if this is not a
necessary condition to use the GFM framework.

9For an interface block iteration (M = 1, τ1 = 1), (2.39) becomes a rigorous inequality and
Corollary 2.9 thus becomes an upper bound.

This manuscript is for review purposes only.

GENERATING FUNCTION METHOD 9

Corollary 2.9 (Interface error approximation). Defining for the initial inter-270

face error the bound δ̄ := maxn∈{1,...,N}
∥∥ū0

n − ūn

∥∥, we obtain for the interface error271

the approximation272

(2.40) ēkn+1 ⪅ θ̄kn+1δ̄, θ̄kn+1 := θkn+1(ᾱ, β̄, γ̄),273

with θkn+1 defined in Theorem 2.8.274

Proof. The result follows as in the proof of Lemma 2.7 using approximate rela-275

tions.276

Remark 2.10. For the general case, the error at the interface ēk+1
n+1 is not the same277

as the error for the whole block ek+1
n+1 . Only a block discretization using a single point278

(M = 1) makes the two values identical. Furthermore, Corollary 2.9 is generally not279

an upper bound, but an approximation thereof.280

3. Writing Parareal and MGRIT as block iterations.281

3.1. Description of the algorithm. The Parareal algorithm introduced by282

Lions et al. [36] corresponds to a block iteration update with scalar blocks (M = 1),283

and its convergence was analyzed in [26, 43]. We propose here a new description284

of Parareal in the scope of the GFM framework, which states that Parareal is285

simply a combination of two preconditioned iterations applied to the global problem286

(2.12), namely one Block Jacobi relaxation without damping (Section 2.2.1), followed287

by an ABGS iteration (Section 2.2.2).288

We denote by uk+1/2 the intermediate solution after the Block Jacobi step. Using289

(2.18) and (2.20), the two successive primary block iteration steps are290

u
k+1/2
n+1 = ϕ−1χuk

n,(3.1)291

uk+1
n+1 =

[
I− ϕ̃−1ϕ

]
u
k+1/2
n+1 + ϕ̃−1χuk+1

n .(3.2)292
293

Combining both yields the primary block iteration294

(3.3) uk+1
n+1 =

[
ϕ−1χ− ϕ̃−1χ

]
uk
n + ϕ̃−1χuk+1

n .295

Now as stated in Section 2.2.2, ϕ̃ is an approximation of the integration operator ϕ,296

that is cheaper to invert but less accurate10. In other words, if we define297

(3.4) F := ϕ−1χ, G := ϕ̃−1χ,298

to be a fine and coarse propagator on one block, then (3.3) becomes299

(3.5) uk+1
n+1 = Fuk

n + Guk+1
n − Guk

n,300

which is the Parareal update formula derived from the approximate Newton update301

in the multiple shooting approximation in [26]. Iteration (3.5) is a primary block302

iteration in the sense of Definition 2.5 with B0
1 := 0, B1

0 := G and B0
0 := F − G. Its303

kn-graph is shown in Figure 2 (left). The consistency condition (2.14) is satisfied,304

since (0 − I)F + G + (F − G) = 0. If we subtract uk
n+1 in (3.3), multiply both sides305

10In the original paper [36], this approximation is done using larger time-steps, but many other
types of approximations have been used since then in the literature.

This manuscript is for review purposes only.

10 M.J GANDER, T. LUNET, D. RUPRECHT AND R. SPECK

Fig. 2. kn-graphs for Parareal/MGRIT with F-relaxation (left) and MGRIT with FCF-
relaxation/Parareal with overlap (right).

by ϕ and rearrange terms, we can write Parareal as the preconditioned fixed point306

iteration307

(3.6) uk+1 = uk +M−1(f −Auk), M :=

 ϕ

−ϕϕ̃−1χ ϕ
. . .

. . .

 ,308

with iteration matrix RParareal = I−M−1A.309

Remark 3.1. It is known in the literature that Parareal is equivalent to a two-310

level MGRIT algorithm with F-relaxation [14, 22, 47]. In MGRIT, one however also311

often uses FCF-relaxation, which is a combination of two non-damped (ω = 1) Block312

Jacobi relaxation steps, followed by an ABGS step: denoting by uk+1/3 and uk+2/3313

the intermediary block Jacobi iterations, we obtain314

u
k+1/3
n+1 = ϕ−1χuk

n,(3.7)315

u
k+2/3
n+1 = ϕ−1χuk+1/3

n ,(3.8)316

uk+1
n+1 =

[
I− ϕ̃−1ϕ

]
u
k+2/3
n+1 + ϕ̃−1χuk+1

n .(3.9)317
318

Shifting the n index in the first Block Jacobi iteration, combining all of them and319

re-using the F and G notation then gives320

(3.10) uk+1
n+1 = B0

−1(u
k
n−1) +B1

0

(
uk+1
n

)
, B0

−1 = (F − G)F , B1
0 = G,321

which is the update formula of Parareal with overlap, shown to be equivalent to322

MGRIT with FCF-relaxation [22, Th. 4]11.323

This block iteration, whose kn-graph is represented in Figure 2 (right), does not324

only link two successive block variables with time index n + 1 and n, but also uses325

a block with time index n − 1. It is not a primary block iteration in the sense of326

Definition 2.5 anymore. Although it can be analyzed using generating functions [22,327

Th. 6], we focus on primary block iterations here and leave more complex block328

iterations like this one for future work.329

3.2. Convergence analysis with GFM bounds. In their convergence analy-330

sis of Parareal for non-linear problems [21], the authors obtain a double recurrence331

of the form ek+1
n+1 ≤ αekn + βek+1

n , where α and β come from Lipschitz constants332

11It was shown in [22] that MGRIT with (FC)νF-relaxation, where ν > 0 is the number of
additional FC-relaxations, is equivalent to an overlapping version of Parareal with ν overlaps.
Generalizing our computations shows that those algorithms are equivalent to (ν − 1) non-damped
Block Jacobi iterations followed by an ABGS step.

This manuscript is for review purposes only.

GENERATING FUNCTION METHOD 11

0 2 4 6 8 10
Iteration

10 13

10 11

10 9

10 7

10 5

10 3

10 1

101

Er
ro

r v
s.

fin
e

so
lu

tio
n

Iteration error
Original bound
GFM bound
Norm of iteration matrix

0 2 4 6 8 10
Iteration

10 13

10 11

10 9

10 7

10 5

10 3

10 1

101

Er
ro

r v
s.

fin
e

so
lu

tio
n

Iteration error
Original bound
GFM bound
Norm of iteration matrix

Fig. 3. Error bounds for Parareal for (2.1). Left: λ = i, right: λ = −1. Note that for λ = i,
the GFM-bound and the original one are almost identical.

and local truncation error bounds. Using the same notation as in Section 3.1, with333

α = ∥F − G∥ and β = ∥G∥, we find [21, Th. 1] that334

(3.11) ekn+1 ≤ δ
αk

k!
β̄n−k

k∏
l=1

(n+ 1− l), β̄ = max(1, β).335

This is different from the GFM bound336

(3.12) ekn+1 ≤ δ
αk

(k − 1)!

n−k∑
i=0

k−1∏
l=1

(i+ l)βi
337

we get when applying Theorem 2.8 with γ = 0 to the block iteration of Parareal.338

The difference stems from an approximation in the proof of [21, Th. 1] which leads339

to the simpler and more explicit bound in (3.11). The two bounds are equal when340

β = 1, but for β ̸= 1, the GFM bound in (3.12) is sharper. To illustrate this, we use341

the interface formulation of Section 2.1.1: we set M := 1, τ1 := 1 and use the block342

operators343

(3.13) ϕ := R(λ∆t/ℓ)−ℓ, χ := 1, ϕ̃ := R∆(λ∆t/ℓ∆)
−ℓ∆ .344

We solve (2.1) for λ ∈ {i,−1} with t ∈ [0, 2π] and u0 = 1, using N := 10 blocks,345

ℓ := 10 fine time steps per block, the standard 4th-order Runge-Kutta method for ϕ346

and ℓ∆ = 5 coarse time steps per block with Backward Euler for ϕ̃. Figure 3 shows347

the resulting error (dashed line) at the last time point, the original error bound (3.11),348

and the new bound (3.12). We also plot the linear bound obtained from the L∞ norm349

of the iteration matrix RParareal defined just after (3.6). For both values of λ, the350

GFM-bounds coincide with the linear bound from RParareal for the first iteration,351

and the GFM-bound captures the super-linear contraction in later iterations. For352

λ = i, the old and new bounds are similar since β is close to 1. However, for λ = −1353

where β is smaller than one, the new bound gives a sharper estimate of the error,354

and we can also see that the new bound captures well the transition from the linear355

to the super-linear convergence regime. On the left in Figure 3, Parareal seems to356

converge well for imaginary λ = i. This, however, should not be seen as a working357

example of Parareal for a hyperbolic type problem, but is rather the effect of the358

relatively good accuracy of the coarse solver using 50 points per wave length for one359

This manuscript is for review purposes only.

12 M.J GANDER, T. LUNET, D. RUPRECHT AND R. SPECK

0 2 4 6 8 10
Iteration

10 2

10 1

100

101

102

103

104

Er
ro

r v
s.

fin
e

so
lu

tio
n

Iteration error
Original bound
GFM bound
Norm of iteration matrix

0 2 4 6 8 10
Iteration

10 13

10 11

10 9

10 7

10 5

10 3

10 1

101

Er
ro

r v
s.

fin
e

so
lu

tio
n

Iteration error
Original bound
GFM bound
Norm of iteration matrix

Fig. 4. Error bounds for Parareal for (2.1). Left: λ = 4i, right: λ = −4.

wavelength present in the solution time interval we consider. Denoting by ϵ∆ the360

L∞ error with respect to the exact solution, the accuracy of the coarse solver (ϵ∆ =361

6.22e-01) allows the Parareal error to reach the fine solver error (ϵ∆ = 8.16e-07) in362

K = 8 iterations. Since the ideal parallel speedup of Parareal, neglecting the coarse363

solver cost, is bounded by N/K = 1.25 [1, Sec. 4], this indicates however almost no364

speedup in practical applications (see also [28]). If we increase the coarse solver error,365

for instance by multiplying λ by a factor 4 to have now four times more wavelength366

in the domain, and only 12.5 points per wavelength resolution in the coarse solver,367

the convergence of Parareal deteriorates massively, as we can see in Figure 4 (left),368

while this is not the case for the purely negative real fourfold λ = −4.369

This illustrates how Parareal has great convergence difficulties for hyperbolic370

problems, already well-documented in the literature see e.g. [17, 23]. This is analogous371

to the difficulties due to the pollution error and damping in multi-grid methods when372

solving medium to high frequency associated time harmonic problems, see [10, 12, 13,373

19, 7] and references therein.374

4. Writing two-level Time Multi-Grid as a block iteration. The idea of375

time multi-grid (TMG) goes back to the 1980s and 1990s [5, 30, 40]. Furthermore,376

not long after Parareal was introduced, it was shown to be equivalent to a time377

multi-grid method, independently of the type of approximation used for the coarse378

solver [26]. This inspired the development of other time multi-level methods, in partic-379

ular MGRIT [14]. However, Parareal and MGRIT are usually viewed as iterations380

acting on values located at the block interface, while TMG-based algorithms, in par-381

ticular STMG [25], use an iteration updating volume values (i.e. all fine time points382

in the time domain). In this section, we focus on a generic description of TMG, and383

show how to write its two-level form applied to the Dahlquist problem as block iter-384

ation. In particular, we will show in Section 5 that PFASST can be expressed as a385

specific variant of TMG. The extension of this analysis to more levels and comparison386

with multi-level MGRIT is left for future work.387

4.1. Definition of a coarse block problem for Time Multi-Grid. To build388

a coarse problem, we consider a coarsened version of the global problem (2.12), with a389

AC matrix having N ·MC rows instead of N ·M for A. For each of the N blocks, let390

(τCm)1≤m≤MC
be the normalized MC grid points12 of a coarser block discretization,391

12Those do not need to be a subset of the fine block grid points, although they usually are in
applications.

This manuscript is for review purposes only.

GENERATING FUNCTION METHOD 13

with MC < M .392

We can define a coarse block operator ϕC by using the same time integration393

method as for ϕ on every block, but with fewer time points. This is equivalent to394

geometric coarsening used for h-multigrid (or geometric multigrid [50]), e.g. when395

using one time-step of a Runge-Kutta method between each time grid point. It can396

also be equivalent to spectral coarsening used for p-multigrid (or spectral element397

multigrid [42]), e.g. when one step of a collocation method on M points is used within398

each block (as for PFASST, see Section 5.3).399

We also consider the associated transmission operator χC , and denote by uC
n the400

block variable on this coarse time block, which satisfies401

(4.1) ϕC(u
C
1) = χCT

C
F (u01I), ϕCu

C
n+1 = χCu

C
n n = 1, 2, . . . , N − 1.402

Let uC be the global coarse variable that solves403

(4.2) ACu
C :=


ϕC

−χC ϕC

. . .
. . .

−χC ϕC



uC
1

uC
2
...
uC
N

 =


χCT

C
F (u01I)
0
...
0

 =: fC .404

TC
F is a block restriction operator, i.e. a transfer matrix from a fine (F) to a coarse405

(C) block discretization. Similarly, we have a block prolongation operator TF
C , i.e. a406

transfer matrix from a coarse (C) to a fine (F) block discretization.407

Remark 4.1. While both ϕC and ϕ̃ are approximations of the fine operator ϕ,408

the main difference between ϕC and ϕ̃ is the size of the vectors they can be applied409

to (MC and M). Furthermore, ϕC itself does need the transfer operators TF
C and410

TC
F to compute approximate values on the fine time points, while ϕ̃ alone is sufficient411

(even if it can hide some restriction and interpolation process within). However, the412

definition of a coarse grid correction in the classical multi-grid formalism needs this413

separation between transfer and coarse operators (see [50, Sec. 2.2.2]), which limits414

the use of ϕ̃ and requires the introduction of ϕC .415

4.2. Block iteration of a Coarse Grid Correction. Let us consider a stand-416

alone Coarse Grid Correction (CGC), without pre- or post-smoothing13, of a two-level417

multi-grid iteration [31] applied to (2.12). One CGC step applied to (2.12) can be418

written as419

(4.3) uk+1 = uk + T̄F
CA

−1
C T̄C

F (f −Auk),420

where T̄F
C denotes the block diagonal matrix formed with TF

C on the diagonal, and421

similarly for T̄C
F . When splitting (4.3) into two steps,422

ACd = T̄C
F (f −Auk),(4.4)423

uk+1 = uk + T̄F
Cd,(4.5)424425

the CGC term (or defect) d appears explicitly. Expanding the two steps for n > 0426

into a block formulation and inverting ϕC leads to427

dn+1 = ϕ−1
C TC

Fχu
k
n − ϕ−1

C TC
Fϕu

k
n+1 + ϕ

−1
C χCdn,(4.6)428

uk+1
n+1 = uk

n+1 +TF
Cdn+1.(4.7)429430

Now we need the following simplifying assumption.431

13The CGC is not convergent by itself without a smoother.

This manuscript is for review purposes only.

14 M.J GANDER, T. LUNET, D. RUPRECHT AND R. SPECK

Fig. 5. kn-graphs for the CGC block iteration, with Assumption 4.2 only (left), and with both
Assumptions 4.2 and 4.3 (right).

Assumption 4.2. Prolongation TF
C followed by restriction TC

F leaves the coarse432

block variables unchanged, i.e.433

(4.8) TC
FT

F
C = I.434

This condition is satisfied in many situations (e.g. restriction with standard injection435

on a coarse subset of the fine points, or polynomial interpolation with any possible436

coarse block discretization)14. Using it in (4.7) for block index n yields437

(4.9) dn = TC
F

(
uk+1
n − uk

n

)
.438

Inserting dn into (4.6) on the right and the resulting dn+1 into (4.7) leads to439

(4.10) uk+1
n+1 = (I−TF

Cϕ
−1
C TC

Fϕ)u
k
n+1 +TF

Cϕ
−1
C χCT

C
Fu

k+1
n +TF

Cϕ
−1
C ∆χu

k
n,440

with ∆χ := TC
Fχ − χCT

C
F . This is a primary block iteration in the sense of Defini-441

tion 2.5, and we give its kn-graph in Figure 5 (left). We can simplify it further using442

a second assumption:443

Assumption 4.3. We consider operators TC
F , χ and χC such that444

(4.11) ∆χ = TC
Fχ− χCT

C
F = 0.445

This holds for classical time-stepping methods when both left and right time sub-446

interval boundaries are included in the block variables, or for collocation methods447

using Radau-II or Lobatto type nodes.448

This last assumption is important to define PFASST (cf. Section 5.3 and see Bolten449

et al. [3, Remark 1] for more details) and simplifies the analysis of TMG, as both450

methods use this block iteration. Then, (4.10) reduces to451

(4.12) uk+1
n+1 = (I−TF

Cϕ
−1
C TC

Fϕ)u
k
n+1 +TF

Cϕ
−1
C TC

Fχu
k+1
n .452

Again, this is a primary block iteration for which the kn-graph is given in Figure 5453

(right). It satisfies the consistency condition15 (2.14) since ((I − TF
Cϕ

−1
C TC

Fϕ) −454

I)ϕ−1χ+TF
Cϕ

−1
C TC

Fχ = 0.455

14In some situations, e.g. when the transpose of linear interpolation is used for restriction (full-
weighting), we do not get the identity in Assumption 4.2 but an invertible matrix. The same
simplifications can be done, except one must take into account the inverse of (TC

FTF
C).

15Note that the consistency condition is satisfied even without assumption 4.3.

This manuscript is for review purposes only.

GENERATING FUNCTION METHOD 15

4.3. Two-level Time Multi-Grid. Gander and Neumüller introduced STMG456

for discontinuous Galerkin approximations in time [25], which leads to a similar system457

as (2.12). We describe the two-level approach for general time discretizations, follow-458

ing their multi-level description [25, Sec. 3]. Consider a coarse problem defined as in459

Section 4.2 and a damped block Jacobi smoother as in Section 2.2.1 with relaxation460

parameter ω. Then, a two-level TMG iteration requires the following steps:461

1. ν1 pre-relaxation steps (2.15) with block Jacobi smoother,462

2. one CGC (4.3) inverting the coarse grid operators,463

3. ν2 post-relaxation steps (2.15) with the block Jacobi smoother,464

each corresponding to a block iteration. If we combine all these block iterations we465

do not obtain a primary block iteration but a more complex expression, of which the466

analysis is beyond the scope of this paper. However, a primary block iteration in the467

sense of Definition 2.5 is obtained when468

• Assumption 4.3 holds, so that ∆χ = 0,469

• only one pre-relaxation step is used, ν1 = 1,470

• and no post-relaxation step is considered, ν2 = 0.471

Then, the two-level iteration reduces to the two block updates from (2.16) and (4.12),472

u
k+1/2
n+1 = (1− ω)uk

n+1 + ωϕ−1χuk
n,(4.13)473

uk+1
n+1 =

(
I−TF

Cϕ
−1
C TC

Fϕ
)
u
k+1/2
n+1 +TF

Cϕ
−1
C χCT

C
Fu

k+1
n ,(4.14)474475

using k+1/2 as intermediate index. Combining (4.13) and (4.14) leads to the primary476

block iteration477

(4.15) uk+1
n+1 =

(
I−TF

Cϕ
−1
C TC

Fϕ
) [

(1− ω)uk
n+1 + ωϕ−1χuk

n

]
+TF

Cϕ
−1
C χCT

C
Fu

k+1
n .478

If ω ̸= 1, all block operators in this primary block iteration are non-zero, and apply-479

ing Theorem 2.8 leads to the error bound (2.35). Since the latter is similar to the480

one obtained for PFASST in Section 5.5.2, we leave its comparison with numerical481

experiments to Section 5. For ω = 1 we get the simplified iteration482

(4.16) uk+1
n+1 =

(
ϕ−1χ−TF

Cϕ
−1
C TC

Fχ
)
uk
n +TF

Cϕ
−1
C χCT

C
Fu

k+1
n ,483

and the following result:484

Proposition 4.4. Consider a CGC as in Section 4.2, such that the prolongation485

and restriction operators (in time) satisfy Assumption 4.2. If Assumption 4.3 also486

holds and only one block Jacobi pre-relaxation step (2.15) with ω = 1 is used before487

the CGC, then two-level TMG is equivalent to Parareal, where the coarse solver G488

uses the same time integrator as the fine solver F but with larger time steps, i.e.489

(4.17) G := TF
Cϕ

−1
C TC

Fχ.490

This is a particular case of a result obtained before by Gander [26, Theorem 3.1] but is491

presented here in the context of our GFM framework and the definition of Parareal492

given in Section 3.1. In particular, it shows that the simplified two-grid iteration493

on (2.12) is equivalent to the preconditioned fixed-point iteration (3.6) of Para-494

real if some conditions are met and ϕ̃−1 := TF
Cϕ

−1
C TC

F is used as the approximate495

integration operator16. However, the TMG iteration here updates also the fine time496

16Note that, even if TF
Cϕ−1

C TC
F is not invertible, this abuse of notation is possible as (3.6) requires

an approximation of ϕ−1 rather than an approximation of ϕ itself.

This manuscript is for review purposes only.

16 M.J GANDER, T. LUNET, D. RUPRECHT AND R. SPECK

point values, using TF
C to interpolate the coarse values computed with ϕC , hence497

applying the Parareal update to all volume values. This is the only “difference”498

with the original definition of Parareal in [36], where the update is only applied to499

the interface value between blocks.500

One key idea of STMG that we have not described yet is the block diagonal501

Jacobi smoother used for relaxation. Even if its diagonal blocks use a time integration502

operator identical to those of the fine problem (hence requiring the inversion of ϕ),503

their spatial part in STMG is approximated using one V-cycle multi-grid iteration in504

space based on a pointwise smoother [25, Sec. 4.3]. We do not cover this aspect in505

our description of TMG here, since we focus on time only, but describe in the next506

section a similar approach that is used for PFASST.507

5. Writing PFASST as a block iteration. PFASST is also based on a TMG508

approach using an approximate relaxation step, but the approximation of the block509

Jacobi smoother is done in time and not in space, in contrast to STMG. In addition,510

the CGC in PFASST is also approximated, i.e. there is no direct solve on the coarse511

level to compute the CGC as in STMG. One PFASST iteration is therefore a combi-512

nation of an Approximate Block Jacobi (ABJ) smoother, see Section 5.2, followed by513

one (or more) ABGS iteration(s) of Section 2.2.2 on the coarse level to approximate514

the CGC [11, Sec. 3.2]. While we describe only the two-level variant, the algorithm515

can use more levels [11, 48]. The main component of PFASST is the approximation516

of the time integrator blocks using Spectral Deferred Corrections (SDC) [9], from517

which its other key components (ABJ and ABGS) are built. Hence we first describe518

how SDC is used to define an ABGS iteration in Section 5.1, then ABJ in Section 5.2,519

and finally PFASST in Section 5.3.520

5.1. Approximate Block Gauss-Seidel with SDC. SDC can be seen as a521

preconditioner when integrating the ODE problem (2.1) with collocation methods,522

see Section 2.1.2. Consider the block operators523

(5.1) ϕ := (I−Q), χ := H =⇒ (I−Q)un+1 = Hun.524

SDC approximates the quadrature matrix Q by525

(5.2) Q∆ = λ∆t (q̃m,j) , q̃m,j =

∫ τm

0

l̃j(s)ds,526

where l̃j is an approximation of the Lagrange polynomial lj . Usually, Q∆ is lower527

triangular [45, Sec 3] and easy to invert17. This approximation is used to build the528

preconditioned iteration529

(5.3) uk+1
n+1 = uk

n+1 + [I−Q∆]
−1

(
Hun − (I−Q)uk

n+1

)
530

to solve (5.1), with un+1 as unknown. We obtain the generic preconditioned iteration531

for one block,532

(5.4) uk+1
n+1 =

[
I− ϕ̃−1ϕ

]
uk
n+1 + ϕ̃

−1χun with ϕ̃ := I−Q∆.533

This shows that SDC inverts the ϕ operator approximately using ϕ̃ block by block534

to solve the global problem (2.12), i.e. it fixes an n in (5.4), iterates over k until535

17The notation Q∆ was chosen instead of Q̃ for consistency with the literature, cf. [45, 3, 4].

This manuscript is for review purposes only.

GENERATING FUNCTION METHOD 17

Fig. 6. kn-graphs for Block Jacobi SDC (left) and Block Gauss-Seidel SDC (right).

convergence, and then increments n by one. Hence SDC gives a natural way to define536

an approximate block integrator ϕ̃ to be used to build ABJ and ABGS iterations.537

Defining the ABGS iteration (2.19) of Section 2.2.2 using the SDC block operators538

gives the block updating formula539

(5.5) uk+1
n+1 = uk

n+1 + [I−Q∆]
−1

(
Huk+1

n − (I−Q)uk
n+1

)
,540

which we call Block Gauss-Seidel SDC (BGS-SDC), very similar to (5.3) except that541

we use the new iterate uk+1
n and not the converged solution un. This is a primary542

block iteration in the sense of Definition 2.5 with543

B0
1 := I− [I−Q∆]

−1(I−Q) = [I−Q∆]
−1(Q−Q∆),

B0
0 := 0, B1

0 := [I−Q∆]
−1H,

(5.6)544

and its kn-graph is shown in Figure 6 (right).545

5.2. Approximate Block Jacobi with SDC. Here we solve the global prob-546

lem (2.12) using a preconditioner that can be easily parallelized (Block Jacobi) and547

combine it with the approximation of the collocation operator ϕ by ϕ̃ defined in (5.1)548

and (5.4). This leads to the global preconditioned iteration549

(5.7) uk+1 = uk +P−1
Jac(f −Auk), PJac =

ϕ̃ ϕ̃
. . .

 .550

This is equivalent to the block Jacobi relaxation in Section 2.2.1 with ω = 1, except551

that the block operator ϕ is approximated by ϕ̃. Using the SDC block operators (5.1)552

gives the block updating formula553

(5.8) uk+1
n+1 = uk

n+1 + [I−Q∆]
−1

(
Huk

n − (I−Q)uk
n+1

)
,554

which we call Block Jacobi SDC (BJ-SDC). This is a primary block iteration with555

B0
1 := I− [I−Q∆]

−1(I−Q) = [I−Q∆]
−1(Q−Q∆),

B0
0 := [I−Q∆]

−1H, B1
0 := 0.

(5.9)556

Its kn-graph is shown in Figure 6 (left). This block iteration can be written in the557

more generic form558

(5.10) uk+1
n+1 =

[
I− ϕ̃−1ϕ

]
uk
n+1 + ϕ̃

−1χuk
n.559

This is similar to (5.4) except that we use the current iterate uk
n from the previous560

block and not the converged solution un. Note that ϕ and ϕ̃ do not need to correspond561

to the SDC operators (5.1) and (5.4). This block iteration does not explicitly depend562

on the use of SDC, hence the name Approximate Block Jacobi (ABJ).563

This manuscript is for review purposes only.

18 M.J GANDER, T. LUNET, D. RUPRECHT AND R. SPECK

5.3. PFASST. We now give a simplified description of PFASST [11] applied to564

the Dahlquist problem (2.1). In particular, this corresponds to doing only one SDC565

sweep on the coarse level. To write PFASST as a block iteration, we first build566

the coarse level as in Section 4.2. From that we can form the Q̃ quadrature matrix567

associated with the coarse nodes and the coarse matrix H̃, as we would have done if568

we were using the collocation method of Section 2.1.2 on the coarse nodes. This leads569

to the definition of the ϕC and χC operators for the coarse level, combined with the570

transfer operators TC
F and TF

C , from which we can build the global matrices AC , T̄
F
C571

and T̄C
F , see Section 4.2. Then we build the two-level PFASST iteration by defining572

a specific smoother and a modified CGC.573

The smoother corresponds to a Block Jacobi SDC iteration (5.8) from Section 5.2574

to produce an intermediate solution575

(5.11) u
k+1/2
n+1 = [I−Q∆]

−1(Q−Q∆)u
k
n+1 + [I−Q∆]

−1Huk
n,576

denoted with iteration index k + 1/2. Using a CGC as in Section 4.2 would provide577

the global update formula578

ACd = T̄C
F (f −Auk+1/2),(5.12)579

uk+1 = uk+1/2 + T̄F
Cd.(5.13)580581

Instead of a direct solve with AC to compute the defect d, in PFASST one uses582

L Block Gauss-Seidel SDC iterations (or sweeps) to approximate it. Then (5.12)583

becomes584

(5.14) P̃GSd
ℓ = (P̃GS −AC)d

ℓ−1 + T̄C
F (f −Auk+1/2), d0 = 0, ℓ ∈ {1, .., L},585

and reduces for one sweep only (L = 1) to586

(5.15) P̃GSd = T̄C
F (f −Auk+1/2), P̃GS =

 ϕ̃C

−χC ϕ̃C

. . .
. . .

 .587

Here P̃GS correspond to the PGS preconditioning matrix, but written on the coarse588

level using an SDC-based approximation ϕ̃C of the ϕC coarse time integrator. Com-589

bined with the prolongation on the fine level (5.13), we get the modified CGC update590

(5.16) uk+1 = uk+1/2 + T̄F
CP̃

−1
GST̄

C
F (f −Auk+1/2), P̃GS =

 ϕ̃C

−χC ϕ̃C

. . .
. . .

 ,591

and together with (5.11) a two level method for the global system (2.12) [4, Sec. 2.2].592

Note that this is the same iteration we obtained for the CGC in Section 4.2, except593

that the coarse operator ϕC has been replaced by ϕ̃C . Assumption 4.3 holds, since594

using Lobatto or Radau-II nodes means H has the form (2.11), which implies595

(5.17) ∆χ = TC
FH− H̃TC

F = 0.596

Using similar computations as in Section 4.2 and the block operators defined for597

collocation and SDC (cf. Section 2.1.2 and Section 5.1) we obtain the block iteration598

(5.18) uk+1
n+1 = [I−TF

C(I− Q̃∆)
−1TC

F (I−Q)]u
k+1/2
n+1 +TF

C(I− Q̃∆)
−1TC

FHu
k+1
n599

This manuscript is for review purposes only.

GENERATING FUNCTION METHOD 19

CGC

Smoother
Block Jacobi (ω = 1) Approximate Block Jacobi

Direct Solver TMG (ω = 1) TMGf

ABGS (one step) TMGc Two-level PFASST

Table 1
Classification of two-level TMG methods, depending on their smoother for fine-level relaxation

and computation of the Coarse Grid Correction (CGC).

by substitution into (4.12). Finally, the combination of the two gives600

uk+1
n+1 = [I−TF

C(I− Q̃∆)
−1TC

F (I−Q)][I−Q∆]
−1(Q−Q∆)u

k
n+1

+ (I−TF
C [I− Q̃∆]

−1TC
F (I−Q))[I−Q∆]

−1Huk
n

+TF
C(I− Q̃∆)

−1TC
FHu

k+1
n .

(5.19)601

Using the generic formulation with the ϕ operators gives18602

uk+1
n+1 = [I−TF

Cϕ̃
−1
C TC

Fϕ](I− ϕ̃−1ϕ)uk
n+1

+ (I−TF
Cϕ̃

−1
C TC

Fϕ)ϕ̃
−1χuk

n +TF
Cϕ̃

−1
C TC

Fχu
k+1
n .

(5.20)603

This is again a primary block iteration in the sense of Definition 2.5, but in contrast604

to most previously described block iterations, all block operators are non-zero.605

5.4. Similarities between PFASST, TMG and Parareal. From the de-606

scription in the previous section, it is clear that PFASST is very similar to TMG.607

While TMG uses a (damped) block Jacobi smoother for pre-relaxation and a direct608

solve for the CGC, PFASST uses instead an approximate Block Jacobi smoother,609

and solves the CGC using one (or more) ABGS iterations on the coarse grid. This610

interpretation was obtained by Bolten et al. [3, Theorem 1], but is derived here using611

the GFM framework, and we summarize those differences in Table 1. Changing only612

the CGC or the smoother in TMG with ω = 1 in contrast to both like in PFASST pro-613

duces two further PinT algorithms. We call those TMGc (replacing the coarse solver614

by one step of ABGS) and TMGf (replacing the fine Block Jacobi solver by ABJ).615

Note that TMGc can be interpreted as Parareal using an approximate integration616

operator and larger time step for the coarse propagator if we set617

(5.21) G := TF
Cϕ̃

−1
C TC

Fχ.618

Thus, the version of Parareal used in Section 3.2 is equivalent to TMGc, and differs619

from PFASST only by the type of smoother used on the fine level.620

5.5. Analysis and numerical experiments.621

5.5.1. Convergence of PFASST iteration components. Since Block Jacobi622

SDC (5.8) can be written as a primary block iteration, we can apply Theorem 2.8623

with β = 0 to get the error bound624

(5.22) ekn+1 ≤


δ(γ + α)k if k ≤ n

δγk
n∑

i=0

(
k

i

)(
α

γ

)i

otherwise,
625

18We implicitly use [I−Q∆]−1(Q−Q∆) = I− [I−Q∆]−1(I−Q) = I− ϕ̃−1ϕ, see (5.6).

This manuscript is for review purposes only.

20 M.J GANDER, T. LUNET, D. RUPRECHT AND R. SPECK

0 5 10 15 20
Iteration

10-16

10-13

10-10

10-7

10-4

10-1

Er
ro

r v
s.

fin
e

so
lu

tio
n

Block Jacobi
Block Gauss-Seidel

0 5 10 15 20
Iteration

10-16

10-13

10-10

10-7

10-4

10-1

Er
ro

r v
s.

fin
e

so
lu

tio
n

Block Jacobi
Block Gauss-Seidel

Fig. 7. Comparison of numerical errors with GFM-bounds for Block Jacobi SDC and Block
Gauss-Seidel SDC. Left: error on the block variables (dashed), GFM-bounds (solid), linear bound
from the iteration matrix (dotted). Right: error estimate using the interface approximation from
Corollary 2.9. Note that the numerical errors on block variables (left) and at the interface (right)
are close but not identical (see Remark 2.10).

with γ :=
∥∥[I−Q∆]

−1(Q−Q∆)
∥∥, α :=

∥∥[I−Q∆]
−1H

∥∥. Note that γ is proportional626

to λ∆t through the Q−Q∆ term and for small ∆t, α tends to ∥H∥ which is constant.627

We can identify two convergence regimes: for early iterations (k ≤ n), the bound does628

not contract if γ +α ≥ 1 (which is generally the case). For later iterations (k > n), a629

small-enough time step leads to convergence of the algorithm through the γk factor.630

Similarly, for Block Gauss-Seidel SDC (5.5), Theorem 2.8 with α = 0 gives631

(5.23) ekn+1 ≤ δ
γk

(k − 1)!

n∑
i=0

k−1∏
l=1

(i+ l)βi,632

where γ :=
∥∥[I−Q∆]

−1(Q−Q∆)
∥∥, β :=

∥∥[I−Q∆]
−1H

∥∥. This iteration contracts633

already in early iterations if γ is small enough. Since the value for γ is the same634

for both Block Gauss-Seidel SDC and Block Jacobi-SDC, both algorithms have an635

asymptotically similar convergence rate.636

We illustrate this with the following example. Let λ := i, u0 := 1, and let the637

time interval [0, π] be divided into N = 10 sub-intervals. Inside each sub-interval,638

we use one step of the collocation method from Section 2.1.2 with M := 10 Lobatto-639

Legendre nodes [27]. This gives us block variables of size M = 10 and we choose Q∆640

as the matrix defined by a single Backward Euler step between nodes to build the ϕ̃641

operator. The starting value u0 for the iteration is initialized with random numbers642

starting from the same seed. Figure 7 (left) shows the numerical error for the last643

block using the L∞ norm, the bound obtained with the GFM method and the linear644

bound using the norm of the global iteration matrix. As for Parareal in Section 3.2,645

the GFM-bound is similiar to the iteration matrix bound for the first few iterations,646

but much tighter for later iterations. In particular, the linear bound cannot show the647

change in convergence regime of the Block Jacobi SDC iteration (after k = 10) but648

the GFM-bound does. Also, we observe that while the GFM-bound overestimates the649

error, the interface approximation of Corollary 2.9 gives a very good estimate of the650

error at the interface, see Figure 7 (right).651

This manuscript is for review purposes only.

GENERATING FUNCTION METHOD 21

0 5 10 15 20
Iteration

10 16

10 13

10 10

10 7

10 4

10 1

102

Er
ro

r v
s.

fin
e

so
lu

tio
n

Iteration error
GFM bound
Iteration matrix
Spectral radius

0 5 10 15 20
Iteration

10-16

10-13

10-10

10-7

10-4

10-1

102

Er
ro

r v
s.

fin
e

so
lu

tio
n

Iteration error
Interface approximation

Fig. 8. Comparison of numerical errors with GFM-bounds for PFASST. Left: error bound
using volume values. Right: estimate using the interface approximation. Note that the numerical
errors on block variables (left) and at the interface (right) are very close but not identical (see
Remark 2.10).

5.5.2. Analysis and convergence of PFASST. The GFM framework pro-652

vides directly an error bound for PFASST: applying Theorem 2.8 to (5.19) gives653

(5.24) ekn+1 ≤ δγk

min(n,k)∑
i=0

n−i∑
l=0

(
k

i

)(
l + k − 1

l

)(
α

γ

)i

βl,654

with γ := ||[I − TF
C(I − Q̃∆)

−1TC
F (I − Q)][I − Q∆]

−1(Q − Q∆)||, β := ||TF
C(I −655

Q̃∆)
−1H̃TC

F ||, and α := ||(I−TF
C [I− Q̃∆]

−1TC
F (I−Q))[I−Q∆]

−1H||.656

We compare this bound with numerical experiments. Let λ := i, u0 := 1. The657

time interval [0, 2π] for the Dahlquist problem (2.1) is divided into N = 10 sub-658

intervals. Inside each sub-interval we use M := 6 Lobatto-Legendre nodes on the fine659

level and MC := 2 Lobatto nodes on the coarse level. The Q∆ and Q̃∆ operators use660

Backward Euler. In Figure 8 (left) we compare the measured numerical error with the661

GFM-bound and the linear bound from the iteration matrix. As in Section 5.5.1, both662

bounds overestimate the numerical error, even if the GFM-bound shows convergence663

for the later iterations, which the linear bound from the iteration matrix cannot. We664

also added an error estimate built using the spectral radius of the iteration matrix,665

for which an upper bound was derived in [4]. For this example, the spectral radius666

reflects the asymptotic convergence rate for the last iterations better than GFM.667

This highlights a weakness of the current GFM-bound: applying norm and triangle668

inequalities to the vector error recurrence (2.25) can induce a large approximation669

error in the scalar error recurrence (2.26) that is then solved with generating functions.670

Improving this is planned for future work.671

However, one advantage of the GFM-bound over the spectral radius is its generic672

aspect allowing it to be applied to many iterative algorithms, even those having an673

iteration matrix with spectral radius equal to zero like Parareal [44]. Further-674

more, the interface approximation from Corollary 2.9 allows us to get a significantly675

better estimation of the numerical error, as shown in Figure 8 (right). For the GFM-676

bound we have (α, β, γ) = (0.16, 1, 0.19), while for the interface approximation we get677

(ᾱ, β̄, γ̄) = (0.16, 0.84, 0.02). In the second case, since γ̄ is one order smaller than the678

other coefficients, we get an error estimate that is closer to the one for Parareal in679

Section 3.2 where γ = 0. This similarity between PFASST and Parareal (cf. Sec-680

tion 5.4) will be highlighted in the next section.681

This manuscript is for review purposes only.

22 M.J GANDER, T. LUNET, D. RUPRECHT AND R. SPECK

Algorithm B0
1 (uk

n+1) B0
0 (uk

n) B1
0 (uk+1

n)

damped Block Jacobi I − ωI ωϕ−1χ –

ABJ I − ϕ̃−1ϕ ϕ̃−1χ –

ABGS I − ϕ̃−1ϕ – ϕ̃−1χ

Parareal – (ϕ−1 − ϕ̃−1)χ ϕ̃−1χ

TMG (1 − ω)(I − TF
Cϕ−1

C TC
Fϕ) ω(ϕ−1 − TF

Cϕ−1
C TC

F)χ TF
Cϕ−1

C TC
Fχ

TMGc – (ϕ−1 − TF
C ϕ̃−1

C TC
F)χ TF

C ϕ̃−1
C TC

Fχ

TMGf (I − TF
Cϕ−1

C TC
Fϕ)(I − ϕ̃−1ϕ) (ϕ̃−1 − TF

Cϕ−1
C TC

Fϕϕ̃−1)χ TF
Cϕ−1

C TC
Fχ

PFASST (I − TF
C ϕ̃−1

C TC
Fϕ)(I − ϕ̃−1ϕ) (ϕ̃−1 − TF

C ϕ̃−1
C TC

Fϕϕ̃−1)χ TF
C ϕ̃−1

C TC
Fχ

Table 2
Summary of all the methods we analyzed, and their block iteration operators. Note that TMG

with ω = 1 and TMGc corresponds to Parareal with a specific choice of the coarse propagator.

ϕ−1χ ϕ̃−1χ TF
Cϕ

−1
C TC

Fχ TF
Cϕ̃

−1
C TC

Fχ

Figure 9 (left) 1.20e−5 3.57e−1 1.19e−2 4.87e−1

Figure 9 (right) 3.14e−4 6.24e−2 5.14e−3 2.67e−1

Table 3
Maximum error over time for each block propagator run sequentially. The first column shows

the error of the fine propagator, while the next three columns show the error of the three possible
approximate propagators. In the top row, ϕ corresponds to a collocation method with M = 5 nodes
while ϕC is a collocation method with M = 3 nodes. ϕ̃ is a backward Euler method with M = 5 steps
per block while ϕ̃C is backward Euler with M = 3 steps per block. In the bottom row, ϕ corresponds
to M = 5 uniform steps per block of a 4th order Runge-Kutta method, ϕC is the same method with
M = 3 steps per block. ϕ̃ is a 2nd order Runge-Kutta method (Heun) with M = 5 uniform steps

per block while ϕ̃C is the same method with M = 3 uniform time steps per block.

6. Comparison of iterative PinT algorithms. Using the notation of the682

GFM framework, we provide the primary block iterations of all iterative PinT al-683

gorithm investigated throughout this paper in Table 2. In particular, the first rows684

summarize the basic block iterations used as components to build the iterative PinT685

methods. While damped Block Jacobi (Section 2.2.1) and ABJ (Section 5.2) are more686

suitable for smoothing19, ABGS (Section 2.2.2) is mostly used as solver (e.g. to com-687

pute the CGC). This allows us to compare the convergence of each block iteration,688

and we illustrate this with the following examples.689

We consider the Dahlquist problem with λ := 2i − 0.2, u0 = 1. First, we de-690

compose the simulation interval [0, 2π] into N = 10 sub-intervals. Next, we choose691

a block discretization with M = 5 Lobatto-Legendre nodes, a collocation method692

on each block for fine integrator ϕ, see Section 2.1.2. We build a coarse block dis-693

cretization using MC = 3, and define on each level an approximate integrator using694

Backward Euler. This allows us to define the ϕ̃, ϕC and ϕ̃C integrators, see the leg-695

end of Table 3 for more details, where we show the maximum absolute error in time696

for each of the four propagators run sequentially. The high order collocation method697

with M = 5 nodes ϕ−1χ is the most accurate. The coarse collocation method with698

19Note that algorithms used as smoother have B1
0 = 0, which is a necessary condition for parallel

computation across all blocks.

This manuscript is for review purposes only.

GENERATING FUNCTION METHOD 23

0 5 10 15 20
Iteration

10 16

10 13

10 10

10 7

10 4

10 1

Er
ro

r v
s.

fin
e

so
lu

tio
n

BJ (ω= 1)
ABJ
ABGS
Parareal
TMG (ω= 1)
TMGc

TMGf

PFASST

0 5 10 15 20
Iteration

10 16

10 13

10 10

10 7

10 4

10 1

Er
ro

r v
s.

fin
e

so
lu

tio
n

BJ (ω= 1)
ABJ
ABGS
Parareal
TMG (ω= 1)
TMGc

TMGf

PFASST

Fig. 9. Comparison of iterative methods convergence using the GFM framework. Left: colloca-
tion as fine integrator. Right: 4th order Runge-Kutta method as fine integrator. Parareal (ω=1)
and Parareal (TMGc) denote a specific coarse propagator for Parareal.

M = 3 nodes interpolated to the fine mesh is still more accurate than the backward699

Euler method with M = 5 nodes ϕ̃−1χ or the backward Euler method with M = 3700

interpolated to the fine mesh. Then we run all algorithms in Table 2, initializing the701

block variable iterate with the same random initial guess. The error for the last block702

variable with respect to the fine sequential solution is shown in Figure 9 (left). In703

addition, we show the same results in Figure 9 (right), but using the classical 4th order704

Runge-Kutta method as fine propagator, 2nd order Runge-Kutta (Heun method) for705

the approximate integration operator and equidistant points using a volume formula-706

tion as described in Section 2.1.1. Note that Parareal, TMG ω=1 and TMGc are707

each Parareal algorithms using respectively ϕ̃−1χ, TF
Cϕ

−1
C TC

Fχ and TF
Cϕ̃

−1
C TC

Fχ708

as coarse propagator G (see Table 3 for their discretization error).709

The TMG iteration converges fastest, since it uses the most accurate block inte-710

grators on both levels, cf. Table 3. Keeping the same CGC but approximating the711

smoother, TMGf improves the first iterations, but convergence for later iterations712

is closer to PFASST. This suggests that convergence for later iterations is mostly713

governed by the accuracy of the smoother since both TMGf and PFASST use ABJ.714

This is corroborated by the comparison of PFASST and TMGc, which differ only715

in their choice of smoother. While the exact Block Jacobi relaxation makes TMGc716

converge after k = N iterations (a well known property of Parareal), using the ABJ717

smoother means that PFASST does not share this property.718

On the other hand, the first iterations are also influenced by the CGC accuracy.719

The iteration error is very similar for PFASST and TMGc which have the same720

CGC. This is more pronounced when using the 4th order Runge-Kutta method for ϕ,721

as we see in Figure 9 (right). Early iteration errors are similar for two-level methods722

that use the same CGC (TMG/ TMGf , and PFASST/ TMGc). Similarities of the723

first iteration errors can also be observed for Parareal and ABGS. Both algorithms724

use the same B1
0 operator, see Table 2. This suggests that early iteration errors725

are mostly governed by the accuracy of B1
0, which is corroborated by the two-level726

methods (TMG and TMGf use the same B1
0 operator, as PFASST and TMGc).727

Remark 6.1. An important aspect of this analysis is that it compares only the728

convergence of each algorithm, and not their overall computational cost. For in-729

stance, PFASST and TMGc appear to be equivalent for the first iterations, but the730

block iteration of PFASST is cheaper than TMGc, because an approximate block731

This manuscript is for review purposes only.

24 M.J GANDER, T. LUNET, D. RUPRECHT AND R. SPECK

integrator is used for relaxation. To account for this and build a model for compu-732

tational efficiency, the GFM framework would need to be combined with a model733

for computational cost of the different parts in the block iterations. Such a study is734

beyond the scope of this paper but is the subject of ongoing work.735

7. Conclusion. We have shown that the Generating Function Method (GFM)736

can be used to compare convergence of different iterative PinT algorithms. To do so,737

we formulated popular methods like Parareal, PFASST, MGRIT or TMG in a738

common framework based on the definition of a primary block iteration. The GFM739

analysis showed that all these methods eventually converge super-linearly20 due to740

the evolution nature of the problems. We confirmed this by numerical experiments741

and our Python code is publically available21.742

Our analysis opens up further research directions. For example, studying multi-743

step block iterations like MGRIT with FCF-relaxation and more complex two-level744

methods without Assumption 4.3 would be a useful extension of the GFM framework.745

Similarly, an extension to multi-level versions of STMG, PFASST and MGRIT746

would be very valuable. Finally, in practice PinT methods are used to solve space-747

time problems. The GFM framework should be able to provide convergence bounds748

in this case as well, potentially even for non-linear problems, considering GFM was749

used successfully to study Parareal applied to non-linear systems of ODEs [21].750

Acknowledgments. We greatly appreciate the very detailed feedback from the751

anonymous reviewers. It helped a lot to improve the organization of the paper and752

to make it more accessible.753

Appendix A. Error bounds for Primary Block Iterations.754

A.1. Incomplete Primary Block Iterations. First, we consider755

(PBI-1) : uk+1
n+1 = B1

0

(
uk+1
n

)
+B0

0

(
uk
n

)
,(A.1)756

(PBI-2) : uk+1
n+1 = B0

1(u
k
n+1) +B0

0

(
uk
n

)
,(A.2)757

(PBI-3) : uk+1
n+1 = B0

1(u
k
n+1) +B1

0

(
uk+1
n

)
,(A.3)758759

where one block operator is zero. (PBI-1) corresponds to Parareal, (PBI-2) to760

Block Jacobi SDC and (PBI-3) to Block Gauss-Seidel SDC. We recall the notations :761

(A.4) α :=
∥∥B0

0

∥∥ , β :=
∥∥B1

0

∥∥ , γ :=
∥∥B0

1

∥∥ .762

Application of Lemma 2.7 gives the recurrence relations763

(PBI-1) : ρk+1(ζ) ≤
αζ

1− βζ
ρk(ζ) =⇒ ρk(ζ) ≤ αk

(
ζ

1− βζ

)k

ρ0(ζ)(A.5)764

(PBI-2) : ρk+1(ζ) ≤ (γ + αζ)ρk(ζ) =⇒ ρk(ζ) ≤ γk

(
1 +

α

γ
ζ

)k

ρ0(ζ)(A.6)765

(PBI-3) : ρk+1(ζ) ≤
γ

1− βζ
ρk(ζ) =⇒ ρk(ζ) ≤ γk 1

(1− βζ)k
ρ0(ζ)(A.7)766

767

20This is due to the factorial term stemming from the binomial sums in the estimates (2.32)-(2.35).
21https://github.com/Parallel-in-Time/gfm

This manuscript is for review purposes only.

https://github.com/Parallel-in-Time/gfm

GENERATING FUNCTION METHOD 25

for the corresponding generating functions. Using definition22 (2.30) for δ, we find768

that ρ0(ζ) ≤ δ
∑∞

n=0 ζ
n+1. By using the binomial series expansion769

(A.8)
1

(1− βζ)k
=

∞∑
n=0

(
n+ k − 1

n

)
(βζ)n770

for k > 0 and the Newton binomial sum, we obtain for the three block iterations771

(PBI-1) : ρk(ζ) ≤ δαkζ

[∞∑
n=0

(
n+ k − 1

n

)
βnζn+k

][∞∑
n=0

ζn

]
(A.9)772

(PBI-2) : ρk(ζ) ≤ δγkζ

[
k∑

n=0

(
k

n

)(
α

γ

)n

ζn

][∞∑
n=0

ζn

]
(A.10)773

(PBI-3) : ρk(ζ) ≤ δγkζ

[∞∑
n=0

(
n+ k − 1

n

)
βnζn

][∞∑
n=0

ζn

]
.(A.11)774

775

Error bound for PBI-1. We simplify the expression using776

(A.12)

[∞∑
n=0

(
n+ k − 1

n

)
βnζn+k

]
=

[∞∑
n=k

(
n− 1

n− k

)
βn−kζn

]
,777

and then the series product formula778

(A.13)

[∞∑
n=0

anζ
n

][∞∑
n=0

bnζ
n

]
=

∞∑
n=0

cnζ
n, cn =

n∑
i=0

aibn−i,779

with bn = 1 and780

an =

0 if n < k,(
n− 1

n− k

)
βn−k otherwise.

(A.14)781

782

From this we get783

(A.15) cn =

n∑
i=k

(
i− 1

i− k

)
βi−k =

n−k∑
i=0

(
i+ k − 1

i

)
βi =

n−k∑
i=0

∏k−1
l=1 (i+ l)

(k − 1)!
βi,784

using the convention that the product reduces to one when there are no terms in it.785

Identifying coefficients in the power series and rearranging terms yields for k > 0786

(A.16) (PBI-1) : ekn+1 ≤ δ
αk

(k − 1)!

n−k∑
i=0

k−1∏
l=1

(i+ l)βi.787

Following an idea by Gander and Hairer [21], we can also consider the error recurrence788

ek+1
n+1 ≤ αekn+ β̄ek+1

n , β̄ = max(1, β). Using the upper bound
∑∞

n=0 ζ
n = 1

1−ζ ≤ 1
1−β̄ζ

,789

22The definition of δ as maximum error for n ∈ {0, . . . , N} can be extended to n ∈ N, as the error
values for n > N do not matter and can be set to zero.

This manuscript is for review purposes only.

26 M.J GANDER, T. LUNET, D. RUPRECHT AND R. SPECK

for the initial error, we avoid the series product and get ρk(ζ) ≤ δαk ζk

(1−β̄)k+1 as bound790

on the generating function. We then obtain the simpler error bound791

(A.17) ekn+1 ≤ δ
αk

k!
β̄n−k

k∏
l=1

(n+ 1− l)792

as in the proof of [21, Th. 1].793

Error bound for PBI-2. We use (A.13) again with bn = 1 to get794

an =


(
k

n

)(
α

γ

)n

if n ≤ k,

0 otherwise.

(A.18)795

796

From this we get cn =
∑min(n,k)

i=0

(
k
i

) (
α
γ

)i

, which yields for k > 0 the error bound797

(A.19) (PBI-2) : ekn+1 ≤


δ(γ + α)k if k ≤ n,

δγk
n∑

i=0

(
k

i

)(
α

γ

)i

otherwise.
798

Error bound for PBI-3. We use (A.13) with bn = 1 for the series product to get799

an =

(
n+ k − 1

n

)
βn =

∏k−1
l=1 (n+ l)

(k − 1)!
βn,(A.20)800

801

which yields the error bound802

(A.21) (PBI-3) : ekn+1 ≤ δ
γk

(k − 1)!

n∑
i=0

k−1∏
l=1

(i+ l)βi
803

for k > 0.804

A.2. Full Primary Block Iteration. We now consider a primary block itera-805

tion (2.13) with all block operators non-zero,806

(A.22) (PBI-Full) : uk+1
n+1 = B0

1

(
uk
n+1

)
+B1

0

(
uk+1
n

)
+B0

0

(
uk
n

)
,807

with α, β and γ defined in (A.4). Applying Lemma 2.7 leads to808

(A.23) ρk+1(ζ) ≤
γ + αζ

1− βζ
ρk(ζ) =⇒ ρk(ζ) ≤

(
γ + αζ

1− βζ

)k

ρ0(ζ).809

Combining the calculations performed for PBI-2 and PBI-3, we obtain810

ρk(ζ) ≤ δζγk

[
k∑

n=0

(
k

n

)(
α

γ

)n

ζn

][∞∑
n=0

(
n+ k − 1

n

)
βnζn

][∞∑
n=0

ζn

]
(A.24)811

= δζγk

[
k∑

n=0

(
k

n

)(
α

γ

)n

ζn

][∞∑
n=0

n∑
i=0

(
i+ k − 1

i

)
βiζn

]
.(A.25)812

813

This manuscript is for review purposes only.

GENERATING FUNCTION METHOD 27

Then using (A.13) with814

(A.26) an =


(
k

n

)(
α

γ

)n

if n ≤ k,

0 otherwise,

bn =

n∑
i=0

(
i+ k − 1

i

)
βi,815

we obtain816

(A.27) ρk(ζ) ≤ δζγk
∞∑

n=0

cnζ
n, with cn =

min(n,k)∑
i=0

n−i∑
l=0

(
k

i

)(
l + k − 1

l

)(
α

γ

)i

βl.817

From this we can identify the error bound818

(A.28) (PBI-Full) : ekn+1 ≤ δγk

min(n,k)∑
i=0

n−i∑
l=0

(
k

i

)(
l + k − 1

l

)(
α

γ

)i

βl.819

REFERENCES820

[1] E. Aubanel, Scheduling of tasks in the Parareal algorithm, Parallel Comput., 37 (2011),821
pp. 172–182.822

[2] G. Bal, On the convergence and the stability of the parareal algorithm to solve partial differ-823
ential equations, in Domain Decomposition Methods in Science and Engineering, R. Korn-824
huber and et al., eds., vol. 40 of Lecture Notes in Computational Science and Engineering,825
Berlin, 2005, Springer, pp. 426–432.826

[3] M. Bolten, D. Moser, and R. Speck, A multigrid perspective on the parallel full approxima-827
tion scheme in space and time, Numerical Linear Algebra with Applications, 24 (2017),828
p. e2110.829

[4] M. Bolten, D. Moser, and R. Speck, Asymptotic convergence of the parallel full approx-830
imation scheme in space and time for linear problems, Numerical linear algebra with831
applications, 25 (2018), p. e2208.832

[5] J. Burmeister and G. Horton, Time-parallel multigrid solution of the Navier-Stokes equa-833
tions, in Multigrid methods III, Springer, 1991, pp. 155–166.834

[6] A. J. Christlieb, C. B. Macdonald, and B. W. Ong, Parallel high-order integrators, SIAM835
J. Sci. Comput., 32 (2010), pp. 818–835.836

[7] P.-H. Cocquet and M. J. Gander, How large a shift is needed in the shifted Helmholtz precon-837
ditioner for its effective inversion by multigrid?, SIAM Journal on Scientific Computing,838
39 (2017), pp. A438–A478.839

[8] V. Dobrev, T. Kolev, N. Petersson, and J. Schroder, Two-level convergence theory for840
multigrid reduction in time (MGRIT), tech. report, LLNL-JRNL-692418, 2016.841

[9] A. Dutt, L. Greengard, and V. Rokhlin, Spectral deferred correction methods for ordinary842
differential equations, BIT, 40 (2000), pp. 241–266.843

[10] H. C. Elman, O. G. Ernst, and D. P. O’leary, A multigrid method enhanced by Krylov844
subspace iteration for discrete Helmholtz equations, SIAM Journal on scientific computing,845
23 (2001), pp. 1291–1315.846

[11] M. Emmett and M. Minion, Toward an efficient parallel in time method for partial differential847
equations, Comm. App. Math. and Comp. Sci., 7 (2012), pp. 105–132.848

[12] O. G. Ernst and M. J. Gander, Why it is difficult to solve Helmholtz problems with classical849
iterative methods, in Numerical analysis of multiscale problems, Springer, 2012, pp. 325–850
363.851

[13] O. G. Ernst and M. J. Gander, Multigrid methods for Helmholtz problems: A convergent852
scheme in 1d using standard components, Direct and Inverse Problems in Wave Propaga-853
tion and Applications, 14 (2013).854

[14] R. D. Falgout, S. Friedhoff, T. V. Kolev, S. P. MacLachlan, and J. B. Schroder,855
Parallel time integration with multigrid, SIAM J. Sci. Comput., 36 (2014), pp. C635–C661.856

[15] C. Farhat and M. Chandesris, Time-decomposed parallel time-integrators: theory and fea-857
sibility studies for fluid, structure, and fluid-structure applications, International Journal858
for Numerical Methods in Engineering, 58 (2003), pp. 1397–1434.859

This manuscript is for review purposes only.

28 M.J GANDER, T. LUNET, D. RUPRECHT AND R. SPECK

[16] S. Friedhoff, R. Falgout, T. Kolev, S. MacLachlan, and J. Schroder, A multigrid-in-860
time algorithm for solving evolution equations in parallel, in Sixteenth Copper Mountain861
Conference on Multigrid Methods, Copper Mountain, CO, United States, 2013.862

[17] M. J. Gander, Analysis of the Parareal algorithm applied to hyperbolic problems using char-863
acteristics, Bol. Soc. Esp. Mat. Apl., 42 (2008), pp. 21–35.864

[18] M. J. Gander, 50 years of time parallel time integration, in Multiple Shooting and Time865
Domain Decomposition Methods, T. Carraro, M. Geiger, S. Körkel, and R. Rannacher,866
eds., Springer, 2015, pp. 69–114.867

[19] M. J. Gander, I. G. Graham, and E. A. Spence, Applying GMRES to the Helmholtz equation868
with shifted Laplacian preconditioning: what is the largest shift for which wavenumber-869
independent convergence is guaranteed?, Numerische Mathematik, 131 (2015), pp. 567–870
614.871

[20] M. J. Gander and S. Güttel, ParaExp: A parallel integrator for linear initial-value problems,872
SIAM J. Sci. Comput., 35 (2013), pp. C123–C142.873

[21] M. J. Gander and E. Hairer, Nonlinear convergence analysis for the Parareal algorithm, in874
Domain Decomposition Methods in Science and Engineering, Lecture Notes in Computa-875
tional Science and Engineering, O. B. Widlund and D. E. Keyes, eds., vol. 60, Springer,876
2008, pp. 45–56.877

[22] M. J. Gander, F. Kwok, and H. Zhang, Multigrid interpretations of the Parareal algorithm878
leading to an overlapping variant and MGRIT, Computing and Visualization in Science,879
19 (2018), pp. 59–74.880

[23] M. J. Gander and T. Lunet, Toward error estimates for general space-time discretizations881
of the advection equation, Comput. Vis. Sci., 23 (2020), pp. 1–14.882

[24] M. J. Gander and T. Lunet, ParaStieltjes: Parallel computation of Gauss quadrature rules883
using a Parareal-like approach for the Stieltjes procedure, Numerical Linear Algebra with884
Applications, 28 (2021), p. e2314.885

[25] M. J. Gander and M. Neumuller, Analysis of a new space-time parallel multigrid algorithm886
for parabolic problems, SIAM Journal on Scientific Computing, 38 (2016), pp. A2173–887
A2208.888

[26] M. J. Gander and S. Vandewalle, Analysis of the Parareal time-parallel time-integration889
method, SIAM J. Sci. Comput., 29 (2007), pp. 556–578.890

[27] W. Gautschi, Orthogonal polynomials: computation and approximation, Oxford University891
Press, 2004.892

[28] S. Götschel, M. Minion, D. Ruprecht, and R. Speck, Twelve ways to fool the masses893
when giving parallel-in-time results, in Springer Proceedings in Mathematics & Statistics,894
Springer International Publishing, 2021, pp. 81–94.895

[29] S. Gunther, L. Ruthotto, J. B. Schroder, E. C. Cyr, and N. R. Gauger, Layer-parallel896
training of deep residual neural networks, SIAM Journal on Mathematics of Data Science,897
2 (2020), pp. 1–23.898

[30] W. Hackbusch, Parabolic multi-grid methods, in Proc. of the sixth int’l. symposium on Com-899
puting methods in applied sciences and engineering, VI, North-Holland Publishing Co.,900
1984, pp. 189–197.901

[31] W. Hackbusch, Multi-grid methods and applications, vol. 4, Springer Science & Business902
Media, 2013.903

[32] A. Hessenthaler, B. S. Southworth, D. Nordsletten, O. Röhrle, R. D. Falgout, and904
J. B. Schroder, Multilevel convergence analysis of multigrid-reduction-in-time, SIAM905
Journal on Scientific Computing, 42 (2020), pp. A771–A796.906

[33] C. Hofer, U. Langer, M. Neumüller, and R. Schneckenleitner, Parallel and robust pre-907
conditioning for space-time isogeometric analysis of parabolic evolution problems, SIAM908
Journal on Scientific Computing, 41 (2019), pp. A1793–A1821.909

[34] D. E. Knuth, The art of computer programming. 1. Fundamental algorithms, Addison-Wesley,910
1975.911

[35] M. Lecouvez, R. D. Falgout, C. S. Woodward, and P. Top, A parallel multigrid reduc-912
tion in time method for power systems, in Power and Energy Society General Meeting913
(PESGM), 2016, IEEE, 2016, pp. 1–5.914

[36] J.-L. Lions, Y. Maday, and G. Turinici, A ”Parareal” in time discretization of PDE’s, C.915
R. Math. Acad. Sci. Paris, 332 (2001), pp. 661–668.916

[37] T. Lunet, J. Bodart, S. Gratton, and X. Vasseur, Time-parallel simulation of the decay917
of homogeneous turbulence using Parareal with spatial coarsening, Computing and Visu-918
alization in Science, 19 (2018), pp. 31–44.919

[38] Y. Maday and E. M. Rønquist, Parallelization in time through tensor-product space–time920
solvers, Comptes Rendus Mathematique, 346 (2008), pp. 113–118.921

This manuscript is for review purposes only.

GENERATING FUNCTION METHOD 29

[39] M. L. Minion, R. Speck, M. Bolten, M. Emmett, and D. Ruprecht, Interweaving PFASST922
and parallel multigrid, SIAM J. Sci. Comput., 37 (2015), pp. S244–S263.923

[40] S. Murata, N. Satofuka, and T. Kushiyama, Parabolic multi-grid method for incompressible924
viscous flows using a group explicit relaxation scheme, Computers & Fluids, 19 (1991),925
pp. 33–41.926

[41] B. W. Ong and J. B. Schroder, Applications of time parallelization, Computing and Visual-927
ization in Science, 23 (2020).928

[42] E. M. Rønquist and A. T. Patera, Spectral element multigrid. i. formulation and numerical929
results, Journal of Scientific Computing, 2 (1987), pp. 389–406.930

[43] D. Ruprecht, Wave propagation characteristics of parareal, Computing and Visualization in931
Science, 19 (2018), pp. 1–17.932

[44] D. Ruprecht and R. Krause, Explicit parallel-in-time integration of a linear acoustic-933
advection system, Comput. & Fluids, 59 (2012), pp. 72–83.934

[45] D. Ruprecht and R. Speck, Spectral deferred corrections with fast-wave slow-wave splitting,935
SIAM Journal on Scientific Computing, 38 (2016), pp. A2535–A2557.936

[46] M. Schreiber, P. S. Peixoto, T. Haut, and B. Wingate, Beyond spatial scalability limita-937
tions with a massively parallel method for linear oscillatory problems, The International938
Journal of High Performance Computing Applications, 32 (2018), pp. 913–933.939

[47] B. S. Southworth, Necessary conditions and tight two-level convergence bounds for Parareal940
and multigrid reduction in time, SIAM Journal on Matrix Analysis and Applications, 40941
(2019), pp. 564–608.942

[48] R. Speck, D. Ruprecht, R. Krause, M. Emmett, M. L. Minion, M. Winkel, and P. Gib-943
bon, A massively space-time parallel N-body solver, in Proceedings of the International944
Conference on High Performance Computing, Networking, Storage and Analysis, SC ’12,945
Los Alamitos, CA, USA, 2012, IEEE Computer Society Press, pp. 92:1–92:11.946

[49] G. A. Staff and E. M. Rønquist, Stability of the Parareal algorithm, in Domain Decompo-947
sition Methods in Science and Engineering, Lecture Notes in Computational Science and948
Engineering, R. Kornhuber and et al, eds., vol. 40, Springer, 2005, pp. 449–456.949

[50] U. Trottenberg, C. W. Oosterlee, and A. Schüller, Multigrid, Academic Press Inc.,950
New-York, 2001.951

[51] G. Wanner and E. Hairer, Solving ordinary differential equations II, Springer Berlin Heidel-952
berg, 1996.953

This manuscript is for review purposes only.

	Introduction
	The Generating Function Method
	Blocks, block variables, and block operators
	Example with Runge-Kutta methods
	Example with collocation methods

	Block iteration
	Block Jacobi relaxation
	Approximate Block Gauss-Seidel iteration

	Generating function and error bound for a block iteration

	Writing Parareal and MGRIT as block iterations
	Description of the algorithm
	Convergence analysis with GFM bounds

	Writing two-level Time Multi-Grid as a block iteration
	Definition of a coarse block problem for Time Multi-Grid
	Block iteration of a Coarse Grid Correction
	Two-level Time Multi-Grid

	Writing PFASST as a block iteration
	Approximate Block Gauss-Seidel with SDC
	Approximate Block Jacobi with SDC
	PFASST
	Similarities between PFASST, TMG and Parareal
	Analysis and numerical experiments
	Convergence of PFASST iteration components
	Analysis and convergence of PFASST

	Comparison of iterative PinT algorithms
	Conclusion
	Appendix A. Error bounds for Primary Block Iterations
	Incomplete Primary Block Iterations
	Full Primary Block Iteration

	References

