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Abstract. Optimized transmission conditions in domain decomposition methods have been the
focus of intensive research efforts over the past decade. Traditionally, transmission conditions are
optimized for two subdomain model configurations, and then used in practice for many subdomains.
We optimize here transmission conditions for the first time directly for a sequential decomposition
into many subdomains and a class of constant coefficient complex diffusion problems. Our asymptotic
analysis leads to closed form optimized transmission conditions for many subdomains, and shows that
the asymptotic best choice in the mesh size only differs from the two subdomain best choice in the
constants, for which we derive the dependence on the number of subdomains explicitly, including
the limiting case of an infinite number of subdomains, leading to new insight into scalability. Our
results include both Robin and Ventcell transmission conditions, and we also optimize for the first
time a two-sided Ventcell condition. We illustrate our results with numerical experiments, both for
situations covered by our analysis and situations that go beyond.
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1. Introduction. Diffusion problems are ubiquitous in science and engineering.
While classical diffusion problems are real, there are also important complex diffusion
problems. For example in geophysics, the magnetotelluric approximation of Maxwell’s
equations is a key tool to extract information about the spatial variation of electrical
conductivity in the Earth’s subsurface [35]. This approximation results in a complex
diffusion equation [16] of the form

∆u− (η − iε)u = f, in a domain Ω, (1.1)

where f is the source function, and η and ε are strictly positive constants1.
We are interested here in designing and analyzing domain decomposition methods

for complex diffusion problems of the form (1.1) that use optimized transmission condi-
tions; for an analysis of the performance of the classical Schwarz method for such prob-
lems, see [15]. Optimized transmission conditions have their roots in the seminal work
of Hagström, Tewarson and Jazcilevich [26], Lions [29], Després [11, 12] and Nataf et.
al. [34, 33, 32], with first optimizations in [28, 7, 27]. Traditionally, the transmission
conditions are derived and optimized for simple two subdomain configurations, like
in optimized Schwarz methods, see [6, 20, 3, 22, 14, 24, 23, 25, 1, 31, 19, 18, 30] and
references therein. We investigate here the optimization of transmission conditions
directly for the many subdomain case, and also study the optimization problem in
the limit when the number of subdomains goes to infinity, using the tool of limit-
ing spectra, see [2] and the references therein. Our analysis for overlapping methods
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1In the magnetotelluric approximation we have η = 0, but we consider the slightly more general

complex diffusion case here. Note also that the zeroth order term in (1.1) is much more benign than
the zeroth order term of opposite sign in the Helmholtz equation, see e.g. [17].
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shows that the optimized transmission conditions in the many subdomain case be-
have asymptotically when the overlap goes to zero like the optimized transmission
conditions for the two subdomain case. The only difference are the constants, which
we derive in closed form for a given number of subdomains. We optimize both Robin
and Ventcell (second order) transmission conditions, and for the first time also a two-
sided variant of the Ventcell conditions. Our results also hold for the classical Laplace
problem, by simply setting η and ε to zero. We furthermore get from our analysis a
new scalability result for complex diffusion problems, which was first observed in the
context of solvation models in [4], and then proved for the Laplace problem in [8], and
also holds for other domain decomposition methods in such strip type domain decom-
position settings [5], see also [9] for maximum principle techniques and [10] for Lions
type projection arguments in more general geometries. We do not consider decompo-
sitions with cross-points here, for which new techniques that are just in development
now would be needed.

2. Optimized Schwarz methods for many subdomains. Our preliminary
results in the short conference proceedings paper [13] have shown that for Robin
transmission conditions in the magnetotelluric approximation of Maxwell’s equations
the asymptotically optimal parameter choice for two and three subdomains has the
same dependence on the overlap parameter when it becomes small. We then also
explored this dependence with numerical experiments for four, five and six subdomains
and the asymptotic dependence remained the same, only the constants seem to depend
on the number of subdomains.

We prove here that indeed the asymptotic dependence of the optimized parame-
ters is the same for any number of subdomains, and also derive the precise constants
which themselves have a clear dependence on the number of subdomains. Using the
technique of limiting spectra, we can even prove this result when the number of sub-
domains goes to infinity. We therefore have for the first time a formal proof that the
classical approach of optimizing transmission conditions for a two subdomain model
problem to obtain optimized Schwarz methods is fully justified for their use on many
subdomains. We also show this result for Ventcell (second order) transmission condi-
tions, and optimize for the first time a two-sided Ventcell variant.

To study Optimized Schwarz Methods (OSMs) for (1.1), we use a rectangular
domain Ω given by the union of rectangular subdomains Ωj := (aj , bj) × (0, L̂), j =
1, 2, . . . , J , where aj = (j − 1)L− δ

2 and bj = jL+ δ
2 , and δ is the overlap, like in [5].

Our OSM computes for iteration index n = 1, 2, . . .

∆unj − (η − iε)unj = f in Ωj ,

−∂xunj + p−j u
n
j = −∂xun−1j−1 + p−j u

n−1
j−1 at x = aj ,

∂xu
n
j + p+j u

n
j = ∂xu

n−1
j+1 + p+j u

n−1
j+1 at x = bj ,

(2.1)

where p−j and p+j are strictly positive parameters in the so called two-sided OSM,
see e.g. [21], and we have at the top and bottom homogeneous Dirichlet boundary
conditions, and on the left and right homogeneous Robin boundary conditions, i.e
we put for simplicity of notation un−10 = un−1J+1 = 0 in (2.1). The Robin parameters

are fixed at the domain boundaries x = a1 and x = bJ to p−1 = pa and p+J = pb.
By linearity, it suffices to study the homogeneous equations, f = 0, and analyze
convergence to zero of the OSM (2.1). Expanding the homogeneous iterates in a
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Fourier series

unj (x, y) =

∞∑
m=1

vnj (x, k̃) sin(k̃y),

where k̃ = mπ
L̂

to satisfy the homogeneous Dirichlet boundary conditions at the top
and bottom, we obtain for the Fourier coefficients the equations

∂xxv
n
j − (k̃2 + η − iε)vnj = 0 x ∈ (aj , bj),

−∂xvnj + p−j v
n
j = −∂xvn−1j−1 + p−j v

n−1
j−1 at x = aj ,

∂xv
n
j + p+j v

n
j = ∂xv

n−1
j+1 + p+j v

n−1
j+1 at x = bj .

(2.2)

The general solution of the differential equation is

vnj (x, k̃) = cje
−λ(k̃)x + dje

λ(k̃)x,

where λ = λ(k̃) =

√
k̃2 + η − iε. We next define the Robin traces,

Rn−1− (aj , k̃) := −∂xvn−1j−1 (aj , k̃) + p−j v
n−1
j−1 (aj , k̃),

Rn−1+ (bj , k̃) := ∂xv
n−1
j+1 (bj , k̃) + p+j v

n−1
j+1 (bj , k̃).

Inserting the solution into the transmission conditions in (2.2), we obtain for the
remaining coefficients cj and dj the linear system

cje
−λaj (p−j + λ) + dje

λaj (p−j − λ) = Rn−1− (aj , k̃),

cje
−λbj (p+j − λ) + dje

λbj (p+j + λ) = Rn−1+ (bj , k̃),

whose solution is

cj =
1

Dj
(eλbj (p+j + λ)Rn−1− (aj , k̃)− eλaj (p−j − λ)Rn−1+ (bj , k̃)),

dj =
1

Dj
(−e−λbj (p+j − λ)Rn−1− (aj , k̃) + e−λaj (p−j + λ)Rn−1+ (bj , k̃)),

where Dj := (λ+ p+j )(λ+ p−j )eλ(L+δ)− (λ− p+j )(λ− p−j )e−λ(L+δ). We thus arrive for
the Robin traces in the OSM at the iteration formula

Rn−(aj , k̃) = α−j R
n−1
− (aj−1, k̃) + β−j R

n−1
+ (bj−1, k̃), j = 2, . . . , J,

Rn+(bj , k̃) = β+
j R

n−1
− (aj+1, k̃) + α+

j R
n−1
+ (bj+1, k̃), j = 1, . . . , J − 1,

where

α−j :=
(λ+p+j−1)(λ+p

−
j )eλδ−(λ−p+j−1)(λ−p

−
j )e−λδ

(λ+p+j−1)(λ+p
−
j−1)e

λ(L+δ)−(λ−p+j−1)(λ−p
−
j−1)e

−λ(L+δ)
, j = 2, . . . , J,

α+
j :=

(λ+p−j+1)(λ+p
+
j )eλδ−(λ−p−j+1)(λ−p

+
j )e−λδ

(λ+p+j+1)(λ+p
−
j+1)e

λ(L+δ)−(λ−p+j+1)(λ−p
−
j+1)e

−λ(L+δ)
, j = 1, . . . , J − 1,

β−j :=
(λ+p−j )(λ−p−j−1)e

−λL−(λ−p−j )(λ+p−j−1)e
λL

(λ+p+j−1)(λ+p
−
j−1)e

λ(L+δ)−(λ−p+j−1)(λ−p
−
j−1)e

−λ(L+δ)
, j = 2, . . . , J,

β+
j :=

(λ+p+j )(λ−p+j+1)e
−λL−(λ−p+j )(λ+p+j+1)e

λL

(λ+p+j+1)(λ+p
−
j+1)e

λ(L+δ)−(λ−p+j+1)(λ−p
−
j+1)e

−λ(L+δ)
, j = 1, . . . , J − 1.

(2.3)
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Defining the 2× 2 matrices

T 1
j :=

[
α−j β−j
0 0

]
, j = 2, .., J and T 2

j :=

[
0 0
β+
j α+

j

]
, j = 1, .., J − 1,

we can write the OSM in substructured form (keeping the first and last rows and
columns to make the block structure appear), namely

0

Rn+(b1, k̃)

Rn−(a2, k̃)

Rn+(b2, k̃)
...

Rn−(aj , k̃)

Rn+(bj , k̃)
...

Rn−(aN−1, k̃)

Rn+(bN−1, k̃)

Rn−(aN , k̃)
0


︸ ︷︷ ︸

Rn

=



T 2
1

T 1
2 T 2

2

. . .
. . .

T 1
j T 2

j

. . .
. . .

T 1
N−1 T 2

N−1

T 1
N


︸ ︷︷ ︸

T



0

Rn−1+ (b1, k̃)

Rn−1− (a2, k̃)

Rn−1+ (b2, k̃)
...

Rn−1− (aj , k̃)

Rn−1+ (bj , k̃)
...

Rn−1− (aN−1, k̃)

Rn−1+ (bN−1, k̃)

Rn−1− (aN , k̃)
0


︸ ︷︷ ︸

Rn−1

.

(2.4)
If the parameters p±j are constant over all the interfaces, and we eliminate the first and
the last rows and columns of T , T becomes a block Toeplitz matrix. The best choice of
the parameters minimizes the spectral radius ρ(T ) over a numerically relevant range
of frequencies K := [k̃min, k̃max] with k̃min := π

L̂
and k̃max := Mπ

L̂
, M ∼ 1

h , where h is
the mesh size, and is thus solution of the min-max problem

min
p±j

max
k̃∈K

ρ(T (k̃, p±j )).

Remark 2.1. This formulation is the most generic possible and the convergence
factor in all the other particular cases can be derived from here:

• Dirichlet boundary conditions at x = a1 and x = bJ when pa, pb →∞.
• Dirichlet transmission conditions at the interfaces between subdomains when
p−j →∞, j = 2, ..., J and p+j →∞, j = 1, ..., J − 1.

• The one dimensional case when λ is replaced by λ(0) =
√
η − iε.

3. Optimized Robin transmission conditions. We first state without proof
the results obtained in the short conference proceedings paper [13] in the two subdo-
main case before presenting our new results for the case of an arbitrary number of
subdomains.

Theorem 3.1 (Two Subdomain Robin Optimization). Let s :=
√
k̃2min + η − iε,

where the complex square root is taken with the positive real part, and let K be the
real constant

K := < s((pb + s)(pa + s)− (s− pb)(s− pa)e−4sL)

((s− pa)e−2sL + s+ pa)((s− pb)e−2sL + s+ pb)
. (3.1)
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Fig. 3.1. Equioscillation in numerical optimization with one and two optimized parameters.

Then for two subdomains with one sided Robin transmission conditions, p+1 = p−2 =: p,
the asymptotically optimized parameter p for small overlap δ and associated conver-
gence factor are

p ∼ 2−1/3K2/3δ−1/3, ρ = 1− 24/3K1/3δ1/3 +O(δ2/3). (3.2)

For two-sided Robin transmission conditions, p+1 6= p−2 , the asymptotically optimized
parameters for small overlap δ and associated convergence factor are

p+1 ∼ 2−2/5K2/5δ−3/5, p−2 ∼ 2−4/5K4/5δ−1/5, ρ = 1− 24/5K1/5δ1/5 +O(δ2/5). (3.3)

When Dirichlet BCs are used at x = a1 and x = bJ , i.e when pa and pb tend to
infinity, then the expression of the constant can be further simplified to

K := <s(e
2sL + 1)

(e2sL − 1)
.

The results of this kind of optimization are illustrated in Figure 3.1 where we see that
optimal values are obtained when the convergence factor equioscillates.

3.1. High frequency approximation of T and ρ. It is not possible to di-
rectly tackle the optimization of transmission conditions for the many subdomain
case, since the spectral radius of the iteration matrix T in (2.4) is a too complex
object. There is however an important observation: in the optimization process, we
see in Figure 3.1 that the convergence factor, i.e. the spectral radius of T , equioscil-
lates at different frequency points k̃, and the local maximum points are for k̃ large,
which motivates the interest of the following Lemma (see also [24, 6] for similar high
frequency approximations):

Lemma 3.2 (High frequency approximation of ρ). For high frequencies, k̃ large,
the convergence factor for p+j = p−j = p behaves like

ρ ∼ ρ1,hf =

∣∣∣∣λ− pλ+ p
e−λδ

∣∣∣∣, (3.4)

and for p+j , p
−
j+1 ∈ {p1, p2} and p+j 6= p−j+1, j = 1, . . . , J − 1, it behaves like

ρ2 ∼ ρ22,hf =

∣∣∣∣λ− p1λ+ p1
· λ− p2
λ+ p2

e−2λδ
∣∣∣∣. (3.5)
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Proof. When k̃ is large, the real part of λ(k̃) is large as well, and from Equa-
tion (2.3) we obtain because of the terms eλL that for k̃ →∞

α±j (k̃) ∼ 0, β−j (k̃) ∼ −
λ− p−j
λ+ p+j−1

e−λδ, β+
j (k̃) ∼ −

λ− p+j
λ+p−j+1

e−λδ.

The iteration matrix T thus behaves for k̃ large like

T ∼ Thf =



0 β+
1 0 0 . . . 0 0

β−2 0 0 0 . . . 0 0
0 0 0 β+

2 . . . 0 0
0 0 β−3 0 . . . 0 0

0 0 . . .
. . .

. . . 0 0
0 0 . . . 0 0 0 β+

J−1
0 0 . . . 0 0 β−J 0


. (3.6)

The eigenvalues of this matrix are given by the pairs ±
√
β+
j β
−
j+1, j = 1, .., J − 1 and

therefore the high frequency convergence factor is

ρhf = max
j

∣∣∣∣∣∣
√√√√ (λ− p−j )(λ− p+j )

(λ+p+j−1)(λ+p−j+1)
e−λδ

∣∣∣∣∣∣,
which leads to the result of the lemma.

This result can also be understood intuitively: the coefficients α±j relate interface

values across subdomains, while the coefficients β±j relate interface values across the
overlap only, which is much smaller than the subdomain size. Since high frequencies
are damped rapidly in a diffusion problem over spatial distance, only the terms β±j
related to the small overlap remain relevant for the high frequency behavior of the
algorithm. This is why we see in Equation (3.4) and Equation (3.5) the typical
two subdomain convergence factors, see e.g. [18], i.e in optimized Schwarz methods
with many subdomains, high frequencies still converge like if there were only two
subdomains.

3.2. Optimization for J subdomains. The high frequency behavior of the
convergence factor allows us to study systematically the asymptotic form of the best
parameter choice for J subdomains, depending on one remaining constant only:

Lemma 3.3 (Generic optimized Robin asymptotics). The best choice in the one
sided Robin transmission conditions is p+j = p−j = p∗, and when the overlap δ goes to
zero, we have

p∗ =
C2
k

2
δ−1/3 =⇒ ρ∗ ∼ 1− 2Ckδ

1/3, (3.7)

where the constant Ck depends on the number of subdomains. In the two-sided
Robin transmission condition, the best choice is p+j , p

−
j+1 ∈ {p∗1, p∗2}, p

+
j 6= p−j+1, j =

1, . . . , J − 1, with

p∗1 = C2
k2δ
−3/5 p∗2 = C4

k2δ
−1/5 =⇒ ρ∗ ∼ 1− 2Ck2δ

1/5. (3.8)
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Proof. In the one parameter case, we know from [18] that for ρ1,hf from Equa-
tion (3.4) the optimal parameter p∗ = Cpδ

−1/3, and a local maximum of ρ1,hf can

be found at2 k∗ = Ckδ
−2/3. The relation between the two constants is Cp =

C2
k

2 , as
shown in detail in [13, Proof of Theorem 1], and the maximum of the convergence
factor is

ρ(k∗) = 1− 2Ckδ
1/3 +O(δ2/3), (3.9)

which proves the first claim.

For two-sided Robin transmission conditions, the optimal parameters for the high
frequency approximation ρ2,hf of the convergence factor from Equation (3.5) were
studied in [18], and they verify p∗1, p

∗
2 ∈ {C2

k2
δ−3/5, C4

k2
δ−1/5}, with the corresponding

maximum of the convergence factor given by

ρ(k∗) = 1− 2Ck2δ
1/5 +O(δ2/5), (3.10)

which proves the second claim.

It remains to study the constants Ck and Ck2 , which are determined by equioscil-
lation with the low frequency convergence factor, i.e. ρ(k̃min), see Figure 3.1, and
which depends on the number of subdomains, since we really need to evaluate the
spectral radius of the iteration matrix T in (2.4). To simplify the computations, we
assume Dirichlet boundary conditions at the outer boundaries of the global domain,
that is consider the limits when pa and pb go to infinity. We start by computing
the leading order terms in T for small overlap δ. For one sided Robin transmission

conditions, p = Cpδ
−1/3 =

C2
k

2 δ
−1/3, we obtain, with s :=

√
k̃2min + η − iε,

α+
j (k̃min) = α−j (k̃min)∼ 4se−sL

Cp(1− e−2sL)
δ1/3 =

8se−sL

C2
k(1− e−2sL)

δ1/3 := ã,

β+
j (k̃min) = β−j (k̃min)∼1− 2s(e−2sL + 1)

Cp(1− e−2sL)
δ1/3 = 1− 4s(e−2sL + 1)

C2
k(1− e−2sL)

δ1/3 =: b̃,

which leads to the simplified low frequency iteration matrix

Tlf,1par =



0 b̃ ã 0 . . . 0 0

b̃ 0 0 0 . . . 0 0

0 0 0 b̃ . . . 0 0

0 ã b̃ 0 . . . ã 0

0 0 . . .
. . .

. . . 0 0

0 0 . . . 0 0 0 b̃

0 0 . . . 0 ã b̃ 0


. (3.11)

By computing the spectral radius of this matrix for J = 2, 3, 4, . . . subdomains, we

2It suffices to note that λ =

√
k̃2 + η − iε ∼ |k̃| for k̃ large to see that the results of [18] apply

in the high frequency approximation.
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get for small overlap δ

ρ2(k̃min)∼ 1− 4
C2
k
< s(e

2sL+1)
(e2sL−1) δ

1/3,

ρ3(k̃min)∼ 1− 4
C2
k
< s(e

2sL+1−esL)
(e2sL−1) δ1/3,

ρ4(k̃min)∼ 1− 4
C2
k
< s(e

2sL+1−
√
2esL)

(e2sL−1) δ1/3,

...

ρJ(k̃min)∼ 1− 4
C2
k
< s(e

2sL+1−2 cos(πJ )esL)
(e2sL−1) δ1/3.

(3.12)

Now defining the new constant that appears,

KJ := <
s(e2sL + 1− 2 cos

(
π
J

)
esL)

(e2sL − 1)
, (3.13)

we obtain ρJ(k̃min) ∼ 1 − 4KJ
C2
k
δ1/3, and equating this with the high frequency maxi-

mum ρ(k∗) ∼ 1− 2Ckδ
1/3 from Equation (3.9) leads to

Ck = (2KJ)1/3. (3.14)

For two-sided Robin transmission conditions, p1, p2 ∈ {Cp1δ−1/5, Cp2δ−3/5} =
{C2

k2
δ−1/5, C4

k2
δ−1/5}, we obtain

α+
j (k̃min) = α−j (k̃min) =

2se−sL

Cp2(1− e−2sL)
δ1/5 =

2se−sL

C4
k2

(1− e−2sL)
δ1/5 := ã,

β+
j (k̃min), β−j+1(k̃min) ∈ {δ2/5C2

k2 b̃,
1

δ2/5C2
k2

b̃}, b̃ = 1− s(e−2sL + 1)

C4
k2

(1− e−2sL)
δ1/5,

which leads to the low frequency iteration matrix

Tlf,2par =



0 b̃+ ã 0 . . . 0 0

b̃− 0 0 0 . . . 0 0

0 0 0 b̃+ . . . 0 0

0 ã b̃− 0 . . . ã 0

0 0 . . .
. . .

. . . 0 0

0 0 . . . 0 0 0 b̃+
0 0 . . . 0 ã b̃− 0


, (3.15)

where in fact the couple b̃+ 6= b̃− can vary along the diagonal but always lays in
the set {δ2/5C2

k2
b̃, 1
δ2/5C2

k2

b̃} which does not change the eigenvalues of the matrix. By

computing the spectral radius of this matrix for J = 2, 3, 4, . . . subdomains we get for
small overlap δ

ρJ(kmin) ∼ 1− KJ

C4
k2

δ1/5 (3.16)

with the same constant KJ from Equation (3.13), and equating with ρ(k∗) ∼ 1 −
2Ck2δ

1/5 from Equation (3.10), we obtain

Ck2 =
KJ

21/5
. (3.17)
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We therefore have, using Lemma 3.3, the following result for the J subdomain de-
composition:

Theorem 3.4 (J Subdomain Robin Optimization). For J subdomains and one
sided Robin transmission conditions, p+j = p−j , the asymptotically optimized parame-
ters for small overlap δ and associated convergence factor are

p+j = p−j = p∗ ∼
(
K2
J

2

)1/3

δ−1/3, ρ ∼ 1− 24/3K
1/3
J δ1/3, (3.18)

with the constant KJ from Equation (3.13). For two-sided Robin transmission con-
ditions, p+j 6= p−j , the asymptotically optimized parameters for small overlap δ and
associated convergence factor are

p+j = p∗+ ∼
(
KJ

21/5

)2

δ−3/5, p−j = p∗− ∼
(
KJ

21/5

)4

δ−1/5, ρ ∼ 1− 24/5KJδ
1/5,

(3.19)
and the role of p∗+ and p∗− can be switched without changing the result.

3.3. Optimization when J goes to infinity. We now use the limiting spec-
trum approach to study the optimized parameters when the number of subdomains
goes to infinity. To do so, we must assume that the outer Robin boundary conditions
use the same optimized parameter as at the interfaces, in order to have the Toeplitz
structure needed for the limiting spectrum approach. We state here without proof
the result obtained in [13].

Theorem 3.5 (Infinite Number of Subdomains Robin Optimization). With all
Robin parameters equal, p−j = p+j = p, the convergence factor of the OSM satisfies
the bound

ρ = lim
J→+∞

ρ(TOS2d ) ≤ max
{
|α− β| , |α+ β|

}
< 1,

where

α =
(λ+ p)2eλδ − (λ− p)2e−λδ

(λ+ p)2eλ(L+δ) − (λ− p)2e−λ(L+δ)
, β =

(λ− p)(λ+ p)(e−λL − eλL)

(λ+ p)(λ+ p)eλ(L+δ) − (λ− p)(λ− p)e−λ(L+δ)
.

The asymptotically optimized parameter and associated convergence factor are

p∗ = 2−1/3K2/3
∞ δ−1/3, ρ = 1− 24/3K1/3

∞ δ1/3 +O(δ2/3), (3.20)

with the constant

K∞ := <s(e
sL − 1)

esL + 1
. (3.21)

If we allow two-sided Robin parameters, p−j = p− and p+j = p+, the OSM convergence
factor satisfies the bound

ρ = lim
J→+∞

ρ(TOS2d ) ≤ max
{ ∣∣∣α−√β−β+∣∣∣ , ∣∣∣α+

√
β−β+

∣∣∣ } < 1,

where

α =
(λ+ p+)(λ+ p−)eλδ − (λ− p+)(λ− p−)e−λδ

D
, β± =

(λ2 − (p∓)2)(e−λL − eλL)

D
,
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Fig. 3.2. Optimized constants for different numbers of subdomains for a fixed η and L = 1 as
a function of ε.
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Fig. 3.3. Optimized constants for different numbers of subdomains for a fixed ε and L = 1 as
a function of η.

with D = (λ + p+)(λ + p−)eλ(L+δ) − (λ − p+)(λ − p−)e−λ(L+δ). The asymptotically
optimized parameter choice p∗− 6= p∗+ and the associated convergence factor are

p∗−, p
∗
+ ∈

{
K2/5
∞ δ−3/5, K4/5

∞ δ−1/5
}
, ρ = 1− 2K1/5

∞ δ1/5 +O(δ2/5),

with the same constant K∞ as for the one sided case in (3.21).
Even though we had to use Robin outer boundary conditions to obtain K∞, the

constant KJ we obtained for a finite number J of subdomains with Dirichlet boundary
conditions converges when J becomes large to K∞,

lim
J→∞

KJ = lim
J→∞

<
s(e2sL + 1− 2 cos

(
π
J

)
esL)

(e2sL − 1)
= <s(e

sL − 1)

esL + 1
= K∞. (3.22)

We show in Figures 3.2 and 3.3 how the constants KJ evolve as functions of the
problem parameters η and ε for different numbers of subdomains J and how they
approach the limiting value K∞ as the number of subdomains increases. We see that
both the two subdomain optimization and the limiting spectrum analysis result for
an infinite number of subdomains give quite good approximations for intermediate
numbers of subdomains over a large range of problem parameter values, the specific
optimization for a given number of subdomains only becomes important when both
η and ε are small.

3.4. Scalability. From the constant KJ in (3.13) which governs the convergence
factor in Theorem 3.4, and K∞ in (3.21) which governs the convergence factor when
the number of subdomains J goes to infinity in Theorem 3.5, we see that for fixed
subdomain width L, KJ is robust when the number of subdomains J increases, and
thus our one-level methods are weakly scalable in this setting of strip decompositions,
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a result first proved for Laplace problems using different techniques in [8, 9, 10].
Furthermore, we have seen in (3.22) that KJ converges to K∞ when the number
of subdomains J becomes large, which shows that the methods are weakly scalable
independently of the outer boundary conditions on the left and right of the strip
decomposition. We will illustrate this scalability for fixed L in Subsections 5.2 and
5.3, and also show that scalability is lost when the subdomain size L becomes small
when their number J increases, as predicted by the formulas for KJ in (3.13) and K∞
in (3.21).

4. Optimized Ventcell transmission conditions. To obtain Ventcell (second
order) transmission conditions with even better performance, we replace the coeffi-
cient p±j from eq. (2.1) by second order differential operators along the interface.
Writing again the local solutions as a Fourier series, the Fourier coefficients satisfy
the equations with Ventcell transmission conditions,

∂xxv
n
j − (k̃2 + η − iε)vnj = 0 x ∈ (aj , bj),

−∂xvnj + (p−j + k̃2q−j )vnj = −∂xvn−1j−1 + (p−j + k̃2q−j )vn−1j−1 at x = aj ,

∂xv
n
j + (p+j + k̃2q+j )vnj = ∂xv

n−1
j+1 + (p+j + k̃2q+j )vn−1j+1 at x = bj .

(4.1)

As in Section 3, the interface iteration involves a block-Toeplitz iteration matrix which
can be obtained by replacing p±j by p±j + k̃2q±j in the matrix from eq. (2.4). The new

iteration matrix depends on two sets of parameters, T2(k̃, p±j , q
±
j ) := T (k̃, p±j + k̃2q±j ),

and we need to solve now the min-max problem

min
p±j ,q

±
j

max
k̃∈[k̃min,k̃max]

ρ(T2(k̃, p±j , q
±
j )).

Like in the case of Robin transmission conditions from Theorem 3.1, we start by
showing an optimization result in the case of two subdomains, and then generalize
this to the case of many subdomains. We will see that the optimized parameters in
the Ventcell case depend on the same constants as for the Robin case.

Theorem 4.1 (Two Subdomain Ventcell Optimization). Let s :=
√
k̃2min + η − iε,

where the complex square root is taken with the positive real part, and let K be the real
constant given in (3.1). Then for two subdomains with one sided Ventcell transmis-
sion conditions, p+1 = p−2 =: p, q+1 = q−2 =: q, the asymptotically optimized parameters
p and q for small overlap δ and associated convergence factor are

p ∼ 2−3/5K4/5δ−1/5, q ∼ 2−1/5K−2/5δ3/5, ρ ∼ 1− 28/5K1/5δ1/5 +O(δ2/5). (4.2)

For two-sided Ventcell transmission conditions, p+1 6= p−2 , q+1 6= q−2 , the asymptotically
optimized parameters for small overlap δ are

p+1 ∼ 2−8/9K8/9δ−1/9, q+1 ∼ 22/9K−2/9δ7/9, p−2 ∼ 2−2/3K2/3δ−1/3, q−2 ∼ 24/9K−4/9δ5/9

(4.3)
and the associated convergence factor is ρ ∼ 1− 28/9K1/9δ1/9 +O(δ2/9).

Proof. The proof follows the lines of the proof of Theorem 3.1 from [13] and uses
the fact that the solution of the min-max problem equioscillates, see Figure 4.1. The
main difference compared to Robin transmission conditions is that we have now more
equioscillations.

In the case of one sided conditions we have two equioscillations ρ(k̃min) = ρ(k̃∗1) =
ρ(k̃∗2), where k̃∗j are two interior local maxima, and we have asymptotically

p ∼ Cpδ−1/5, q ∼ Cqδ3/5, ρ ∼ 1− CRδ1/5 +O(δ2/5), k̃∗1 ∼ Ck1δ−2/5, k̃∗2 ∼ Ck2δ−4/5.
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Fig. 4.1. Equioscillation with optimized one sided and two-sided Ventcell transmission conditions.

By expanding for δ small, and setting the leading terms in the derivatives ∂ρ
∂k (k̃∗1,2) to

zero, we get Cp =
2C2

k1

C2
k2

, Cq = 2
C2
k2

. Expanding the maxima leads to

ρ(k̃∗1) ∼ 1− 8
Ck1
C2
k2

δ1/5 +O(δ2/5), ρ(k̃∗2) ∼ 1− 2Ck2δ
1/5 +O(δ2/5),

and equating ρ(k̃∗1) = ρ(k̃∗2) we get Ck1 =
C3
k2

4 and CR = 2Ck2 . Finally equating

ρ(k̃min) = ρ(k̃∗2) asymptotically determines uniquely Ck2 = 23/5K1/5 (with K defined
in (3.1)) and then Ck1 = 2−1/5K3/5 and Cp = 2−3/5K4/5, Cq = 2−1/5K−2/5.

In the case of two-sided conditions, we have four equioscillations, ρ(kmin) =
ρ(k̃∗1) = ρ(k̃∗2) = ρ(k̃∗3) = ρ(k̃∗4), where k̃∗j are four interior local maxima, and we
have asymptotically

p1 ∼ Cp1δ−1/9, q1 ∼ Cq1δ7/9, p2 ∼ Cp2δ−3/9, q2 ∼ Cq2δ5/9, ρ ∼ 1− CRδ1/9 +O(δ2/9),

k̃∗1 ∼ Ck1δ−2/9, k̃∗2 ∼ Ck2δ−4/9, k̃∗3 ∼ Ck3δ−6/9, k̃∗4 ∼ Ck4δ−8/9.

By expanding for δ small, and setting the leading terms in the derivatives ∂ρ
∂k (k̃∗1,2,3,4)

to zero, we get

Cp1 =
C2
k1
· C2

k3

C2
k2
· C2

k4

, Cp2 =
C2
k2
· C2

k4

C2
k3

, Cq1 =
1

C2
k4

, Cq2 =
C2
k4

C2
k3

. (4.4)

Expanding the maxima leads to

ρ(k̃∗1) ∼ 1− 2
Ck1 ·C

2
k3

C2
k2
·C2
k4

δ1/9 +O(δ2/9), ρ(k̃∗2) ∼ 1− 2
Ck2 ·C

2
k4

C2
k3
·C2
k4

δ1/9 +O(δ2/9),

ρ(k̃∗3) ∼ 1− 2
Ck3
C2
k4

δ1/9 +O(δ2/9), ρ(k̃∗4) ∼ 1− 2Ck4δ
1/9 +O(δ2/9).

Equating now ρ(k̃∗1) = ρ(k̃∗2) = ρ(k̃∗3) = ρ(k̃∗4) we get Ck1 = C7
k4
, Ck2 = C5

k4
, Ck3 =

C3
k4

, CR = 2Ck4 and from (4.4) we get

Cp1 = C8
k4 , Cp2 =

1

C2
k4

, Cp3 = C6
k4 , Cp4 =

1

C4
k4

.

Finally equating ρ(k̃min) = ρ(k̃∗4) asymptotically determines uniquely Ck4 = 2−1/9K1/9

with K given in (3.1) and the other constants are determined accordingly.
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4.1. Optimization for J subdomains. Like in the case of the Robin con-
ditions, the high frequency behavior of the convergence factor allows us to study
systematically the asymptotic form of the best parameter choice for J subdomains,
depending on one constant only.

Lemma 4.2 (Generic optimized Ventcell asymptotics). The best choice for one
sided Ventcell transmission conditions is p+j = p−j = p∗, q+j = q−j = q∗, and when the
overlap δ goes to zero, we have

p ∼
C4
k2

8
δ−1/5, q ∼ 2

C2
k2

δ3/5, ρ ∼ 1− 2Ck2δ
1/5 +O(δ2/5), (4.5)

where the constant Ck2 depends on the number of subdomains. For the two-sided Vent-
cell transmission conditions, the best choice is (p+j , q

+
j ), (p−j+1, q

−
j+1) ∈ {(p∗1, q∗1), (p∗2, q

∗
2)},

(p+j , q
+
j ) 6= (p−j+1, q

−
j+1)∀j = 1.., J − 1, with

(p∗1, q
∗
1) ∼

(
C8
k4δ
−1/9,

1

C2
k4

δ7/9

)
, (p∗2, q

∗
2) ∼

(
C6
k4δ
−3/9,

1

C4
k4

δ5/9

)
, ρ∗ ∼ 1−2Ck4δ

1/9,

(4.6)
where the constant Ck4 depends again on the number of subdomains.

Proof. Similar to the Robin case in Lemma 3.3, the proof is a direct consequence
of Theorem 4.1 where the high frequency arguments are identical in the two or more
subdomain case.

It remains to study the constants Ck2 and Ck4 , which are determined by equioscil-
lation with the low frequency convergence factor and which depend on the number of
subdomains. To simplify the computations, we assume again Dirichlet boundary con-
ditions at the outer boundaries of the global domain and we start by computing the

leading order terms in T for small overlap δ. For one sided conditions p∗ =
C4
k2

8 δ−1/5,

q∗ = 2
C2
k2

δ3/5 we get, with s :=
√
k̃2min + η − iε,

α+
j (k̃min) = α−j (k̃min)∼ 4se−sL

Cp(1− e−2sL)
δ1/5 =

32se−sL

C5
k(1− e−2sL)

δ1/5 := ã,

β+
j (k̃min) = β−j (k̃min)∼1− 2s(e−2sL + 1)

Cp(1− e−2sL)
δ1/5 = 1− 16s(e−2sL + 1)

C4
k(1− e−2sL)

δ1/5 =: b̃,

leading to the low frequency iteration matrix of the same form like in Equation (3.11).
By computing the spectral radius of this matrix for J = 2, 3, 4, . . . subdomains, we
get for small overlap δ

ρJ(k̃min) ∼ 1− 16

C4
k2

KJδ
1/3, (4.7)

with the same constant KJ defined in (3.13), and we obtain ρJ(k̃min) ∼ 1− 16KJ
C4
k2

δ1/5.

By equating this with the high frequency maximum ρ(k∗) ∼ 1− 2Ck2δ
1/5 from (4.5)

leads to Ck2 = (8KJ)1/5.

For the two-sided Ventcell transmission conditions with (p∗1, q
∗
1) ∼ (C8

k4
δ−1/9, 1

C2
k4

δ7/9),
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(p∗2, q
∗
2) = (C6

k4
δ−3/9, 1

C4
k4

δ5/9) we have

α+
j (k̃min) = α−j (kmin) =

2se−sL

Cp2(1− e−2sL)
δ1/9 =

2se−sL

C4
k4

(1− e−2sL)
δ1/9 := ã,

β+
j (k̃min), β−j+1(kmin) ∈ {δ2/9C2

k4 b̃,
1

δ2/9C2
k4

b̃}, b̃ := 1− s(e−2sL + 1)

C8
k4

(1− e−2sL)
δ1/9,

leading to the low frequency iteration matrix of the same form like in Equation (3.15)
where again the couples b̃+ 6= b̃− can vary along the diagonal but still lay in the
set {δ2/9C2

k4
b̃, 1
δ2/9C2

k4

b̃} which does not change the eigenvalues of the matrix. By

computing the spectral radius of this matrix for J = 2, 3, 4, . . . subdomains we get for
small overlap δ

ρJ(kmin) ∼ 1− KJ

C8
k4

δ1/9 (4.8)

with the same constant KJ from Equation (3.13), and equating with ρ(k∗) ∼ 1 −
2Ck4δ

1/9 from (4.6) we obtain Ck4 =
(
KJ
2

)1/9
. We therefore get, using Lemma 4.2,

the following result for the J subdomain decomposition:
Theorem 4.3 (J Subdomain Ventcell Optimization). For J subdomains, the

best choice in the one sided Ventcell transmission conditions is p+j = p−j = p∗, q+j =

q−j = q∗, and when the overlap δ goes to zero, we have

p∗ ∼ 2−3/5K
4/5
J δ−1/5, q∗ ∼ 2−1/5K

−2/5
J δ3/5, ρ ∼ 1−28/5K

1/5
J δ1/5+O(δ2/5), (4.9)

with the constant KJ from Equation (3.13). For the two-sided Ventcell transmission
conditions the best choice is (p+j , q

+
j ), (p−j+1, q

−
j+1) ∈ {(p∗1, q∗1), (p∗2, q

∗
2)}, (p+j , q

+
j ) 6=

(p−j+1, q
−
j+1)∀j = 1.., J − 1, with

(p∗1, q
∗
1) ∼

(
2−8/9K8/9δ−1/9, 22/9K−2/9δ7/9

)
, (p∗2, q

∗
2) ∼

(
2−2/3K2/3δ−1/3, 24/9K−4/9δ5/9

)
,

(4.10)

leading to ρ∗ ∼ 1− 28/9K
1/9
J δ1/9.

Since the asymptotic convergence factors for Ventcell transmission conditions de-
pend on the same constant KJ as for Robin transmission conditions, the one-level
methods with Ventcell transmission conditions have the same scalability properties
described in Subsection 3.4 for Robin transmission conditions, and we will illustrate
this as well in the following section with numerical experiments.

5. Numerical results. Throughout this section we fix the values of the param-
eters to η = ε = 1. To discretise we use a uniform square grid in each direction and
triangulate to form P1 elements. We use an overlap of size δ = 4h, with h being the
mesh size. All computations are performed using FreeFem (http://freefem.org/).

5.1. Optimised Schwarz methods as solvers: asymptotic behaviour. We
start with a decomposition into four overlapping domains, that can be uniform (four
rectangles) or a more general decomposition from METIS as shown in Figure 5.1.
We consider one and two-sided Robin and Ventcell transmission conditions, and we
increase locally the number of degrees of freedom, which leads to a decreasing value
of the mesh size h, and thus the overlap δ. We show results for the iterative version
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Fig. 5.1. Decomposition into four subdomains: uniform (left) and METIS (right).

h RAS Robin 1 Robin 2 Ventcell 1 Ventcell 2
1
50 36 (50) 9 (10) 9 (12) 7 (7) 7 (9)
1

100 70 (88) 11 (12) 10 (16) 7 (7) 8 (10)
1

200 139 (178) 14 (15) 12 (15) 8 (8) 10 (11)
1

400 276 (358) 17 (19) 15 (19) 9 (10) 11 (14)
1

800 551 (717) 22 (25) 17 (22) 11 (12) 12 (15)
1

1600 1100 (1436) 27 (31) 19 (24) 13 (15) 13 (17)
Table 5.1

RAS vs. One and two-sided Robin and Ventcell conditions for refined meshes

of the classical Restricted Additive Schwarz method (RAS) and the optimised ver-
sions of the algorithm using their ORAS (Optimized Restricted Additive Schwarz)
implementation [19]. In Table 5.1 we report the iteration count in order to achieve
a relative discrete L2-norm error reduction of 10−6 (the numbers in parentheses cor-
respond to the METIS decompositions). In all tests we start with a random initial
guess in order to ensure that all frequencies are present in the error. We see that
in the case of the classical Schwarz algorithm (RAS) the iteration count increases
linearly when the mesh size representing the overlap is decreased linearly, leading to
an important number of iterations for very fine meshes. This statement is true both
in the case of uniform and METIS decompositions, and the iteration count for the
latter is slightly larger. These results can be greatly improved by using optimised
versions of the algorithm, and we notice a progressive improvement of the behaviour,
first with Robin and then with Ventcell transmission conditions, as predicted by our
analysis.

To see the asymptotic behavior, we plot the iteration counts in Figure 5.2. We see
that the results are consistent with the theory, i.e. in the case of Robin 1 (one-sided)
transmission conditions, the iteration count increases like h−1/3 and in the case of
Ventcell 1 like h−1/5. For their two-sided variants the iteration count increases like
h−1/5 for Robin 2 and like h−1/9 for Ventcell 2. This behaviour holds both for uniform
and METIS decompositions. Note that while the asymptotic behaviour for two-sided
Robin and one-sided Ventcell transmission conditions is the same, the iteration count
is different, since the constants involved in the theoretical estimates are different.
Also, in order to see the full benefit of two-sided Ventcell (Ventcell 2) conditions,
highly refined meshes are needed leading to sufficiently large problems: the bottom
curves in Figure 5.2 show that two-sided Ventcell conditions will beat the one-sided
ones only for more refined meshes than shown here.

5.2. Optimised Schwarz methods as solvers: scalability. We now perform
the same kind of experiments but with an increasing number of subdomains and a
strip-wise decomposition where we consider again the case of uniform and METIS
decompositions. We keep the size of the local subdomains fixed and we choose h =
1/100, see Table 5.2. In the case of the classical Schwarz method (RAS), we notice
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Fig. 5.2. Iteration count depending on the mesh size for classical Dirichlet (RAS), Robin and
Ventcell transmission conditions.

J RAS Robin 1 Robin 2 Ventcell 1 Ventcell 2
2 65 (86) 11 (12) 10 (11) 7 (8) 7 (9)
4 70 (88) 11 (12) 10 (11) 7 (8) 7 (9)
8 72 (89) 11 (12) 11 (12) 7 (8) 9 (9)
16 72 (87) 11 (12) 11 (14) 7 (8) 9 (10)
32 73 (89) 11 (12) 11 (15) 7 (8) 9 (10)

Table 5.2
RAS vs. one and two-sided Robin and Ventcell conditions for a strip-wise decomposition into

J subdomains (fixed subdomain size).

that after a slight increase in iterations when the number of subdomains grows, the
iteration count stabilises. This is consistent with the theoretical results and shows that
the one-level method is weakly scalable in this setting: the iteration count remains
constant when the number of subdomains is increased and the size of the subdomains
is kept fixed. The optimised one-level variants are scalable as well, as shown in
Subsection 3.4, the iteration counts are much lower, and remain constant almost from
the very beginning when the number of subdomains increases. Note that we cannot
control the exact size of the subdomains in the case of METIS decompositions, which
explains the slight variations in the iteration counts for METIS decompositions. Also
the mesh size here is not fine enough to see the full benefit of two sided transmission
conditions, see also the comment at the end of the previous subsection.

To see that using the new optimized parameters for many subdomains perform
indeed better than the optimized parameters for two subdomains, we run as example
the case of 16 subdomains with η = ε = 0.1 and meshsize 1

800 both with the two
subdomain optimized parameters (24 iterations) and the new ones for 16 subdomains
(22 iterations), which shows that the new parameters indeed perform better, but also
that the much simpler two subdomain optimization is already a very viable option.

In a second series of tests, we keep now the size of the global domain fixed to
[0, 8] × [0, 1], and chose the mesh size equal to h = 1/256. We increase the number
of subdomains in one direction in order to obtain a strip-wise decomposition. In this
case, the domains will become thinner and thinner as shown in Figure 5.3.

We see in Table 5.3 that these one level methods are no longer scalable, as pre-
dicted by the analysis in Subsection 3.4. The iteration count for RAS grows rapidly
with the number of domains. The iteration numbers for Robin 1 and Ventcell 1 are
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Fig. 5.3. Decomposition into many subdomains of decreasing width.

J RAS Robin 1 Robin 2 Ventcell 1 Ventcell 2
2 156 14 12 8 9
4 164 14 13 8 9
8 181 15 13 9 10
16 253 20 17 13 15
32 443 35 54 22 35

Table 5.3
RAS vs. one and two-sided Robin and Ventcell conditions for a strip-wise decomposition into

J subdomains with decreasing subdomain size.

much lower, but also increase more and more when the number of subdomains dou-
bles, as predicted by the theoretical constants KJ in (3.13) and K∞ in (3.21) when
the subdomain size L becomes small. Furthermore, when two-sided conditions are
used, this increase appears to be more important for large J , which is due to the late
asymptotic validity of the optimized parameter formulas in this case.

5.3. Optimised Schwarz methods as preconditioners. We solve the discre-
tised problem using GMRES where the parallel Schwarz method with Robin or Vent-
cell conditions is used as a preconditioner. In particular, we use right-preconditioned
GMRES and terminate when a relative residual tolerance of 10−6 is reached. The pre-
conditioner, which arises naturally as the discretised version of the parallel Schwarz
method we have studied, is known as the one-level optimised restricted additive
Schwarz (ORAS) preconditioner. This ORAS preconditioner is given by

M−1 =

N∑
i=1

RT
i DiÃ

−1
i Ri,

where {Ri}1≤i≤N are the Boolean restriction matrices from the global to the local
finite element spaces and {Di}1≤i≤N are local diagonal matrices representing a par-
tition of unity. The key ingredient of the ORAS method is that the local subdomain
matrices {Ãi}1≤i≤N incorporate more efficient Robin or Ventcell transmission condi-
tions.

We now perform exactly the same kind of experiments as in the previous sub-
sections, but test the performance of the preconditioner instead of the stationary
iterative solver. We start by the strip-wise decomposition into four subdomains like
in Figure 5.1, and we refine the mesh locally in each subdomain. In Table 5.4 we
report the iteration count of preconditioned GMRES in order to achieve a relative
discrete L2-norm error reduction of 10−6 (the numbers in parentheses correspond to
METIS decompositions). Again we start with a random initial guess in order to en-
sure that all frequencies are present in the error. We see that the iteration count is
less sensitive to the choice of transmission conditions, but the hierarchy of the meth-
ods is preserved, and iteration counts depend for the optimized methods only very
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h RAS Robin 1 Robin 2 Ventcell 1 Ventcell 2
1
50 12 (17) 6 (7) 7(9) 5 (5) 6 (7)
1

100 19 (23) 7 (8) 8 (11) 5 (6) 7 (8)
1

200 25 (34) 9 (10) 10 (12) 7 (7) 7 (8)
1

400 33 (47) 10 (11) 11 (14) 7 (7) 8 (9)
1

800 46 (69) 12 (13) 13 (15) 8 (9) 8 (10)
1

1600 69 (93) 14 (15) 14 (15) 9 (10) 8 (10)
Table 5.4

GMRES preconditioned by RAS and ORAS with Robin and Ventcell conditions for refined
meshes.

J . RAS Robin 1 Robin 2 Ventcell 1 Ventcell 2
2 13 (16) 7 (8) 7 (9) 5 (6) 6 (7)
4 19 (23) 7 (8) 8 (11) 5 (6) 7 (8)
8 20 (26) 8 (8) 8 (9) 6 (6) 6 (7)
16 20 (24) 8 (8) 8 (12) 6 (6) 6 (9)
32 20 (26) 8 (8) 8 (12) 6 (6) 6 (9)

Table 5.5
GMRES preconditioned by RAS and ORAS with Robin and Ventcell conditions for a strip-wise

decomposition into J subdomains (fixed subdomain size).

weakly on the mesh size that represents the overlap. We repeat next the weak scaling
experiments from Tables 5.2 and 5.3, where the methods are used as preconditioners.
We see in Table 5.5 that also the preconditioners scale very well with the increase of
the number of subdomains when the size of the subdomains is kept fixed. However,
when the size of the global domain is fixed and the subdomain size decreases when
their number increases, we see in Table 5.6 (which corresponds to Table 5.3 but with
Schwarz as a preconditioner) that while all methods are convergent, there is a slight
but steady increase in the iteration count for all methods, they are not scalable any
more, as predicted by the theory.

5.4. General decomposition into subdomains. We next test our new opti-
mized Schwarz methods also in a setting for which we do not yet have a convergence
analysis, namely two dimensional uniform and METIS decompositions into 4 subdo-
mains including cross points, like in Figure 5.4.

We show the iteration counts needed by the various preconditioned GMRES meth-
ods in Table 5.7. We see that again the optimized variants perform much better than
classical RAS, and also the asymptotic dependence on the mesh size representing the
overlap is much weaker, so that for larger and larger problems the gain in lower it-
eration counts is becoming more and more substantial. For example for mesh size
h = 1

800 , Robin transmission conditions reduce the iteration count by more than a
factor two compared to RAS, and Ventcell transmission conditions by a factor three,
at the same cost per iteration.

6. Conclusions. We have shown for the first time that it is possible to optimize
transmission conditions for many subdomain decompositions in optimized Schwarz
methods. To do so, an essential ingredient was an asymptotic approximation of the
convergence factor, and our analysis allowed us to precisely characterize the conver-
gence dependence on the number of subdomains. Using a new technique of limiting
spectra, we could even study the case of an infinite number of subdomains, leading
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J RAS Robin 1 Robin 2 Ventcell 1 Ventcell 2
2 21 9 10 6 7
4 27 9 10 6 6
8 31 9 10 7 8
16 40 13 18 10 10
32 56 20 22 20 18

Table 5.6
GMRES preconditioned by RAS vs. one and two-sided Robin and Ventcell conditions for a

strip-wise decomposition into J subdomains with decreasing subdomain size.

Fig. 5.4. Decomposition into 4 subdomains (uniform and METIS).

to a new proof of scalability of these methods for specific strip decompositions for
general complex diffusion problems. We also optimized for the first time two-sided
Ventcell transmission conditions, which led to a new and much weaker asymptotic
dependence on the overlap size than all earlier known optimized Schwarz methods.
We illustrated our theoretical results with numerical experiments, including cases not
covered by our analysis.
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