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Introdu
tion

Overlapping S
hwarz waveform relaxation is a long name for an algorithm whi
h sim-

ply solves evolution problems in parallel. It got its name as follows: the distribution

of the 
omputation is a
hieved by partitioning the spatial domain into overlapping

subdomains, like in the 
lassi
al S
hwarz method. However on subdomains, time de-

pendent problems are solved in the iteration and thus the algorithm is also of waveform

relaxation type. Hen
e the name overlapping S
hwarz waveform relaxation. These al-

gorithms have been introdu
ed in [GK02℄ and independently in [GZ97℄ for the solution

of evolution problems in a parallel environment with slow 
ommuni
ation links, sin
e

they permit to solve over several time steps before 
ommuni
ating information to the

neighboring subdomains. They are ideal when one wants to use large existing networks

of PC's with a high laten
y network but reasonable throughput as a super-
omputer.

An earlier analysis for �rst order hyperboli
 problems of the same type of algorithm


an be found in [Bj�95℄.

These algorithms stand in 
ontrast to the 
lassi
al approa
h in domain de
om-

position for evolution problems, where time is �rst dis
retized uniformly using an

impli
it dis
retization and then at ea
h time step a problem in spa
e only is solved

using domain de
omposition, see for example [Meu91℄ and [Cai91, Cai94℄. The main

disadvantage of the 
lassi
al approa
h is that one is for
ed to use the same time step

in all subdomains and thus looses one of the main features of domain de
omposition,

namely to treat subdomains numeri
ally di�erently. A se
ond disadvantage is that

one needs to ex
hange information at ea
h time step. Overlapping S
hwarz waveform

relaxation is a remedy for both problems.

In this paper we study overlapping S
hwarz waveform relaxation for spa
e de
om-

positions in all generality for the linear 
onve
tion rea
tion di�usion equation in n

dimensions. We prove linear 
onvergen
e of the algorithm on unbounded time inter-

vals and state a theorem about superlinear 
onvergen
e on bounded time intervals.

Both results hold at the 
ontinuous level, whi
h leads to algorithms that 
onverge

independently of the mesh size if the overlap is held 
onstant.

Problem Des
ription

We are interested to solve paraboli
 partial di�erential equations in n dimensions

on a parallel 
omputer with slow 
ommuni
ation links. We 
onsider as our guiding

example the 
onve
tion rea
tion di�usion equation on a bounded domain 
 � R

n
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with a smooth boundary �
,

L(u) := �

�u

�t

+ ��u+ a � ru+ 
u = f(x; t) x 2 
; 0 < t < T;

u(x; t) = g(x; t) x 2 �
; 0 < t < T;

u(x; 0) = u

0

(x) x 2 
:

(1)

We assume that the initial 
ondition u

0

(x) and the boundary 
ondition g(x; t) are

bounded pie
ewise 
ontinuous and f(x; t) is 
ontinuous. This gives existen
e and

uniqueness of a solution to (1). In our analysis we will use the maximum prin
iple

satis�ed by the solution u(x; t) of (1):

Theorem 1 (Maximum Prin
iple) Assume that L(u) � 0 (L(u) � 0). Let M =

sup




u (inf




u). Assume that u = M at some interior point (x

0

; t

0

) 2 
 and that one

of the following holds:

1. 
 = 0 and M is arbitrary.

2. 
 � 0 and M � 0 (M � 0).

3. M = 0 and 
 is arbitrary.

Then u = M on

�


� [0; t

0

℄.

Proof The proof 
an be found in [Lie96℄.

To distribute the 
omputation, we partition the domain 
 into overlapping subdo-

mains. Su
h a partition 
an be obtained by �rst partitioning 
 intoN non-overlapping

subdomains

e




j

with boundaries �

e




j

, j = 1; 2; : : : ; N . We denote the boundaries of

the subdomain

e




j

interior to the domain 
 by

e

�

j

. Then we 
onstru
t an overlapping

de
omposition 


j

with boundary �


j

by enlarging ea
h

e




j

so that the boundaries of

the new subdomains �

j

interior to 
 are at least a distan
e Æ away from

e

�

j

. To solve

the paraboli
 problem (1), the overlapping S
hwarz waveform relaxation iteration 
on-

stru
ts iteratively u

k+1

j

on ea
h subdomain 


j

using as the boundary 
ondition the

values from the neighboring subdomains u

k

l

at the previous iteration. To pass the

boundary information, the boundary of 


j

is de
omposed into disjoint subsets �

jl

,

l = 1; : : : ; N su
h that the Eu
lidean distan
e of x 2 �

jl

from the boundary of 


l

is

at least Æ. This is possible be
ause of the way the overlapping de
omposition was 
on-

stru
ted: we simply use the solutions obtained in 


l

only within the smaller region

e




l

.

Doing this for ea
h subdomain, we de�ne a 
omplete approximation to the solution

at step k on the whole of 
 whi
h 
an be used at step k + 1 as boundary 
ondition

for the next subdomain solves. We denote also by �

j0

the part of the boundary that

subdomain 


j

shares with the original domain 
.

Linear Convergen
e for Unbounded Time Domains

For the 
onvergen
e analysis, it suÆ
es by linearity to 
onsider the homogeneous

problem, f(x; t) = g(x; t) = u

0

(x) = 0 in (1) and to analyze 
onvergen
e to zero.

We �rst 
onsider the 
ase where T = 1 and hen
e restri
t 
 � 0 to have bounded
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solutions. On ea
h subdomain 


j

we solve at ea
h step k + 1 of the overlapping

S
hwarz waveform relaxation iteration the subproblem

L(u

k+1

) = 0 x 2 


j

; 0 < t < T;

u

k+1

j

(x; t) = u

k

l

(x; t) x 2 �

jl

; 0 < t < T;

u

k+1

j

(x; t) = 0 x 2 �

j0

; 0 < t < T;

u

k+1

j

(x; 0) = 0 x 2 


j

;

(2)

for j = 1; 2; : : : ; N , using the boundary information from the neighboring subdomains

at step k. This 
orresponds to an additive S
hwarz or Ja
obi iteration whi
h 
an

be done in parallel. One 
an also 
onsider a multipli
ative S
hwarz or Gauss Seidel

iteration whi
h would need a spe
ial 
oloring of subdomains to remain a parallel

algorithm.

We de�ne the integer distan
e quantity m

j

for ea
h subdomain 


j

to be the least

number of subdomains one has to pass through to tou
h the boundary �
, and also

the maximum m := max

j

m

j

. We further de�ne the index sets I

l

:= fj : m

j

= lg

so that the index set I

l


ontains the indi
es of all the subdomains whi
h are within

distan
e l of the boundary. De�ning for bounded fun
tions g(x; t) : 
 � [0;1) ! R

the norm

jjg(�; �)jj

1

:= sup

x2
;t>0

jg(x; t)j

we have the following

Lemma 1 The iterates of (2) satisfy for T =1 and 
 � 0 the estimate

max

j

jju

k+m+2

j

(�; �)jj

1

� 
(m; Æ)max

j

jju

k

j

(�; �)jj

1

(3)

where 
(m; Æ) is a number stri
tly less than one and independent of k.

Proof The idea of the proof is to 
onstru
t a sequen
e of ellipti
 upper bounds

on the iterates and then to apply the 
onvergen
e analysis based on the maximum

prin
iple for the ellipti
 upper bounds in Lions [Lio88℄. For k �xed we de�ne U

k

:=

max

j

jju

k

j

(�; �)jj

1

and note that on ea
h subdomain the solution ~u

k+1

j

of the ellipti


problem

��~u

k+1

j

+ a � r~u

k+1

j

+ 
~u

k+1

j

= 0 x 2 


j

;

~u

k+1

j

(x) = U

k

x 2 �

jl

;

~u

k+1

j

(x) = 0 x 2 �

j0

(4)

is an upper bound on the modulus of u

k+1

j

. Now ~u

k+1

j

satis�es a maximum prin
iple

and for j 2 I

0

we have ~u

k+1

j

< U

k

in the interior of

e




j

, sin
e ~u

k+1

j

satis�es on part of

the boundary of 


j

a homogeneous boundary 
ondition. Note that for j =2 I

0

we have

~u

k+1

j

not ne
essarily stri
tly less than U

k

sin
e ~u

k+1

j

might have the value U

k

on all

its boundaries and thus by the maximum prin
iple ~u

k+1

j

� U

k

. De�ne

U

k+1

:= sup

x2

e




l

;l2I

0

~u

k+1

l

� 


1

(Æ)U

k

for some 
onstant 


1

(Æ) < 1. Note that 


1

depends on the size of the overlap, but

not on k sin
e ~u

k+1

j

is a linear fun
tion of the boundary 
ondition. Now for the next



4 DAOUD, GANDER

iteration by de�nition part of the boundary of subdomains 


j

with j 2 I

1

lie stri
tly

within

e




l

with l 2 I

0

and therefore for j 2 I

1

the solution ~u

k+2

j

of the ellipti
 problem

��~u

k+2

j

+ a � r~u

k+2

j

+ 
~u

k+2

j

= 0 x 2 


j

;

~u

k+2

j

(x) = U

k

x 2 �

jl

; l =2 I

0

;

~u

k+2

j

(x) = U

k+1

x 2 �

jl

; l 2 I

0

(5)

is an upper bound on the modulus of u

k+2

j

. Sin
e U

k+1

� 


1

(Æ)U

k

we have by the

maximum prin
iple ~u

k+2

j

< U

k

in

e




j

and de�ning U

k+2

similarly to U

k+1

before,

we �nd U

k+2

� 


2

(Æ)U

k

for some 
onstant 


1

(Æ) � 


2

(Æ) < 1 independent of k. By

indu
tion we �nd at step k+m+1 for the iterate in the subdomains 


j

with j 2 I

m

the ellipti
 upper bound

��~u

k+m+1

j

+ a � r~u

k+m+1

j

+ 
~u

k+m+1

j

= 0 x 2 


j

;

~u

k+m+1

j

(x) = U

k

x 2 �

jl

; l =2 I

m�1

;

~u

k+m+1

j

(x) = U

k+m

x 2 �

jl

; l 2 I

m�1

(6)

and ~u

k+m+1

j

< U

k

in

e




j

. De�ning U

k+m+1

as before we �nd U

k+m+1

� 


m+1

(Æ)U

k

for some 
onstant 


1

(Æ) � 


2

(Æ) � : : : � 


m+1

(Æ) < 1 independent of k. Now for the

next iteration step k+m+2 all the u

k+m+2

j

have boundary values less than or equal

to U

k+m+1

� 


m+1

(Æ)U

k

, sin
e they 
ome from iteration step k+m+1 in the interior

of neighboring subdomains. De�ning 
(m; Æ) := 


m+1

(Æ) the result follows.

Theorem 2 (Linear Convergen
e) For 
 � 0 the overlapping S
hwarz waveform

relaxation algorithm (2) 
onverges on unbounded time intervals t 2 [0; T =1) at least

at the linear rate

max

j

jju

k(m+2)

j

(�; �)jj

1

� (
(m; Æ))

k

max

j

jju

0

j

(�; �)jj

1

(7)

where 
(m; Æ) < 1 as in Lemma 1.

Proof The proof follows by indu
tion from Lemma 1.

The 
onvergen
e result we derived on unbounded time domains depends on the number

of subdomains, as one 
an see expli
itly from the dependen
e of 
 on m. The more

subdomains one uses, the longer it takes for information to propagate from the outer

boundary of 
 to the inner subdomains. This is be
ause the steady state solution is

limiting the 
onvergen
e rate, and the steady state solution does not see the zero initial


ondition. This is di�erent if the algorithm is analyzed over a bounded time interval.

This analysis, whi
h is beyond the s
ope of this short paper, leads to a superlinear


onvergen
e result for the algorithm. De�ning for bounded fun
tions g(x; t) : 
 �

[0; T )! R the norm

jjg(�; �)jj

T

:= sup

x2
;0<t<T

jg(x; t)j

we have the following
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Theorem 3 (Superlinear Convergen
e) For 
 � 0 the overlapping S
hwarz wave-

form relaxation algorithm 
onverges superlinearly on bounded time intervals t 2 [0; T <

1) in the in�nity norm,

max

j

jju

k

j

(�; �)jj

T

�

�

2n 
osh(Æ�a=(2�

p

n))

�

k

erf
(

kÆ

2

p

nT

)max

j

jju

0

j

(�; �)jj

T

: (8)

There are two interesting fa
ts to note about this theorem: �rst the 
onvergen
e rate

is independent of the number of subdomains, there is no dependen
e on a parameter

m related to the number of subdomains as in Theorem 2. se
ond the superlinear


onvergen
e rate is faster than the superlinear 
onvergen
e rate found for 
lassi
al

waveform relaxation algorithms. The 
lassi
al result gives a 
ontra
tion governed by

a fa
torial [MN87℄ with asymptoti
 expansion

(CT )

k

k!

=

�

1

p

2�

+O(k

�1

)

�

e

�k ln k+(1+ln(CT ))k�

1

2

lnk

� e

�k ln k

whereas the new result (8) gives a 
ontra
tion with asymptoti
 expansion

C

k

1

erf
(

C

2

k

p

T

) =

 

p

T

C

2

p

�

+O(k

�2

)

!

e

�

C

2

2

T

k

2

+ln(C

1

)k�ln k

� e

�k

2

:

Numeri
al Experiments

We perform all our experiments on the two dimensional model problem

�u

�t

= ��u+ a � ru+ 
u; (x

1

; x

2

) 2 [0; 1℄� [0; 1℄; t 2 [0; T ℄: (9)

The 
onve
tion is 
hosen to be diagonal, a := (1; 1) and the other parameters are


 = 0 and � = 1=10. We de
ompose the domain into smaller squares with equal size

and overlap both in the x

1

and x

2

dire
tion and simulate dire
tly the error equations.

In spa
e we dis
retize using 
entral �nite di�eren
es and in time using ba
kward

Euler. To see linear 
onvergen
e the problem is integrated over a relatively long time

interval t 2 [0; 10℄ and to see superlinear 
onvergen
e the problem is integrated over

a shorter time interval t 2 [0; 0:5℄. Our analysis showed that for both the linear and

superlinear 
onvergen
e the 
onvergen
e rate depends on the size of the overlap as

usual. In
reasing the overlap, the error de
ays faster, as shown in Figure 1 on the left

for a long time interval and on the right for a short time interval. We used Æ = 0:1

and Æ = 0:06 for the overlap parameter and 2� 2 subdomains.

Theorem 2 shows for the linear 
onvergen
e regime that the de
ay of the error

depends on the number of subdomains; the parameter m appears in equation (7),

whi
h is similar to the results found for the heat equation in [GS98℄. Thus for a long

time interval, the overlapping S
hwarz waveform relaxation algorithm does not s
ale

with respe
t to the number of subdomains. This is illustrated in Figure 2 on the left

for a = (1; 1), 
 = 0, � = 1=20, overlap parameter Æ = 0:04 and t 2 [0; 5℄. Note

how initially the algorithm does not exhibit 
onvergen
e, the information needs to be

propagated �rst from the domains 
onne
ted to the boundary towards the interior, as
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Figure 1: Two dimensional problem with four subdomains and di�erent size of overlap

for a long time interval on the left, where the algorithm is in the linear 
onvergen
e

regime and for a short time interval on the right, where the algorithm is in the super-

linear 
onvergen
e regime.

we saw in the analysis. In the superlinear 
onvergen
e regime however for the same

problem parameters and t 2 [0; 0:1℄ the 
onvergen
e rate is independent of the number

of subdomains, as stated in Theorem 3. This is 
on�rmed in the numeri
al experiments

shown in Figure 2 on the right and 
orresponds to the result found earlier for the heat

equation in [GZ97℄. Note how the error redu
tion in the superlinear 
onvergen
e

regime is 
onsiderably faster than the one in the linear 
onvergen
e regime. Note also

that the error redu
tion in the superlinear 
onvergen
e regime is 
onsiderably faster

than the one in the linear 
onvergen
e regime.

Con
lusions

We have shown that the overlapping S
hwarz waveform relaxation algorithm for gen-

eral linear 
onve
tion rea
tion di�usion equations with very general domain de
ompo-

sition exhibits two di�erent types of 
onvergen
e regimes: on unbounded time intervals

the algorithm 
onverges at least at a linear rate depending on the size of the overlap,

the problem parameters and the number of subdomains. On bounded time intervals

however the 
onvergen
e is superlinear. The 
onvergen
e rate depends on the overlap

and the di�usion 
oeÆ
ient, but is independent of the number of subdomains and the

other problem parameters.

The main interest of the algorithm are the following three points:

1. The original problem is solved on subdomains in spa
e-time and thus one 
an

re�ne both in spa
e and time independently on ea
h subdomain.

2. Communi
ation is not ne
essary at ea
h time step, ea
h pro
essor 
ontinues to

solve over a whole time window before it needs to 
ommuni
ate.

3. Theorem 3 shows that algorithm 
onverges superlinearly and independently of

the number of subdomains, so there is no 
oarse grid needed for s
alability.
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Figure 2: The e�e
t of the number of subdomains on the algorithm. On the left

for long time intervals where the linear 
onvergen
e rate depends on the number of

subdomains and on the right for short time intervals where the superlinear 
onvergen
e

rate is independent of the number of subdomains.

For a given hardware 
on�guration, it remains to �nd the best length of time windows

so that the 
onvergen
e speed of the algorithm is balan
ed with the 
ommuni
ation


ost. Longer time windows lead to slower 
onvergen
e, but they require less often


ommuni
ation whi
h makes them faster.
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