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Introdution

Overlapping Shwarz waveform relaxation is a long name for an algorithm whih sim-

ply solves evolution problems in parallel. It got its name as follows: the distribution

of the omputation is ahieved by partitioning the spatial domain into overlapping

subdomains, like in the lassial Shwarz method. However on subdomains, time de-

pendent problems are solved in the iteration and thus the algorithm is also of waveform

relaxation type. Hene the name overlapping Shwarz waveform relaxation. These al-

gorithms have been introdued in [GK02℄ and independently in [GZ97℄ for the solution

of evolution problems in a parallel environment with slow ommuniation links, sine

they permit to solve over several time steps before ommuniating information to the

neighboring subdomains. They are ideal when one wants to use large existing networks

of PC's with a high lateny network but reasonable throughput as a super-omputer.

An earlier analysis for �rst order hyperboli problems of the same type of algorithm

an be found in [Bj�95℄.

These algorithms stand in ontrast to the lassial approah in domain deom-

position for evolution problems, where time is �rst disretized uniformly using an

impliit disretization and then at eah time step a problem in spae only is solved

using domain deomposition, see for example [Meu91℄ and [Cai91, Cai94℄. The main

disadvantage of the lassial approah is that one is fored to use the same time step

in all subdomains and thus looses one of the main features of domain deomposition,

namely to treat subdomains numerially di�erently. A seond disadvantage is that

one needs to exhange information at eah time step. Overlapping Shwarz waveform

relaxation is a remedy for both problems.

In this paper we study overlapping Shwarz waveform relaxation for spae deom-

positions in all generality for the linear onvetion reation di�usion equation in n

dimensions. We prove linear onvergene of the algorithm on unbounded time inter-

vals and state a theorem about superlinear onvergene on bounded time intervals.

Both results hold at the ontinuous level, whih leads to algorithms that onverge

independently of the mesh size if the overlap is held onstant.

Problem Desription

We are interested to solve paraboli partial di�erential equations in n dimensions

on a parallel omputer with slow ommuniation links. We onsider as our guiding

example the onvetion reation di�usion equation on a bounded domain 
 � R

n
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with a smooth boundary �
,

L(u) := �

�u

�t

+ ��u+ a � ru+ u = f(x; t) x 2 
; 0 < t < T;

u(x; t) = g(x; t) x 2 �
; 0 < t < T;

u(x; 0) = u

0

(x) x 2 
:

(1)

We assume that the initial ondition u

0

(x) and the boundary ondition g(x; t) are

bounded pieewise ontinuous and f(x; t) is ontinuous. This gives existene and

uniqueness of a solution to (1). In our analysis we will use the maximum priniple

satis�ed by the solution u(x; t) of (1):

Theorem 1 (Maximum Priniple) Assume that L(u) � 0 (L(u) � 0). Let M =

sup




u (inf




u). Assume that u = M at some interior point (x

0

; t

0

) 2 
 and that one

of the following holds:

1.  = 0 and M is arbitrary.

2.  � 0 and M � 0 (M � 0).

3. M = 0 and  is arbitrary.

Then u = M on

�


� [0; t

0

℄.

Proof The proof an be found in [Lie96℄.

To distribute the omputation, we partition the domain 
 into overlapping subdo-

mains. Suh a partition an be obtained by �rst partitioning 
 intoN non-overlapping

subdomains

e




j

with boundaries �

e




j

, j = 1; 2; : : : ; N . We denote the boundaries of

the subdomain

e




j

interior to the domain 
 by

e

�

j

. Then we onstrut an overlapping

deomposition 


j

with boundary �


j

by enlarging eah

e




j

so that the boundaries of

the new subdomains �

j

interior to 
 are at least a distane Æ away from

e

�

j

. To solve

the paraboli problem (1), the overlapping Shwarz waveform relaxation iteration on-

struts iteratively u

k+1

j

on eah subdomain 


j

using as the boundary ondition the

values from the neighboring subdomains u

k

l

at the previous iteration. To pass the

boundary information, the boundary of 


j

is deomposed into disjoint subsets �

jl

,

l = 1; : : : ; N suh that the Eulidean distane of x 2 �

jl

from the boundary of 


l

is

at least Æ. This is possible beause of the way the overlapping deomposition was on-

struted: we simply use the solutions obtained in 


l

only within the smaller region

e




l

.

Doing this for eah subdomain, we de�ne a omplete approximation to the solution

at step k on the whole of 
 whih an be used at step k + 1 as boundary ondition

for the next subdomain solves. We denote also by �

j0

the part of the boundary that

subdomain 


j

shares with the original domain 
.

Linear Convergene for Unbounded Time Domains

For the onvergene analysis, it suÆes by linearity to onsider the homogeneous

problem, f(x; t) = g(x; t) = u

0

(x) = 0 in (1) and to analyze onvergene to zero.

We �rst onsider the ase where T = 1 and hene restrit  � 0 to have bounded
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solutions. On eah subdomain 


j

we solve at eah step k + 1 of the overlapping

Shwarz waveform relaxation iteration the subproblem

L(u

k+1

) = 0 x 2 


j

; 0 < t < T;

u

k+1

j

(x; t) = u

k

l

(x; t) x 2 �

jl

; 0 < t < T;

u

k+1

j

(x; t) = 0 x 2 �

j0

; 0 < t < T;

u

k+1

j

(x; 0) = 0 x 2 


j

;

(2)

for j = 1; 2; : : : ; N , using the boundary information from the neighboring subdomains

at step k. This orresponds to an additive Shwarz or Jaobi iteration whih an

be done in parallel. One an also onsider a multipliative Shwarz or Gauss Seidel

iteration whih would need a speial oloring of subdomains to remain a parallel

algorithm.

We de�ne the integer distane quantity m

j

for eah subdomain 


j

to be the least

number of subdomains one has to pass through to touh the boundary �
, and also

the maximum m := max

j

m

j

. We further de�ne the index sets I

l

:= fj : m

j

= lg

so that the index set I

l

ontains the indies of all the subdomains whih are within

distane l of the boundary. De�ning for bounded funtions g(x; t) : 
 � [0;1) ! R

the norm

jjg(�; �)jj

1

:= sup

x2
;t>0

jg(x; t)j

we have the following

Lemma 1 The iterates of (2) satisfy for T =1 and  � 0 the estimate

max

j

jju

k+m+2

j

(�; �)jj

1

� (m; Æ)max

j

jju

k

j

(�; �)jj

1

(3)

where (m; Æ) is a number stritly less than one and independent of k.

Proof The idea of the proof is to onstrut a sequene of ellipti upper bounds

on the iterates and then to apply the onvergene analysis based on the maximum

priniple for the ellipti upper bounds in Lions [Lio88℄. For k �xed we de�ne U

k

:=

max

j

jju

k

j

(�; �)jj

1

and note that on eah subdomain the solution ~u

k+1

j

of the ellipti

problem

��~u

k+1

j

+ a � r~u

k+1

j

+ ~u

k+1

j

= 0 x 2 


j

;

~u

k+1

j

(x) = U

k

x 2 �

jl

;

~u

k+1

j

(x) = 0 x 2 �

j0

(4)

is an upper bound on the modulus of u

k+1

j

. Now ~u

k+1

j

satis�es a maximum priniple

and for j 2 I

0

we have ~u

k+1

j

< U

k

in the interior of

e




j

, sine ~u

k+1

j

satis�es on part of

the boundary of 


j

a homogeneous boundary ondition. Note that for j =2 I

0

we have

~u

k+1

j

not neessarily stritly less than U

k

sine ~u

k+1

j

might have the value U

k

on all

its boundaries and thus by the maximum priniple ~u

k+1

j

� U

k

. De�ne

U

k+1

:= sup

x2

e




l

;l2I

0

~u

k+1

l

� 

1

(Æ)U

k

for some onstant 

1

(Æ) < 1. Note that 

1

depends on the size of the overlap, but

not on k sine ~u

k+1

j

is a linear funtion of the boundary ondition. Now for the next
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iteration by de�nition part of the boundary of subdomains 


j

with j 2 I

1

lie stritly

within

e




l

with l 2 I

0

and therefore for j 2 I

1

the solution ~u

k+2

j

of the ellipti problem

��~u

k+2

j

+ a � r~u

k+2

j

+ ~u

k+2

j

= 0 x 2 


j

;

~u

k+2

j

(x) = U

k

x 2 �

jl

; l =2 I

0

;

~u

k+2

j

(x) = U

k+1

x 2 �

jl

; l 2 I

0

(5)

is an upper bound on the modulus of u

k+2

j

. Sine U

k+1

� 

1

(Æ)U

k

we have by the

maximum priniple ~u

k+2

j

< U

k

in

e




j

and de�ning U

k+2

similarly to U

k+1

before,

we �nd U

k+2

� 

2

(Æ)U

k

for some onstant 

1

(Æ) � 

2

(Æ) < 1 independent of k. By

indution we �nd at step k+m+1 for the iterate in the subdomains 


j

with j 2 I

m

the ellipti upper bound

��~u

k+m+1

j

+ a � r~u

k+m+1

j

+ ~u

k+m+1

j

= 0 x 2 


j

;

~u

k+m+1

j

(x) = U

k

x 2 �

jl

; l =2 I

m�1

;

~u

k+m+1

j

(x) = U

k+m

x 2 �

jl

; l 2 I

m�1

(6)

and ~u

k+m+1

j

< U

k

in

e




j

. De�ning U

k+m+1

as before we �nd U

k+m+1

� 

m+1

(Æ)U

k

for some onstant 

1

(Æ) � 

2

(Æ) � : : : � 

m+1

(Æ) < 1 independent of k. Now for the

next iteration step k+m+2 all the u

k+m+2

j

have boundary values less than or equal

to U

k+m+1

� 

m+1

(Æ)U

k

, sine they ome from iteration step k+m+1 in the interior

of neighboring subdomains. De�ning (m; Æ) := 

m+1

(Æ) the result follows.

Theorem 2 (Linear Convergene) For  � 0 the overlapping Shwarz waveform

relaxation algorithm (2) onverges on unbounded time intervals t 2 [0; T =1) at least

at the linear rate

max

j

jju

k(m+2)

j

(�; �)jj

1

� ((m; Æ))

k

max

j

jju

0

j

(�; �)jj

1

(7)

where (m; Æ) < 1 as in Lemma 1.

Proof The proof follows by indution from Lemma 1.

The onvergene result we derived on unbounded time domains depends on the number

of subdomains, as one an see expliitly from the dependene of  on m. The more

subdomains one uses, the longer it takes for information to propagate from the outer

boundary of 
 to the inner subdomains. This is beause the steady state solution is

limiting the onvergene rate, and the steady state solution does not see the zero initial

ondition. This is di�erent if the algorithm is analyzed over a bounded time interval.

This analysis, whih is beyond the sope of this short paper, leads to a superlinear

onvergene result for the algorithm. De�ning for bounded funtions g(x; t) : 
 �

[0; T )! R the norm

jjg(�; �)jj

T

:= sup

x2
;0<t<T

jg(x; t)j

we have the following
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Theorem 3 (Superlinear Convergene) For  � 0 the overlapping Shwarz wave-

form relaxation algorithm onverges superlinearly on bounded time intervals t 2 [0; T <

1) in the in�nity norm,

max

j

jju

k

j

(�; �)jj

T

�

�

2n osh(Æ�a=(2�

p

n))

�

k

erf(

kÆ

2

p

nT

)max

j

jju

0

j

(�; �)jj

T

: (8)

There are two interesting fats to note about this theorem: �rst the onvergene rate

is independent of the number of subdomains, there is no dependene on a parameter

m related to the number of subdomains as in Theorem 2. seond the superlinear

onvergene rate is faster than the superlinear onvergene rate found for lassial

waveform relaxation algorithms. The lassial result gives a ontration governed by

a fatorial [MN87℄ with asymptoti expansion

(CT )

k

k!

=

�

1

p

2�

+O(k

�1

)

�

e

�k ln k+(1+ln(CT ))k�

1

2

lnk

� e

�k ln k

whereas the new result (8) gives a ontration with asymptoti expansion

C

k

1

erf(

C

2

k

p

T

) =

 

p

T

C

2

p

�

+O(k

�2

)

!

e

�

C

2

2

T

k

2

+ln(C

1

)k�ln k

� e

�k

2

:

Numerial Experiments

We perform all our experiments on the two dimensional model problem

�u

�t

= ��u+ a � ru+ u; (x

1

; x

2

) 2 [0; 1℄� [0; 1℄; t 2 [0; T ℄: (9)

The onvetion is hosen to be diagonal, a := (1; 1) and the other parameters are

 = 0 and � = 1=10. We deompose the domain into smaller squares with equal size

and overlap both in the x

1

and x

2

diretion and simulate diretly the error equations.

In spae we disretize using entral �nite di�erenes and in time using bakward

Euler. To see linear onvergene the problem is integrated over a relatively long time

interval t 2 [0; 10℄ and to see superlinear onvergene the problem is integrated over

a shorter time interval t 2 [0; 0:5℄. Our analysis showed that for both the linear and

superlinear onvergene the onvergene rate depends on the size of the overlap as

usual. Inreasing the overlap, the error deays faster, as shown in Figure 1 on the left

for a long time interval and on the right for a short time interval. We used Æ = 0:1

and Æ = 0:06 for the overlap parameter and 2� 2 subdomains.

Theorem 2 shows for the linear onvergene regime that the deay of the error

depends on the number of subdomains; the parameter m appears in equation (7),

whih is similar to the results found for the heat equation in [GS98℄. Thus for a long

time interval, the overlapping Shwarz waveform relaxation algorithm does not sale

with respet to the number of subdomains. This is illustrated in Figure 2 on the left

for a = (1; 1),  = 0, � = 1=20, overlap parameter Æ = 0:04 and t 2 [0; 5℄. Note

how initially the algorithm does not exhibit onvergene, the information needs to be

propagated �rst from the domains onneted to the boundary towards the interior, as
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Figure 1: Two dimensional problem with four subdomains and di�erent size of overlap

for a long time interval on the left, where the algorithm is in the linear onvergene

regime and for a short time interval on the right, where the algorithm is in the super-

linear onvergene regime.

we saw in the analysis. In the superlinear onvergene regime however for the same

problem parameters and t 2 [0; 0:1℄ the onvergene rate is independent of the number

of subdomains, as stated in Theorem 3. This is on�rmed in the numerial experiments

shown in Figure 2 on the right and orresponds to the result found earlier for the heat

equation in [GZ97℄. Note how the error redution in the superlinear onvergene

regime is onsiderably faster than the one in the linear onvergene regime. Note also

that the error redution in the superlinear onvergene regime is onsiderably faster

than the one in the linear onvergene regime.

Conlusions

We have shown that the overlapping Shwarz waveform relaxation algorithm for gen-

eral linear onvetion reation di�usion equations with very general domain deompo-

sition exhibits two di�erent types of onvergene regimes: on unbounded time intervals

the algorithm onverges at least at a linear rate depending on the size of the overlap,

the problem parameters and the number of subdomains. On bounded time intervals

however the onvergene is superlinear. The onvergene rate depends on the overlap

and the di�usion oeÆient, but is independent of the number of subdomains and the

other problem parameters.

The main interest of the algorithm are the following three points:

1. The original problem is solved on subdomains in spae-time and thus one an

re�ne both in spae and time independently on eah subdomain.

2. Communiation is not neessary at eah time step, eah proessor ontinues to

solve over a whole time window before it needs to ommuniate.

3. Theorem 3 shows that algorithm onverges superlinearly and independently of

the number of subdomains, so there is no oarse grid needed for salability.
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Figure 2: The e�et of the number of subdomains on the algorithm. On the left

for long time intervals where the linear onvergene rate depends on the number of

subdomains and on the right for short time intervals where the superlinear onvergene

rate is independent of the number of subdomains.

For a given hardware on�guration, it remains to �nd the best length of time windows

so that the onvergene speed of the algorithm is balaned with the ommuniation

ost. Longer time windows lead to slower onvergene, but they require less often

ommuniation whih makes them faster.
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