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1 Introduction

Wave field simulations have many applications, from seismology over radiation to
acoustics. The Helmholtz equation is used to model many of these phenomena, and
several numerical schemes were developed for this, see e.g. [5, 8, 7] and references
therein. However, to capture the accurate wave behavior, in general these schemes
need very fine meshes, because of the so called pollution effect, see [1]. The fine
mesh requirement results in large system matrices with bad condition number, and
thus requires a huge computational effort, since Helmholtz problems are notoriously
difficult to solve using iterative methods [4]. Also, due to the high condition number,
often these schemes have numerical problems for large wave numbers.

We present in this short note a new Nodal Integration Method (NIM) based on
domain decomposition techniques for the Helmholtz equation

∇2D(x) + :2D(x) = 5 (x), (1)

where x is the spatial position, : is the wave number, D represents the wave field,
typically a pressure perturbation, and 5 is the source term. NIM is a coarse mesh
numerical scheme based on the transverse integration process (TIP) and analytical
solutions of the ODEs resulting from TIP [10]. NIM has an edge over other schemes
due to the inbuilt semi-analytical approach in the scheme development process,
which closely relates the scheme to the physical problem compared to predefined
basis-function based methods such as finite-element methods. NIM schemes are
related to Trefftz methods [12] going back to Erich Trefftz in 1926 as a counterpart
of the classical Ritz method [11] from 1909. Trefftz methods use basis functions
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Fig. 1: Arrangement of elements in 2D called nodes in NIM.

that satisfy the homogeneous equations exactly within elements, see also [8] and
references therein, whereas NIMs satisfy only one dimensional averaged equations.
The first NIM scheme was developed for simulations in nuclear industry [6], and
NIM found its acceptance in other engineering domains as well, due to high accuracy
with coarser meshes, see e.g. [9] and references therein. The discretization of PDEs
is also often plagued with numerical dispersion, and NIM schemes show minimal
dispersion compared to other schemes, see [10], and [2] and references therein for
more information about dispersion correction. We propose here a new NIM scheme
for the Helmholtz equation to improve the conditioning of the resulting system
matrix, and further reduce dispersion. Our new approach uses impedance (or Robin)
conditions in its construction, in contrast to the classical Dirichlet and Neumann
conditions in earlier NIMs for Helmholtz problems.

2 Classical NIM for the Helmholtz problem

In order to derive the classical NIM scheme for the Helmholtz equation (1) in 2D,
the domain is divided into = rectangular elements of size ℎ called nodes, see Figure
1. For each node, a local coordinate system is defined with its origin at the node
center. The Helmholtz Equation (1) can be written with reference to node ( 9 , ;) as

∇2D 9 ,; (G, H) + :2D 9 ,; (G, H) = 5 9 ,; (G, H), (G, H) ∈
(
− ℎ

2
,
ℎ

2
)
)
×

(
− ℎ

2
,
ℎ

2

)
. (2)
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In NIM, the PDE is first averaged within a node to remove the dependency in one
spatial directions, which results in an approximate ODE. This is called the transverse
integration process (TIP). To perform the TIP, Equation (2) is averaged using the
operator 1

ℎ

∫ +ℎ/2
−ℎ/2 dG in x-direction and the operator 1

ℎ

∫ +ℎ/2
−ℎ/2 dH in y-direction. On

performing the TIP (averaging) for example in the G-direction,

1
ℎ

∫ +ℎ/2

−ℎ/2

(
d2D 9 ,; (G, H)

dG2 +
d2D 9 ,; (G, H)

dH2 + :2D 9 ,; (G, H) = 5 9 ,; (G, H)
)
dG, (3)

we get x-averaged ODEs whose solutions are a function of H only as given in
equation (4) below. Similarly, performing TIP on equation (2) in the H-direction
gives us y-averaged ODEs whose solutions are a function of G only,

d2DG9,; (H)
dH2 + :2DG9,; (H) = (

G

9,; (H),
d2D

H

9,;
(G)

dG2 + :2D
H

9,;
(G) = (H9,; (G). (4)

Here the solution variables represent averaged quantities,

DG9,; (H) :=
1
ℎ

∫ +ℎ/2

−ℎ/2
D 9 ,; (G, H)dG, D

H

9,;
(G) :=

1
ℎ

∫ +ℎ/2

−ℎ/2
D 9 ,; (G, H)dH, (5)

and also the source term 5 9 ,; was averaged including the remaining transverse term,

(
G

9,; (H) :=
1
ℎ

∫ +ℎ/2

−ℎ/2

(
5 9 ,; (G, H) −

m2D 9 ,; (G, H)
mG2

)
dG, (6)

(
H

9,; (G) :=
1
ℎ

∫ +ℎ/2

−ℎ/2

(
5 9 ,; (G, H) −

m2D 9 ,; (G, H)
mH2

)
dH. (7)

After the TIP, the set of approximate ODEs given in Equation (4) is solved analyti-
cally within two consecutive nodes, using an appropriate approximation of the source
term to make this analytical integration possible (for example a truncated Legendre
expansion). After the integration, the two analytical solutions are connected using
coupling conditions, classically Dirichlet continuity is imposed by imposing a com-
mon (unknown) value, which is then determined imposing Neumann continuity, like
in a substructuring domain decomposition method. This results in two three point
schemes, one in the G-direction and the other in the H-direction. From these three
point schemes, the pseudo source is finally eliminated using constraint conditions,
which results in the final set of algebraic equation for the scheme, see [6, 10, 9] for
more details, and below for a simple example.

While this NIM scheme for Helmholtz is working, the resulting matrix elements
can have a strong dependence on the wave number : . We show in Table 1 an
example of the dependence of the system matrix norm on the wave number : of
the 2D NIM scheme described above. This strong dependence is numerically not
desirable, especially when the mesh resolution is not changed as in our example,
there is toomuch sensitivity with respect to thewave number in this discrete problem.
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Wave number (:) NIM matrix norm (2D-Helmholtz)
150 14800
151 32170
152 214350
153 25180
154 13500

Table 1: Dependence of the system matrix norm on the wave number : for the
classical NIM scheme in 2D for the Helmholtz equation.

G
j+1jj-1

Fig. 2: Arrangement of elements in 1D.

In order to better understand this strong dependence on the wave number : of
the classical NIM system matrix for the Helmholtz equation, we now study in more
detail the one dimensional case,

mGGD 9 (G) + :2D 9 (G) = 5 9 (G), G ∈
(
− ℎ

2
,
ℎ

2

)
, (8)

see also Figure 2. In one dimension, the TIP is not necessary, except for the right
hand side function 5 9 (G). Here we expand 5 9 (G) in Legendre polynomials and
truncate to the first term, i.e. the constant, which we call ( 9 . This approximation to
a constant term leads to second order accuracy in the scheme. We can then directly
solve Equation (8) analytically with 5 9 (G) replaced by ( 9 on each node, and using
Dirichlet boundary conditions, which are

D09 (G)
���
−ℎ/2

= D 9−1

D09 (G)
���
ℎ/2

= D 9

 for node 9 ,
D09+1 (G)

���
−ℎ/2

= D 9

D09+1 (G)
���
ℎ/2

= D 9+1

 for node 9 + 1. (9)

The analytical solution for node 9 and 9 + 1 is then given by

D09 (G) =
2( 9+(−2( 9+:2 (D 9+D 9−1)) cos :G sec ℎ:2 +:

2 (D 9−D 9−1) csc ℎ:2 sin :G
2:2 ,

D09+1 (G) =
2( 9+1+(−2( 9+1+:2 (D 9+D 9+1)) cos :G sec ℎ:2 +:

2 (D 9+1−D 9 ) csc ℎ:2 sin :G
2:2 .

(10)

Now in order to connect consecutive nodes, the matching of Neumann traces is
imposed, i.e. (

3D09 (G)
3G

) �����
ℎ/2

=

(
3D09+1 (G)
3G

) �����
−ℎ/2

. (11)

This leads to a finite difference like stencil for the unknown Dirichlet values D 9 ,
which contains in its coefficients information about the physical problem that is
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Fig. 3: Norms of the system matrix of the classical Helmholtz NIM from the stencils
(12), (14), (15), for varying wave number : and three mesh sizes: 0.1 (left), 0.05
(middle) and 0.025 (right).

solved, namely

:

sin :ℎ
D 9+1 −

2:
tan :ℎ

D 9 +
:

sin :ℎ
D 9−1 =

tan ℎ 
2

:
(( 9 + ( 9+1). (12)

To complete the linear system, we have to use on the first node, 9 = 1, and the last
node, 9 = �, the original boundary conditions imposed on the problem, which we
assume to be of impedance type,(

−
3D01 (G)
3G

+ 8:D01 (G)
) �����
−ℎ/2

= 0,
(
3D0� (G)
3G

+ 8:D0� (G)
) �����
ℎ/2

= 0. (13)

This leads for the first and last NIM matrix equations to the stencils(
8: + :2 cot ℎ:

:

)
D1 − (: csc ℎ:)D2 =

(
cot ℎ: − csc ℎ:

:

)
(2, (14)(

8: + :2 cot ℎ:
:

)
D� − (: csc ℎ:)D�−1 =

(
cot ℎ: − csc ℎ:

:

)
(� . (15)

Collecting these stencils in the associated system matrix of the Helmholtz NIM in
1D, and computing its norm, we find the results shown in Figure 3. Clearly the norm
is extremely sensitive to the wave number : , and this does not improve when the
mesh is refined. We can now also see the reason for this looking at the stencil entries:
in the interior stencil in (12), the stencil coefficients contain a division by sin :ℎ, and
this quantity becomes zero for : = ℓc/ℎ, ℓ = 1, 2, . . ., which explains the poles in
Figure 3 and more generally the sensitivity of the classical Helmholtz NIM matrix
norm on the wave number. We can now also explain the reason for this sensitivity: in
the construction of the classical Helmholtz NIM, we solved 1D Helmholtz problems
on each node, imposing Dirichlet boundary conditions, and if :2 corresponds to an
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eigenvalue of the one dimensional Laplacian, then this problem is not well posed, a
fact that manifests itself in the division by zero in the stencil coefficients.

3 Derivation of the new NIM scheme

To address the issue of division by zero for some values of : , we must design a new
Helmholtz NIM that avoids in its construction the solution of Helmholtz problems
with Dirichlet conditions that can become ill-posed. This can be achieved by using
impedance conditions instead, like it was proposed in the seminal work of Després
and his non-overlapping Schwarz method for Helmholtz problems [3]. We thus
replace in the construction of our new Helmholtz NIM the conditions (9) for nodes
9 and 9 + 1 by the conditions(

− mD09 (G)
mG
+ 8:D09 (G)

)���
−ℎ/2

= f9−1(
mD09 (G)
mG
+ 8:D09 (G)

)���
ℎ/2

= _ 9

 for node 9 , (16)

(
− mD09+1 (G)

mG
+ 8:D09+1 (G)

)���
−ℎ/2

= f9(
mD09+1 (G)
mG

+ 8:D09+1 (G)
)���
ℎ/2

= _ 9+1

 for node 9 + 1. (17)

Instead of the unknown Dirichlet values D 9 in the original Helmholtz NIM, now
the unknowns are the impedance traces _ 9 and f9 , which means that we construct
directly a right preconditioned system in this new Helmholtz NIM design. The
analytical solution of the Helmholtz equation (8) with constant source term ( 9 and
node impedance boundary conditions (16) on node 9 is

D09 (G) =
2( 9 + 4

−8: (ℎ+2G)
2 (−( 9 − 428:G (( 9 + 8:_ 9 ) − 8:f9

2:2 , (18)

and similarly we find on node 9 + 1

D09+1 (G) =
2( 9+1 + 4

−8: (ℎ+2G)
2 (−( 9+1 − 428:G (( 9+1 + 8:_ 9+1) − 8:f9+1

2:2 . (19)

In order to obtain the new Helmholtz NIM scheme, we use impedance condition
matching at the interface,

f9+1 =

(
−
3D09 (G)
3G

+ 8:D09 (G)
) �����
ℎ/2
, _ 9 =

(
3D09 (G)
3G

+ 8:D09 (G)
) �����
−ℎ/2

. (20)

This leads to the new finite difference type stencil
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Fig. 4: Norms of the system matrix of the new Helmholtz NIM from the stencils
(21), (22), (23), for varying wave number : and three mesh sizes: 0.1 (left), 0.05
(middle) and 0.025 (right).

f9+1−4−8ℎ:f9 =
(
− 8
:
+ 84

−8:ℎ

:

)
( 9 , _ 9 −4−8ℎ:_ 9+1 =

(
− 8
:
+ 84

−8:ℎ

:

)
( 9+1. (21)

For the first and last equation in the system, we need to use again the original
boundary conditions in (13), which leads for 9 = 1 to(

48ℎ: (: − 1)
2:

)
_1 +

(
: + 1
2:

)
f1 =

(
−8(: − 1) + 848ℎ: (: − 1)

2:2

)
(1. (22)

Similarly the equation on the right boundary, 9 = �, is

−
(
4−8ℎ: (: − 1)

2:

)
f� +

(
: + 1
2:

)
_� =

(
−8(: − 1) + 84−8ℎ: (: − 1)

2:2

)
(� . (23)

Now we can see from the stencil coefficients in Equation (21) of the new Helmholtz
NIM that there is no singularity present any more, and thus the system matrix norms
should not have this sensitive dependence on the wave number : any longer. This is
confirmed in Figure 4, where we plot the system matrix norm of our new Helmholtz
NIM for three different mesh sizes as a function of the wave number : . We see that
the norm stays nicely bounded below 3, whereas for the classical NIM the matrix
norms we observed were of the order of 145.

4 Conclusions

We presented a new nodal integration method (NIM) based on domain decompo-
sition techniques for the Helmholtz equation. In our new Helmholtz NIM, instead
of Dirichlet and Neumann transmission conditions that are usually used in the con-
struction of the NIM, we used impedance (or Robin) transmission conditions. This
modification changes the coefficients as well as the resulting system matrix struc-
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ture, and we observe that the new system matrix has nicely bounded norms for all
wave numbers, while the original NIM system matrix norm presented singularities.
However, the new systemmatrix is now twice the size of the old systemmatrix, since
we are solving for the Robin traces as unknowns. We gain stability at the cost of a
bigger system matrix. We are currently developing our new Helmholtz NIM in two
and three spatial dimensions, and also investigate if it is possible to use impedance
conditions without increasing the system matrix size. We are also studying the dis-
persion relation properties of our new Helmholtz NIM, and investigate its potential
for dispersion correction.
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