
Spectral analysis of implicit 2 stage block Runge-Kutta
preconditioners

Martin J. Gander∗, Michal Outrata†

Abstract

We analyze the recently introduced family of preconditioners in [15] for the stage equations
of implicit Runge-Kutta methods for two stage methods. We give explicit formulas for the
eigenvalues and eigenvectors of the preconditioned systems for a general method and use these
to give explicit convergence estimates of preconditioned GMRES for some common choices of
the implicit Runge-Kutta methods. This analysis also allows us to qualitatively predict and
explain the main observed features of the GMRES convergence behavior, not only bound it. We
illustrate our analysis with numerical experiments. We also consider the direction of numerical
optimization for improving the preconditioners performance, as suggested in [15]. We consider
two different ways – both distinct to the one introduced in [15] – and numerically optimize these,
using the explicit bounds obtained beforehand.
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Classification: 65F08, 65F10

1 Introduction

Runge-Kutta methods are a well-established family of one-step solvers for systems of ordinary
differential equations (ODEs; see [22, 21] for an overview and further references). For implicit
methods (IRK), their efficiency relies on a solver for the so-called stage equations – in general
a system of ns non-linear equations, where n is the number of scalar ODEs in the system and
s is the number of stages of the Runge-Kutta method. An important application arises from
the space discretization of time-dependent partial differential equations (PDEs), resulting in a
system of ODEs with very large n. If the spatial operator is linear, then the stage equations also
become a system of linear algebraic equations, which are often solved by an iterative solver, e.g.,
a Krylov method. In [15], the authors introduced a family of preconditioners for GMRES for the
stage equations, numerically showing that these preconditioners give an outstanding performance,
especially under refinement of the spatial mesh, i.e., as n grows. Recently, there has been also other
contributions in the direction of preconditioning the fully implicit Runge-Kutta stage equations for
PDEs, see [18, 17] and [4], but also [12] and [2], introducing new ideas and testing these numerically
on a variety of test problems.
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We focus on the setting considered by Rana et al. in [15] and analyze the convergence of the
preconditioned GMRES method, giving a theoretical background for the performance observed for
two stage methods. The general s-stage case will be treated in a follow-up manuscript. In Section 2
we summarize some preliminary knowledge and introduce the problem and the preconditioners
followed by some general results for Kronecker-like matrices in Section 3. We then give the analysis
of each of the block type of the preconditioners in Section 4.1 – 4.3 and also comment on the
possibility of numerical optimization to improve the solution process in Section 4.4.

2 Model problem and preliminaries

As our model problem we consider the heat equation on the unit square and a time interval (0, Tend),
i.e.,

∂

∂t
u = ∆u+ f in Ω× (0, Tend),

u = g on ∂Ω× (0, Tend) and u = u0 in Ω× {0},
(1)

where ∆ is the Laplace operator, f, g, u0 are given functions and Ω is the unit square Ω := (0, 1)×
(0, 1). We discretize in space using finite difference scheme on an equidistant grid with N +1 rows
and columns and with the mesh size h = 1/N as in Figure 1. The values at the interior grid points
become unknown functions of time, which are governed by the system of ODEs,

∂

∂t
ui(t) =

ui−N (t) + ui−1(t)− 4ui(t) + ui+1(t) + ui+N (t)

h2
+ b

(ST )
i (t), (2)

for i = N + 1, . . . , N(N − 1) − 1, where b(ST)
i (t) collects the known values from the source terms,

given by g and f , at the given point. Combining the unknowns in each grid column into one vector
denoted by uk(t), i.e.,

uk(t) :=
[
uNk+2 uNk+3 · · · uN(k+1)−1

]T
(t), u(t) :=

[
u1(t) · · · uN−1(t)

]T
,

and also analogously for bk(t) and b(t), we rewrite (2) as

∂

∂t
u(t) =

1

h2
Lu(t) + b(ST)(t), (3)

with

L =


T I

I
. . . . . .
. . . . . . I

I T

 , T =


−4 1

1
. . . . . .
. . . . . . 1

1 −4

 , I =


1
. . .

. . .
1

 , (4)

where L is of dimension n2 with n := (N − 1) and the blocks T, I are of dimension n. We discretize
[0, Tend] with MTend

+ 1 equidistant time points with time step τ = Tend/MTend
, i.e.,

{0 = t0 < t1 · · · < tMTend
−1 < tMTend

= Tend}, τ =
Tend

MTend

and tm = τ ·m, m = 0, . . . ,MTend
.
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Figure 1: Left: grid points for N + 1 = 4; right: lexicographical ordering of the unknowns for
N + 1 = 4.

Having a Butcher tableau

c A

b
:=

c1 a1,1 . . . a1,s
...

...
. . .

...

cs as,1 . . . as,s

b1 . . . bs

, (5)

the corresponding IRK method applied to (3) at the m-th time step gives the approximation
um ≈ u(tm) as

um = um−1 + τ

s∑
i=1

bik
m
i , (6)

where the vectors km
1 , . . . ,km

s ∈ Rn are the solutions of the linear system
I . . .

I

− τ

h2

a1,1L . . . a1,sL
...

. . .
...

as,1L . . . as,sL




︸ ︷︷ ︸
≡Is⊗In− τ

h2
(A⊗L)=:M

km =


1
h2Lu

m−1 + b(ST)(tm−1 + c1τ)
...

1
h2Lu

m−1 + b(ST)(tm−1 + csτ)

 , (7)

with
km :=

[
km1 · · · kms

]T ∈ Rns.

The symbol ⊗ stands for the Kronecker product (see [20] and references therein) and we would
like to note here that (7) can be reformulated into a matrix equation, which is in general better
suited for using a Krylov solver (see [14]). Here we focus on the analysis of the results in [15] and
thus we do not address this any further but a study of the preconditioners from [15] in the matrix
equations setting seems worthwhile. Having p ≤ 2s as the order of convergence of the IRK method
we assume that it is balanced with the spatial discretization error, i.e., that h2 = Ceτ

p for some
Ce > 0.
The problem (7) with the sparse system matrixM can be very large for h (and τ) small, suggest-

ing an iterative solver such as GMRES, BiCG or GCR should be used which in turn usually requires
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a preconditioner to become truly efficient. In [15], the authors introduce the block preconditioners

P d = Is ⊗ In − τ

h2
diag(A)⊗ L,

P u = Is ⊗ In − τ

h2
DAUA ⊗ L and P l = Is ⊗ In − τ

h2
LADA ⊗ L,

(8)

where LA, DA, UA are the LDU factors of the Butcher tableau matrix A. In addition, the authors
also consider the block triangular preconditioners

PGSL = Is ⊗ In − τ

h2
AL ⊗ L and PGSU = Is ⊗ In − τ

h2
AU ⊗ L, (9)

where GSL/GSU stands for Gauss-Seidel lower/upper, and AL,U is the lower/upper triangular
part of A, i.e.,

(AL)ij =

{
aij if i ≥ j

0 otherwise
, (AU )ij =

{
aij if i ≤ j

0 otherwise
.

Notice that if aii > 0 for all i = 1, . . . , s, then the preconditioners are invertible as L is symmetric
negative-definite. More general conditions for non-singularity of the preconditioners can be also
derived analogously to [18, Lemma 1].
Some of these – P d and PGSL – were considered already in [19], and the authors in [15] ob-

served numerically that the newly proposed preconditioners P u,l outperform the previously pro-
posed P d, PGSL as well as PGSU but without a clear understanding why that is the case and, more
generally, without any insight into the actual GMRES convergence behavior of these precondition-
ers. We aim to remedy this below.
Using GMRES for a linear system Cx = f with C being diagonalizable, i.e., C = SΛS−1 and

Λ = diag(λ1, . . . , λd), a standard convergence bound for the residuals rℓ reads

∥rℓ∥
∥r0∥

≤ κ(S) min
φ(0)=1
deg(φ)≤ℓ

max
1≤i≤d

|φ(λi)|, (10)

where κ(S) is the 2-norm condition number of the matrix S, see, e.g., [10, Section 5.7.2]. We
would like to highlight some aspects of this bound that is often used to study GMRES convergence
behavior.

Remark 1. As indicated above, the spectral information of the system matrix in GMRES (in our
case of the preconditioned system) does not generally govern the convergence (see [6], [7] and [1]
and also [10, Chapter 2 and 5.7] and the references therein). If the system matrix is normal,
i.e., it is diagonalizable with S unitary, then the spectral information is enough to use the ideal
GMRES bound. However, if C is non-normal, then a convincing argument needs to be put forward
to validate linking spectral information with the convergence behavior of GMRES as the authors
in [10, p. 303, Remark 1] point out.
Moreover, particular knowledge of the interaction of S and the initial residual r0 can lead to

a qualitative and quantitative improvement on (10), see, e.g., [9]. However, studying GMRES
bahavior with the bound (10), this interaction is completely lost.
We use the bound (10) in the above sense and do not address the aspect of the interaction of

the initial residual with the eigenbasis. It turns out that the bound (10) is still a fine enough tool
to help us understand the preconditioned GMRES behavior in our case.
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3 Analysis of the block preconditioners

We start by transforming the calculations into the eigenbasis of the spatial operator. Denoting the
eigenpairs of L by (λk,vk), we organize the eigenvectors into an n-by-n matrix V and define the
block transformation matrix Q,

V := [v1, . . . ,vn] , and Q :=

V . . .
V

 ∈ Rsn×sn. (11)

Transforming M blockwise into the V basis gives M̃ := QMQT ,

M̃ =

I . . .
I

− τ

h2

a1,1Λ . . . a1,sΛ
...

. . .
...

as,1Λ . . . as,sΛ

 , (12)

with Λ = diag(λ1, . . . , λn). With the preconditioners proposed in (8-9) we write the spectrum of
the preconditioned system as

sp(MP−1) = sp(QTMP−1Q) = sp(QTMQQTP−1Q) = sp
(
M̃P̃−1

)
,

where P̃ := QTPQ stands for one of the right-preconditioners P d,GSU,u and an analogous formula-
tion follows also for the left-preconditioners P l,GSL. As the preconditioners are defined blockwise
as scalar multiplications of L and I, their blockwise transformation into the eigenbasis of L is a
straight-forward calculation - replacing L with Λ (and keeping I)1. Next, such matrices – block
matrices with each block being a square, diagonal matrix – can be permuted into classical block-
diagonal matrices as the following lemma shows.

Lemma 1. Let C ∈ Rns×ns be a real matrix with block structure such that every block is a square
diagonal matrix, i.e.,

C =

Λ11 . . . Λ1s
...
. . .

...
Λs1 . . . Λss

 , with Λij = diag
(
λ
(ij)
1 , . . . , λ(ij)

n

)
∀ij. (13)

Then there exists a permutation matrix Π ∈ Rns×ns such that

ΠTCΠ =

C1

. . .
Cn

 with Cℓ =

λ
(11)
ℓ . . . λ

(1s)
ℓ

...
. . .

...

λ
(s1)
ℓ . . . λ

(ss)
ℓ

 ∈ Rs×s, (14)

for any ℓ = 1, . . . , n.

1This has also been observed in [18, Lemnma 1 and below] and can be formally stated as M being a matrix over
the commutative ring of linear combinations of L and I.
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Hence, C is diagonalizable if and only if Cℓ are diagonalizable for all ℓ = 1, . . . , n and if
Cℓ = V −1

ℓ DℓVℓ is the eigendecomposition of Cℓ with Dℓ = diag(µ
(1)
ℓ , . . . , µ

(s)
ℓ ), then

sp(C) =
n⋃

ℓ=1

s⋃
i=1

µ
(i)
ℓ .

If (µ,v) is an eigenpair of some Cℓ, then
(
µ,ΠT (v ⊗ eℓ)

)
is an eigenpair of C. As a result, if C

is diagonalizable with C = V −1DV , then

κ(V ) = max
ℓ=1,...,s

κ(Vℓ), (15)

where κ(·) is the 2-norm condition number.

Proof. Setting Eℓ = diag(0, . . . 0, 1, 0, . . . , 0) ∈ Rn×n as the matrix with the only non-zero entry
being at the position (ℓ, ℓ) with value one, we observe that

C =
n∑

ℓ=1

Cℓ ⊗ Eℓ.

Using the Kronecker product permutation property from [20, Eqn. (1) and below], we take Π such
that

ΠTCΠ =
n∑

ℓ=1

Eℓ ⊗ Cℓ =

C1

. . .
Cn

 ,

proving the first part of the statement. The rest follows by a direct calculation and the properties
of block-diagonal matrices.

Using Lemma 1 we can analyse the eigenproperties of M̃P̃−1 directly and thereby evaluate the
GMRES bound.

Remark 2. We note that an analogous lemma to Lemma 1 can also be formulated for non-normal
matrices (replacing QT by Q−1). Considering the Jordan canonical (or the Schur decomposition
form) of Cℓ, Lemma 1 can be reformulated to obtain a block upper bidiagonal (or block upper-
triangular) matrix.

To shorten the notation we set

θk :=
τ

h2
λk and Θ :=

τ

h2
Λ, (16)

as these quantities appear always together in the computations. By a direct calculation (see [13,
Appendix B.8]) we get the limit behavior of θk as τ, h → 0,

(θn, θ1) → (− 8

Ce
, 0),

(θ−1
1 , θ−1

n ) →
(
−∞,−Ce

8

)
,︸ ︷︷ ︸

(LIM)p=1

(θn, θ1) → (−∞, 0),

(θ−1
1 , θ−1

n ) → (−∞, 0),︸ ︷︷ ︸
(LIM)p>1

(17)

and continue by explicit calculations for the two stage methods.
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4 Two stage methods

For the case s = 2 we have

P̃ d =

[
I − a11Θ 0

0 I − a22Θ

]
, P̃GSL =

[
I − a11Θ 0
−a21Θ I − a22Θ

]
, P̃GSU =

[
I − a11Θ −a12Θ

0 I − a22Θ

]
,

P̃ u =

[
I − a11Θ −a12Θ

0 I −
(
a22 − a21a12

a11

)
Θ

]
, P̃ l =

[
I − a11Θ 0

−a21Θ I −
(
a22 − a21a12

a11

)
Θ

]
,

(18)
and we start with a useful lemma summarizing some direct calculations.

Lemma 2 ([13, Appendix B.8]). Let C ∈ R2×2.

(i) The eigenvalues µ1,2 of C are given by µ1,2 =
c11+c22

2 ± 1
2

√
D with D = (c11 − c22)

2 +4c12c21.
In particular, if D ̸= 0, then C is diagonalizable.

(ii-a) If c12 ̸= 0 and D ̸= 0, then C is diagonalizable and the eigenvectors v1,2 are given by v1,2 =

1
∥ṽ1,2∥ ṽ1,2 with ṽ1,2 =

[
1

α1,2

]
and αi =

{
0 if c11 = λi,

− c11−c22∓
√
D

2c12
if c11 ̸= λ1,2.

(ii-b) If c21 ̸= 0 and D ̸= 0, then C is diagonalizable and the eigenvectors v1,2 are given by v1,2 =

1
∥ṽ1,2∥ ṽ1,2 with ṽ1,2 =

[
α1,2

1

]
and αi =

{
0 if c22 = λi,

−−c11+c22∓
√
D

2c21
if c22 ̸= λ1,2.

(iii) If c12, c21 ̸= 0 and D ̸= 0, then the condition number κ(V ) of the matrix of eigenvectors of C

is given by κ(V ) =

√
∥ṽ1∥∥ṽ2∥+

√
(1+α1α2)(1+α1α2)

∥ṽ1∥∥ṽ2∥−
√

(1+α1α2)(1+α1α2)
, where αi is given as in (ii− a).

(iv-a) If c21 = 0, c12 ̸= 0 and c11 ̸= c22, then C is diagonalizable with real eigenvalues c11, c22 and

eigenvectors e1,v2, and the formula from (iii) simplifies to κ(V ) =
√

∥ṽ2∥+1
∥ṽ2∥−1 , where v1 is the

vector with non-zero entries from (ii-a), and α1 is its first component.

(iv-b) If c12 = 0, c21 ̸= 0 and c11 ̸= c22, then C is diagonalizable with real eigenvalues c11, c22 and

eigenvectors v1, e2, and the formula from (iii) simplifies to κ(V ) =
√

∥ṽ1∥+1
∥ṽ1∥−1 , where v2 is the

vector with non-zero entries from (ii-b).

We analyze first the block diagonal preconditioners, and then continue with the block triangular
ones. The calculations below give insight into the results presented in [15], e.g., give explicit
formulas for the results in Figure 4.1 and 4.3, Table 4.3 and Table 5.1, 5.2. and 5.3 from [15] for
s = 2.

4.1 Block diagonal preconditioner

A direct calculation gives

M̃(P̃ diag)−1 =

[
I −a12Θ(I − a22Θ)−1

−a21Θ(I − a11Θ)−1 I

]
, (19)
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and using Lemma 1 the eigen-information of the preconditioned system can be obtained from the
2-by-2 matrices

Xd
k :=

[
1 − a12θk

1−a22θk

− a21θk
1−a11θk

1

]
.

We immediately notice that Xd
k is diagonalizable if and only if

2

a12 = 0 ⇐⇒ a21 = 0. (20)

Assuming a12, a21 ̸= 0, we calculate the characteristic polynomial pXd
k
(λ) of Xd

k ,

pXd
k
(λ) = λ2 − 2λ+ 1−

a12a21θ
2
k

(1− a11θk)(1− a22θk)
,

and therefore the eigenvalues ξ(k)1,2 of X
d
k are given by

ξ
(k)
1,2 = 1±

√
Dk with Dk =

a12a21

(|θ−1
k |+ a11)(|θ−1

k |+ a22)
. (21)

We write ξ(k)1,2 as functions of |θk|−1,

ξ
(k)
1 = 1±

√
ϕ(|θk|−1) with ϕ(α) =

a12a21
(α+ a11)(α+ a22)

,

and α ∈ (|θ1|−1, |θn|−1) – an interval converging towards the limit interval in (17). If a11, a22 ≥ 0

(e.g., Gauss, Radau or Lobatto methods), then ξ
(k)
1,2 lie on a line segment in C going through the

point 1, which is either a part of the real axis (if sign(a12a21) ≥ 0) or on the line 1 + βi, β ∈ R
(otherwise). We have

|ξ(k)1,2 − 1| =
∣∣∣∣√ϕ(|θ−1

k |)
∣∣∣∣ =

√√√√∣∣∣∣∣ a12a12

(|θ−1
k |+ a11)(|θ−1

k |+ a22)

∣∣∣∣∣,
and hence3 the maximum of |ξ(k)1,2 −1| as a function of |θ−1

k | is attained either at one of the endpoints
of the interval in (17) or at an interior stationary point. Calculating the derivative, we get

(|ϕ|)′(α) = −sign (ϕ(α)) a12a21
2α+ a11 + a22

(α+ a11)2(α+ a22)2
,

and thus the only candidate for a stationary point is −(a11 + a22)/2 assuming it belongs to the
domain of ϕ (as mentioned above, this is not the case for the commonly used Gauss, Radau or
Lobatto methods). Assuming it does not, e.g., because a11, a22 > 0, the maximum is attained at
the left endpoint of the interval in (17), bounded from above by the value at α = 0 which gives

|ξ(k)1,2 − 1| ≤

√∣∣∣∣a12a21a11a22

∣∣∣∣. (22)

2If a12 = a21 = 0, then A is in fact diagonal and hence M = P d, making this case uninteresting.
3We assumed at the beginning of the section that the inverse (P̃ d)−1 exists and hence the denominator of ϕ is

non-zero. Hence |ϕ(α)| is a smooth function.
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Thus making this quantity small will make the eigenvalues cluster tightly around 1. Notice that
the bound above is suggesting to make the diagonal entries large compared to the off-diagonal ones,
making the matrix diagonal in the limit (and hence making the preconditioner exact). Assuming
aij ̸= 0 for i, j = 1, 2 and a11, a22 ≥ 0 we use Lemma 2, and the condition number of the matrix of
eigenvectors Sd

k of X
d
k is given by

κ
(
Sd
k

)
=

√√√√√1 +
∣∣∣a21(|θk|−1+a22)
a12(|θk|−1+a11)

∣∣∣+ ∣∣∣1− ∣∣∣a21(|θk|−1+a22)
a12(|θk|−1+a11)

∣∣∣∣∣∣
1 +

∣∣∣a21(|θk|−1+a22)
a12(|θk|−1+a11)

∣∣∣− ∣∣∣1− ∣∣∣a21(|θk|−1+a22)
a12(|θk|−1+a11)

∣∣∣∣∣∣ . (23)

Recalling (17), we see that κ
(
Sd
k

)
has no singularities in it and the limits at 0 and +∞ are also

real and bounded. Therefore the conditioning of the eigenbasis of the preconditioned system will
be uniformly bounded with respect to mesh refinement in space and time – just as the clustering
diameter.

Remark 3. Some authors call such preconditioners, i.e., preconditioners such that the eigenprop-
erties of the preconditioned system can be bounded independently of h and τ , order-optimal and
the general way to show order-optimality for these kind of preconditioners has been laid out in [11].
However, we want to emphasize that this independence does not mean, practically speaking, that
the given preconditioner is in some sense optimal or even well-performing (and this is even more
pronounced if the order-optimality is considered only with respect to the spectrum, omitting the
conditioning of the eigenbasis of the preconditioned system) – but in particular settings with addi-
tional reasoning this might be a useful property. Perhaps a better-suited name would be “mesh-”
or “discretization-independence”.

Given a Butcher tableau A, the bound (10) can be further approximated using the Joukowsky
bound with the Chebyshev polynomials in the complex plane, see [16, Section 6.11 and Corollary
6.33] and also [10, Section 5.7.2] and references therein. A relatively direct and elementary calcula-
tion then allows us to evaluate the bound (10), and in Figure 2 we show the GMRES convergence
behavior together with these bounds for different Butcher tableaus for P d on the left (for validation
of the above formulas and detailed calculations we refer the interested reader to [13, Section 7.3.1]).
Notice that as h is fixed for all methods we obtain different τ for each of the IRK methods and
therefore the scaling factor τ/h2 becomes h2(1/p−1). Hence, the difference is not only in the choice
of A but also in the interval spanned by θk and how close (or far) these are to the limit in (17).
We also want to address the notable staircase-like behavior. Since GMRES is invariant (in exact

arithmetic) to an orthogonal transformation we can focus on GMRES applied to a problem with
the block-diagonal matrix Xd := diag(Xd

1 , X
d
2 , . . . , X

d
n). As noted in [3], the optimal polynomial

4

that realizes the min-max part of the bound

∥rℓ∥
∥r0∥

≤ κ(Sd) min
φ(0)=1
deg(φ)≤ℓ

max
1≤k≤n

∥φ(Xd
k )∥,

equioscillates over the blocks in the sense of the above norm (see [3, Section 2.2, e.g., Table 2.1])
– but only for even degree polynomials, i.e., for ℓ = 2l for some l ∈ N. Similarly, in [10, Section

4In [3], the authors call these the Chebyshev polynomials of the given matrix – of Xd in this case.
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Figure 2: We show the GMRES performance (markers) together with the evaluated bound (10)
(dashed lines) for different preconditioners and Butcher tableaus. We set N = 100, τ = h2/p (p is
the order of convergence of the IRK method; pGauss = 4, pRadauIIA = 3, pLobattoIIIC = 2) and use a
random right-hand side.

5.7.2, p.291] the GMRES convergence bound (10) is adapted to a symmetric indefinite problem
with spectrum in two intervals I− ∪ I+ ≡ [−1, ν] ∪ [ν, 1]. Then (10) can be simplified to

∥rℓ∥
∥r0∥

≤ 2

(
κ− 1

κ+ 1

)[ℓ/2]

, (24)

where κ = 1/ν is the condition number of the given system matrix and [ℓ/2] is the integer part
of ℓ/2. Unfortunately, adapting this bound to our setting becomes very quickly very complicated
and goes beyond the scope of this text5. Nonetheless, both of these results suggest that GMRES
can be more natural to analyze over “double-iterations” by merging two consecutive iterations into
a single unit and analyzing the convergence behavior of these. This is supported by our results
and illustrated in Figure 2, where these units become the mentioned stairs, e.g., iteration 14 and
15, then 16 and 17 etc. This does not, however, give any insight into what happens within these
iteration units, i.e., to the speed-up observed at even iterations compared to the odd ones.
Recalling that the 2-by-2 blocks have eigenvalues ξ(k)1 ̸= ξ

(k)
2 , we notice that for all of the

considered Butcher tableau we have ξ
(k)
1 = ξ

(k)
2 , i.e., the eigenvalues are in complex conjugate

pairs on the line segment connecting 1 + i
√
|(a12a21)/(a11a22)| and 1− i

√
|(a12a21)/(a11a22)|. By

definition, the real GMRES polynomial6 aims to be small (in the maximum norm) over these
points. However, polynomials with real coefficients of odd degree have at least one real root.

5The main difficulty, in our eyes, is in the treatment of the optimal polynomials with real coefficients on two
separated line-segments in C. For more details on the real case and the derivation of (24) we refer also to [5, Chapter
3].

6That is, the polynomial realizing the min-max part of the bound (10).
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Hence, progressing from an even iteration to an odd one, the additional degree of freedom of the
GMRES polynomial is restricted so that the extra root is real. This condition is not restrictive if
and only if the value of the GMRES polynomial is relatively large at some ξ̂ close to the real line,
which in our case is the same as being close to the point 1. Therefore, starting at a given even
iteration, for the next GMRES iteration – odd one – the GMRES polynomial is made small at ξ̂

(and ξ̂) by virtue of placing the extra root at 1. In contrast to that, at the following even iteration,

the GMRES polynomial can be made small by two complex conjugate roots placed at ξ̂ and ξ̂.
Clearly the later is much more suitable than the former and hence we expect the even iterations
to decrease the residual significantly more than the odd ones7 – precisely as observed in Figure 2,
explaining the staircase. As a result, for the preconditioner P d with sign(a12a21 = −1 we should
stop GMRES only after even iterations8. Also, as h → 0 the scaled spectrum {θk} will represent
the intervals in (17) more accurately and we expect that the convergence behavior will, under mesh
refinement, tend to the bound. In the limit, the gap between the two complex conjugate branches
of the spectrum will be closed, the real root will always be as useful as any other and we would
expect essentially linear convergence.
Also, notice that this behavior is not quite as pronounced at the beginning. The above gives the

following reason – at the first couple of iterations, the GMRES polynomial is largest at the most
outlying (complex conjugate) parts of the spectrum. Hence, no matter the parity of the iteration,
there is no effect of the value of the GMRES polynomial at ξ̂ on the max norm of the GMRES
polynomial and as a result, at the beginning of the GMRES convergence curve, there is no reason
for a staircase-like convergence behavior.

4.2 Block upper-triangular preconditioner

We consider the preconditioners PGSU, P u and where necessary we join the quantities corresponding
to the preconditioners by writing, e.g., XGSU,u

k instead of XGSU
k and Xu

k . By analogous calculations
to Section 4.1, we obtain the formulas

XGSU
k =

[
1 0

− a21θk
1−a11θk

ξGSU
k

]
and Xu

k =

[
1 0

− a21θk
1−a11θk

ξuk

]
,

hence obtaining the spectrum of the preconditioned systems as the union of
{
1, ξGSU,u

k

}n

k=1
with

ξGSU
k =

|θ|2 det(A) + |θ|(a11 + a22) + 1

|θ|2a11a22 + |θ|(a11 + a22) + 1
,

ξuk =
|θ|2 det(A) + |θ|(a11 + a22) + 1

|θ|2 det(A) + |θ|(a11 + a22 − a21a12
a11

) + 1
.

(25)

7Note that GMRES chooses globally optimal placement of the GMRES polynomial roots by possibly changing all
roots placed at the previous iteration. That is, the “additional root” is not meant as an addition of an extra root to
those chosen previously but rather an additional root to be placed anew together with the previous ones. The roots
for two consecutive iterations will, surely, be different – the odd iteration has the restriction of having one real root
and the other complex conjugate roots are chosen with that in mind due to the optimality condition of GMRES.
For even iterations, all roots (can) come in complex conjugate pairs and in order to preserve the GMRES optimality
condition, all of them will be different compared to the previous iteration.

8For different spectrum sp(L) = {λ} this can change but can be analyzed analogously to the above.
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Moreover, Lemma 2 shows that for XGSU,d
k = (SGSU,d

k )−1diag(1, ξGSU,u
k )SGSU,d

k we have

κ(SGSU,u
k ) =

√√
1 + (βGSU,u)2 + 1√
1 + (βGSU,u)2 − 1

, (26)

where the scalars βGSU,u are given as functions of θk,

|βGSU| =
|a12|

||θk|−1 + a22|
, and |βu| =

|a12/a11|∣∣∣|θk|det(A)
a11

+ a11

∣∣∣ .
Further calculations give

ξGSU
k − 1 =

|θk|2a12a21
|θk|2a11a22 + |θk|(a11 + a22) + 1

,

ξuk − 1 =
|θk|a12a21/a11

|θk|2 det(A) + |θk|(a11 + a22 − a21a12
a11

) + 1
,

and assuming a11, a22 ≥ 0, elementary calculus reveals that the cluster diameter for PGSU is
bounded from above by |a12a21/(a11a22)| – the limit as |θk| → +∞. For P u analogous calculations
show that the cluster diameter is maximized at |θk| = det(A)−1/2 (assuming det(A) ∈ (|θn|, |θ1|))
with the value

|ξuk − 1| ≤

∣∣∣∣∣∣ a21a12

a211 + det(A) + 2a11√
det(A)

∣∣∣∣∣∣ .
The conditioning of the eigenbasis SGSU,u

k of XGSU,u
k can be treated similarly, first observing that

κ(SGSU,u
k ) is a decreasing function of |βGSU,u| ∈ (0,+∞) with a singularity at 0. Hence, as h, τ → 0,

the matrixXGSU
1 (andXu

n) becomes non-diagonalizable
9 as |θ1| → 0 (and |θn| → +∞). We show the

preconditioned GMRES convergence behavior and the evaluated bounds in Figure 2; for detailed
calculations and validation of the above formulas we refer the interested reader to [13, Section
7.3.2]. Also, notice that the stair-like behavior of P d is not present as the entire spectrum is real
and covers reasonably uniformly an interval on a real line and a single point 1. As the authors point
out in [10, Section 5.6.2 and 5.7.2], as long as the condition number κ(SGSU,u) is not too large, the
classical linear bound based on the condition number of the preconditioned system matrix (i.e., the
condition number of M

(
PGSU,u

)−1
) can be quite descriptive for the worst-case GMRES behavior.

If the preconditioned system is not far away from being normal, then this explains why we only
see the linear convergence – the spectrum is populating the interval considered densely enough
so that the superlinear convergence argument used in exact arithmetic is not applicable (i.e., we
cannot single out any outliers if there are none, see [10, Section 5.6.4 (Figure 5.7 in particular)
and also Section 5.6.4]). Hence, linear convergence is, in principle, to be expected. Also, this
explains the observation that the number of GMRES iterations does not grow as h → 0 as observed
in [15] (an analogous argument applies also to the block-diagonal preconditioner). Notice that the
accuracy of the bound (24) is usually supported by the same kind of arguments. By analogy, this

9We can see this already in (25) since in the limits considered we get ξGSU,u
k = 1 thus obtaining a 2-by-2 Jordan

block.
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also qualitatively explains the linear in the linear-over-two-iterations convergence behavior of the
block-diagonal preconditioned system.
In light of the above, we can also explain the observed difference between the results of the

preconditioners PGSU and P u for any particular choice of the method, i.e., for any given A, by
simply evaluating the above formulas and comparing. In more general terms, we notice that the
outliers of the spectrum {ξGSU

k } come from the outliers of the scaled spectrum {θk}, in contrast
to the outliers of the spectrum {ξuk}, which come from around the point θk ≈ det(A)−1/2. If the
scaled spectrum {θk} is more sparse at the edges than in the interior of the interval (|θ1|, |θn|), as
for our model problem, then we expect (for any not too large h) that a) the slope of the bound
for P u will be larger in absolute value than the one for PGSU, i.e., predicting faster convergence,
and b) the slope of the bound for P u will be more descriptive than the one for PGSU of the actual
GMRES behavior – both of these qualities are clearly confirmed in Figure 2. However, the price
paid is visible in the conditioning of the eigenbasis, as under the same conditions we observe that

minβGSU ≈ 1

max |θk|−1
= O(τ) and minβu ≈ 1

max |θk|−1
= O(τp−1),

i.e., the conditioning of the eigenbasis (and hence the initial offset of the corresponding bound) is
asymptotically notably worse for P u than for PGSU based on (26) – also confirmed in Figure 2.

4.3 Block lower-triangular preconditioner

The results for PGSL, P l are completely analogous to the ones from Section 4.2 and hence we just
present these without much comment; more details can be found in [13, Section 7.3.3]. We have

XGSL
k =

[
1 − a12θk

1−a11θk
0 ξGSL

k

]
and X l

k =

[
1 − a12θk

1−a11θk
0 ξlk

]
,

hence obtaining the spectrum of the preconditioned systems as the union of
{
1, ξGSL,l

k

}n

k=1
with

ξGSL
k = ξGSU

k =
|θ|2 det(A) + |θ|(a11 + a22) + 1

|θ|2a11a22 + |θ|(a11 + a22) + 1
,

ξlk = ξuk =
|θ|2 det(A) + |θ|(a11 + a22) + 1

|θ|2 det(A) + |θ|(a11 + a22 − a21a12
a11

) + 1
.

(27)

Moreover, Lemma 2 shows that for XGSL,l
k = (SGSL,l

k )−1diag(1, ξGSL,l
k )SGSL,l

k we have

κ(SGSL,l
k ) =

√√
1 + (βGSL,l)2 + 1√
1 + (βGSL,l)2 − 1

,

where the scalars βGSL,l are given as functions of θk,

|βGSL| =
|a21|

||θk|−1 + a22|
, and |βl| =

|a21/a11|∣∣∣|θk|det(A)
a11

+ a11

∣∣∣ .
Notice that the results are either identical or very similar to the ones obtained with PGSU, P u and
a comparison of the convergence behavior as well as of the bounds in Figure 2 and Figure 3 reflects
this.
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Figure 3: We show the GMRES performance (markers) together with the evaluated bound (10)
(dashed lines) for different preconditioners and Butcher tableaus. We set N = 100, τ = h2/p (p is
the order of convergence of the IRK method; pGauss = 4, pRadauIIA = 3, pLobattoIIIC = 2) and use a
random right-hand side.

4.4 Optimized Butcher tableaus

In [15], the authors consider taking a different A, let us denote it by Ã, for the construction of the
preconditioner, motivated by [19]. Ã is chosen as a result of an optimization routine seeking to
minimize κ(Ã−1A) (or κ(AÃ−1) for a right preconditioner) subject to a particular non-zero pattern
and diag(Ã) = diag(A). This optimization thus evaluates only quantities corresponding to the
s-by-s Butcher tableaus, which should be negligible in cost compared to the solution process of the
stage equations. Numerical results in [15, Table 4.3] show that the resulting preconditioner lowers
the condition number of the preconditioned system. Having explicit formulas from Section 4.1–4.3
we can move from minimizing the quantity κ(Ã−1A) (or κ(AÃ−1)) to minimizing quantities in the
bound (10) so that a provable bound can be obtained based on the result.
First, adapting the eigenpair formulas in Section 4.1 – 4.3 for the case A ̸= Ã we could opti-

mize the eigenproperties of the preconditioned system and thus obtain a theoretical bound on the
resulting preconditioner. Using Lemma 1, the matrices Xk are easily accessible with any A fixed.
Second, having A = Ã as in Section 4.1 – 4.3, we can still consider the same optimization

problem – but naturally with extra constraints so that the resulting IRK method has some desired
order of convergence and stability properties.
We numerically test these approaches, defining the objective function to be minimized as a

weighted sum of the cluster diameter10 |ξk − 1| and the conditioning of the eigenbasis of the pre-
conditioned system matrix κ(S),

fobj(A, Ã) := max
k

|ξk − 1|+ ωκ(S),

10The clustering point is for all of our preconditioners naturally equal to 1.
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with some positive small weight ω > 0. Minimizing fobj then aims to minimize the min-max part
of (10) while keeping the eigenbasis conditioning under control. In case that the clustering is very
tight we expect to get good GMRES convergence. Before showing the results we comment on the
usefulness of the optimization approach for the case A = Ã.

Remark 4. In order to optimize over A = Ã we have to keep in mind that we are at the same
time changing the IRK method we are using to solve the system of ODEs. This introduces some
optimization constraints to ensure good order of convergence (equality constraints on A,b, c) and
stability (equality and inequality constraints on A,b, c). In our experience, in order to obtain a
notable improvement in minimization of fobj over choosing A = AGauss,RadauIIA,..., we need to relax
some of the qualities of the IRK methods, e.g., decrease the order of convergence or give up some
level of stability.
In our eyes, this makes the optimization for A = Ã better suited for larger s (e.g., s ≥ 5), where

decreasing the order of convergence would usually not pose a significant drawback as the order of
convergence of the standard IRK methods is often excessively high; see [13, Section 7.5].

Note that even though Remark 4 suggests that the optimization with A = Ã is not really of
interest here, it is still reasonable to start studying it for s = 2, to get some insight in the case
where the formulas are explicitly available. We show the numerical results in Figure 4 and the
resulting matrices in Table 1 and note that the optimization was done without any fine-tuning of
the optimization routine itself towards our application11.
We see that for the setting A = Ã in the first row of Figure 4 the optimized A are such that we

converge after two to five iterations, basically turning GMRES into a direct solver12. This seems
natural looking at Table 1 – we observe that the Butcher tableau matrix A adapts the non-zero
structure of the preconditioner, e.g., A becomes close to diagonal for P d, so that the preconditioner
then becomes almost identical to M , reinforcing the point of Remark 4. Notably, this is achieved
while not exploding the condition number of the eigenbasis of the preconditioned system.
For the second row, i.e., A ̸= Ã and optimizing Ã that is used to construct the preconditioner,

we see that for the block-diagonal preconditioner we can still obtain a considerable speed-up, as
well as for the preconditioners PGSL,GSU. This is not the case, however, for the preconditioners
P l,u. The reason is that with A = Ã, the spectrum ofM(P l,u)−1 was real but this property is lost in
the general case A ̸= Ã. Hence, even though we have tightened the clustering of the eigenvalues by
optimizing Ã this wasn’t significant enough to off-set the introduction of the complex eigenvalues
of the preconditioned system.
We would like to note that we obtained similar results to the first row when considering p = 3

and A-stability (i.e., giving up the more restrictive property of L-stability) but for p = 3 and L-
stable methods there seemed to be next to no gains from the extra optimization (see [13, Section
7.5]).

11We used the python implementation of the Sequential Least SQuares Programming method
scipy.optimize.minimize(method=’SLSQP’), see [8], but we observed similar results for the commonly used
alternatives, e.g., with Constrained Optimization BY Linear Approximation (method=’COBYLA’) or trust region
methods (method=’trust-constr’). We used the weight value ω = 10−5 but, again, the goal at this point is not to
find the best performing parameters but rather give a generic comparison of the two approaches. We point out that
in our experience taking ω much larger or much smaller resulted in comparable but somewhat worse results.
12Notice that in practice the solve accuracy also needs to be balanced with the discretization errors, hence even
five iterations to obtain a relative residual smaller than machine precision might be considered a direct solver (i.e.,
converging after one or two steps) in some applications.
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Figure 4: GMRES convergence (and bounds) for block preconditioners P d (left column), PGSL, P l

(middle column) and PGSU, P u (right column) for the two stage RadauIIA Butcher tableau (filled
markers, same results as in Figure 2 and 3) and also the optimized setting considered above (half-
filled markers). In the second row the optimization process changes only the matrix Ã used to
construct the preconditioner (and not M) in contrast to the first row where the optimized is used
for construction of both the system matrix and the preconditioner (in this case we imposed A to
be such that the resulting IRK method is at least of order two and is L-stable, the constraints can
be found in [13, Section 7.3.4]). We used ω = 10−5, N = 100 and τ = h2/p as above.

Last but not least we comment on the computational costs. In order to evaluate the complete
eigenproperties of the preconditioned system M(P ⋆)−1 (or (P ⋆)−1M) we first calculate the eigen-
decomposition of L (which is prohibitively costly) and then we calculate eigendecompositions of n
matrices X⋆

k , each of dimension s, which can be done in parallel. Even without any parallelization
the cost is linear in n with the constant corresponding to s3. In practice, we often have (or can
reasonably cheaply obtain) some estimate of the eigeninformation of L, e.g., estimates µ1, µn of
the true eigenvalues λ1, λn or on the conditioning of V . The eigendecomposition of L can then be
replaced by, e.g., considering only q “fake” λk sampled from (µmin, µmax) (assuming we know the
spectrum of L is real).
We show a numerical illustration, considering the same setting as for Figure 4 and sample only

q distinct λk (and thus θk) in the interval µmin := θmin, µmax := θmax. We show the evolution of the
number of preconditioned GMRES with the optimized preconditioners depending on q in Figure 5.
We see that for the spatial dimension n = 992 we already get comparable results to Figure 4 by
sampling only very few “fake” θk compared to optimizing over the actual roughly ten thousands
of them. Also, the bounds stay still quite descriptive – only for q = 40 and PGSU have we found
that running the optimization as a black-box does not give a useful descriptive bound13. This

13In fact for that particular setting the optimization routine sets off in a direction of inadmissible A (singular) and
does not find its way back. Fine tuning the parameters of the optimization routine does, however, fix this issue.
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block diagonal block lower-triangular block upper-triangular
P d PGSL P l PGSU P u

A = Ã

[
1.8 · 10−1 −3.8 · 10−6

2.3 · 10−6 3.9 · 10−1

] [
3.5 · 10−1 −4.5 · 10−9

2.5 · 10−6 2.3 · 10−1

] [
3.2 · 10−1 −3.0 · 10−8

9.6 · 10−1 2.7 · 10−1

] [
3.5 · 10−1 4.2 · 10−1

−5.8 · 10−9 2.3 · 10−1

] [
4.9 · 10−1 −5.2 · 10−2

6.3 · 10−8 1.7 · 10−2

]
A ̸= Ã

[
9.3 · 10−1 4.8 · 10−2

4.0 · 10−1 1.3 · 10−1

] [
5.1 · 10−1 −6.6 · 10−2

8.0 · 10−1 3.0 · 10−1

] [
4.1 · 10−1 −8.4 · 10−2

7.4 · 10−1 2.2 · 10−1

] [
4.1 · 10−1 −8.2 · 10−2

7.0 · 10−1 3.7 · 10−1

] [
4.1 · 10−1 −8.1 · 10−2

7.2 · 10−1 2.3 · 10−1

]

Table 1: The resulting matrices A = Ã (first row) or Ã (second row) corresponding to the results
presented in Figure 4.
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Figure 5

observation is key for either of the optimization approaches to be viable and further study of q for
more involved settings (and its dependency on n) and/or sampling strategies for complex spectra is
necessary. However, as the main interest is in s large, this will be presented in the follow-up work.

5 Generalizations and conclusion

We have shown that for two stage IRK methods the preconditioners from [15] can be analyzed
explicitly using spectral techniques and the GMRES convergence behavior can be reasonably pre-
dicted using the worst-case GMRES bound. This bound can be evaluated directly before the
computations and gives a theoretical background to the results observed in [15]. These results
are given for a simple test problem but the analysis clearly extends to any diagonalizable spatial
operator L – not just the Laplacian. The same is true also for the discretization scheme used – a
finite elements scheme analysis can be done completely analogously (see [13, Section 7.7]). Some of
the above can be generalized to s-stage IRK methods but due to the space restrictions these results
will be presented in an upcoming manuscript.
We would also like to mention that both in[12] and [18], the authors multipliedM with A−1⊗In

from the left. The analysis above for this case is analogous and reveals that for some preconditioners
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we obtain much better properties and for others the performance deteriorates. This is naturally
very dependent on the choice of A as well; for more details see [13, Section 7.6].
Last but not least, we would like to thank the anonymous reviewers for the careful reading of

the manuscript and their insightful comments that helped us further improve it.
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