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Abstract

We consider a waveform relaxation method applied to the inhomogeneous heat
equation with piecewise continuous initial and boundary conditions and a bounded
Hölder continuous forcing function. Traditionally, to obtain a waveform relaxation
algorithm, the equation is first discretized in space and the discrete matrix is split.
Superlinear convergence on bounded time intervals can be shown but the error bounds
are dependent on Lipschitz constants of the splitting which, in the case of the heat
equation, typically blow up as ∆x goes to zero.

We split the partial differential equation (PDE) directly by using overlapping do-
main decomposition. We prove linear convergence of the algorithm in the continuous
case on an infinite time interval, at a rate depending on the size of the overlap. This
result remains valid after discretizing in space, leading to a waveform relaxation al-
gorithm for the spatially discretized heat equation which exhibits linear convergence
at a rate independent of the mesh parameter ∆x. The algorithm is in the class of
waveform relaxation algorithms based on over-lapping splittings.

Numerical results are presented which support the convergence theory.

1 Introduction

The basic ideas underlying waveform relaxation were first suggested in the late 19th
century by Picard and Lindelöf ([13], [20]). There has been much recent interest in
waveform relaxation as a practical parallel method for the solution of stiff ordinary
differential equations (ODE’s) after the publication of a paper by Lelarasmee and
coworkers [12], and the paper by O’Leary and White [19] which introduced multi-
splittings of matrices for the solution of linear systems of equations. Recent work in
this field includes papers by Miekkala and Nevanlinna [15], [16], Nevanlinna [17] and
Bellen and Zennaro [1].

The standard convergence result for a system of nonlinear ODE’s needs the as-
sumption that the splitting function is Lipschitz continuous in both arguments. It
states superlinear convergence on any finite time interval [0, T ]. Specifically the con-
stant relating the error at the nth iteration to the initial error is

(C1T )
n

n!
eC2T (1.1)
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where C1 and C2 are the global Lipschitz constants of the splitting function in the
first and second argument. This result can be found for example in Bjørhus [4].

For a linear system of ODE’s which is asymptotically stable Miekkala and Nevan-
linna show in [15] the existence of splittings such that the waveform relaxation al-
gorithm converges linearly on the infinite time interval [0,∞). Jeltsch and Pohl
extended the results for the linear case on bounded time intervals to overlapping
splittings and show superlinear convergence in [11]. They also extend the results on
unbounded time intervals to overlapping splittings for a certain class of problems.
Overlapping splittings lead to natural parallelism in the solution process.

However in all the results mentioned the constants in general depend badly on
∆x if the linear ODE arises from a PDE which is discretized in space.

The domain decomposition algorithm was developed by Schwarz in 1869 [21] to
show existence of harmonic functions on irregular domains which were compositions
of regular domains. The paper by Lions [14] develops a framework for studying
domain decomposition methods. Recent interest in domain decomposition as a com-
putational tool has been motivated by the work of Bramble, Pasciak and Shatz [5],
Dryja [10], Bjørstad and Widlund [2] and a thorough review may be found in Chan
and Mathew [9]. There are two different approaches for domain decomposition. The
first one is to divide the domain into overlapping subdomains and then solve the
equations iteratively on each subdomain using the data from the adjacent domains
as boundary data. This method is known as the Schwarz algorithm. The second
approach is to divide the domain into nonoverlapping subdomains and then to solve
the equations on the boundaries between subdomains first, before calculating the
solution in their interior. This technique is known as the Schur or Poincaré-Steklov
approach.

Motivated by the work of Bjørhus [3], we show in this paper how one can use
overlapping domain decomposition to obtain a waveform relaxation algorithm for
the semi-discrete heat equation which converges at a rate independent of the mesh
parameter ∆x. In section 2 we consider a decomposition of the domain into two
subdomains. We prove linear convergence of the algorithm dependent on the size of
the overlap in the continuous case, and we show that the same method of proof can
be applied in the semi-discrete case. This section is mainly for illustrative purposes
since the analysis can be performed in great detail. In section 3 we generalize this
result to an arbitrary number of subdomains. Section 4 shows how our algorithm can
be formulated in the framework of waveform relaxation, using overlapping splittings.
In section 5 we show numerical experiments which confirm the convergence results,
and section 6 contains concluding remarks.

Some ideas similar to those used here were apparently introduced by Nevanlinna
at the 4th International Symposium on Domain Decomposition Methods for Partial
Differential Equations in Moscow in 1990 [18], but never published.
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2 Two Subdomains

2.1 Continuous Case

Consider the one dimensional inhomogeneous heat equation on the interval [0, L],

∂u
∂t

= ∂2u
∂x2

+ f(x, t) 0 < x < L, t > 0

u(0, t) = g1(t) t > 0
u(L, t) = g2(t) t > 0
u(x, 0) = u0(x) 0 < x < L,

(2.1)

where we assume f(x, t) to be bounded on the domain [0, L]× [0,∞) and uniformly
Hölder continuous on each compact subset of the domain. We assume further-
more that the initial data u0(x) and the boundary data g1(t), g2(t) are piecewise
continuous. Then (2.1) has a unique bounded solution [8]. Given any function
f(t) : IR+ −→ IR we define

||f(·)||∞ := sup
t>0

|f(t)|

Theorem 2.1 (Maximum Principle) The solution u(x, t) of the heat equation
(2.1) with f(x, t) ≡ 0 attains its maximum and minimum either on the initial line
t = 0 or on the boundary at x = 0 or x = L. If u(x, t) attains its maximum in the
interior, then u(x, t) must be constant.

Proof The proof can be found in [24].

Corollary 2.2 The solution u(x, t) of the heat equation (2.1) with f(x, t) ≡ 0 and
u0 ≡ 0 satisfies the inequality

||u(x, ·)||∞ ≤
L− x

L
||g1(·)||∞ +

x

L
||g2(·)||∞, 0 ≤ x ≤ L. (2.2)

Proof Consider ũ solving

∂ũ
∂t

= ∂2ũ
∂x2

0 < x < L, t > 0

ũ(0, t) = ||g1(·)||∞ t > 0
ũ(L, t) = ||g2(·)||∞ t > 0

ũ(x, 0) = L− x
L

||g1(·)||∞ + x
L
||g2(·)||∞ 0 ≤ x ≤ L

(2.3)

The solution ũ of (2.3) does not depend on t and is given by the steady state solution

ũ(x) =
L− x

L
||g1(·)||∞ +

x

L
||g2(·)||∞

By construction we have ũ(x)− u(x, t) ≥ 0 at t = 0 and on the boundary x = 0 and
x = L. Since ũ − u is in the kernel of the heat operator, we have by the maximum
principle for the heat equation ũ(x)− u(x, t) ≥ 0 on the whole domain [0, L]. Hence

u(x, t) ≤
L− x

L
||g1(·)||∞ +

x

L
||g2(·)||∞.

3



Likewise ũ(x)+u(x, t) ≥ 0 at t = 0, x = 0 and x = L and is in the kernel of the heat
operator. Hence

u(x, t) ≥ −

(

L− x

L
||g1(·)||∞ +

x

L
||g2(·)||∞

)

.

Therefore we have

|u(x, t)| ≤
L− x

L
||g1(·)||∞ +

x

L
||g2(·)||∞.

Now the right hand side does not depend on t, so we can take the supremum over t,
which leads to the desired result.

We decompose the domain Ω = [0, L] × [0,∞) into two overlapping subdomains
Ω1 = [0, βL] × [0,∞) and Ω2 = [αL,L] × [0,∞) where 0 < α < β < 1 as given in
figure 1. The solution u(x, t) of (2.1) can now be obtained by composing the solutions

Ω2Ω1 Ω1 ∩ Ω2

x

LαL βL0

t

Figure 1: Decomposition into two overlapping subdomains.

v(x, t) on Ω1 and w(x, t) on Ω2, which satisfy the equations

∂v
∂t

= ∂2v
∂x2

+ f(x, t) 0 < x < βL, t > 0

v(0, t) = g1(t) t > 0
v(βL, t) = w(βL, t) t > 0
v(x, 0) = u0(x) 0 < x < βL

(2.4)

and
∂w
∂t

= ∂2w
∂x2

+ f(x, t) αL < x < L, t > 0

w(αL, t) = v(αL, t) t > 0
w(L, t) = g2(t) t > 0
w(x, 0) = u0(x) αL < x < L.

(2.5)

To see why u can be obtained by composing v and w, note first that v = u on Ω1 and
w = u on Ω2 are solutions to (2.4) and (2.5). To show that these solutions are unique,
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assume there is a second pair of solutions ṽ 6= v and w̃ 6= w. Then the differences
φ := v − ṽ and ψ := w − w̃ satisfy the equations

∂φ
∂t

=
∂2φ

∂x2
0 < x < βL, t > 0

φ(0, t) = 0 t > 0
φ(βL, t) = ψ(βL, t) t > 0
φ(x, 0) = 0 0 < x < βL

and
∂ψ
∂t

= ∂2ψ

∂x2
αL < x < L, t > 0

ψ(αL, t) = φ(αL, t) t > 0
ψ(L, t) = 0 t > 0
ψ(x, 0) = 0 αL < x < L.

By the maximum principle φ attains its maximum φmax and minimum φmin on the
boundary or on the initial line. Since we assumed φ 6= 0 at least one of φmax, φmin
is not equal to zero. Assume without loss of generality that φmax > 0. Then by the
maximum principle φmax = supt>0 ψ(βL, t) and by Corollary 2.2 φ(αL, t) ≤ α

β
φmax <

φmax since 0 < α < β < 1. Similar ψmax = supt>0 φ(αL, t) and ψ(βL, t) < ψmax.
This implies

φmax = sup
t>0

ψ(βL, t) < ψmax = sup
t>0

φ(αL, t) < φmax

which is a contradiction. Hence φ ≡ 0. A similar argument shows ψ ≡ 0. Hence u is
given by v on [0, βL] and w on [αL,L]. Note that v ≡ w in the overlap [αL, βL].

The system (2.4) and (2.5) of equations, which is coupled through the boundary,
can be solved using the Schwarz iteration

∂vk+1

∂t
= ∂2vk+1

∂x2
+ f(x, t) 0 < x < βL, t > 0

vk+1(0, t) = g1(t) t > 0
vk+1(βL, t) = wk(βL, t) t > 0
vk+1(x, 0) = u0(x) 0 < x < βL

and
∂wk+1

∂t
= ∂2wk+1

∂x2
+ f(x, t) αL < x < L, t > 0

wk+1(αL, t) = vk(αL, t) t > 0
wk+1(L, t) = g2(t) t > 0
wk+1(x, 0) = u0(x) αL < x < L.

Let dk(x, t) := vk(x, t) − v(x, t) and ek(x, t) := wk(x, t) − w(x, t) and consider the
error equations

∂dk+1

∂t
= ∂2dk+1

∂x2
0 < x < βL, t > 0

dk+1(0, t) = 0 t > 0
dk+1(βL, t) = ek(βL, t) t > 0
dk+1(x, 0) = 0 0 < x < βL

(2.6)
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and
∂ek+1

∂t
= ∂2ek+1

∂x2
αL < x < L, t > 0

ek+1(αL, t) = dk(αL, t) t > 0
ek+1(L, t) = 0 t > 0
ek+1(x, 0) = 0 αL < x < L.

(2.7)

Lemma 2.3 The error of the Schwarz iteration for the heat equation with two sub-
domains decays on x = αL and x = βL at a rate depending on the size of the overlap.
Specifically, we have

||dk+2(αL, ·)||∞ ≤
α(1− β)

β(1− α)
||dk(αL, ·)||∞, (2.8)

||ek+2(βL, ·)||∞ ≤
α(1− β)

β(1− α)
||ek(βL, ·)||∞. (2.9)

Proof By Corollary 2.2 we have

||dk+2(x, ·)||∞ ≤
x

βL
||ek+1(βL, ·)||∞ ∀x ∈ [0, βL]. (2.10)

and

||ek+1(x, ·)||∞ ≤
L− x

(1− α)L
||dk(αL, ·)||∞ ∀x ∈ [αL,L]. (2.11)

From (2.11) at x = βL we get

||ek+1(βL, ·)||∞ ≤
1− β

1− α
||dk(αL, ·)||∞. (2.12)

Likewise from (2.10) at x = αL we obtain

||dk+2(αL, ·)||∞ ≤
α

β
||ek+1(βL, ·)||∞. (2.13)

Combining (2.12) and (2.13) gives the desired result. The second inequality (2.9) is
obtained in the same way.

Given any function g(x, t) : [a, b]× IR+ −→ IR we define

||g(·, ·)||∞,∞ := sup
a<x<b,t>0

|g(x, t)|

Theorem 2.4 The Schwarz iteration for the heat equation with two subdomains con-
verges at a rate depending on the size of the overlap. The error on the two subdomains
decays at the rate

||d2k+1(·, ·)||∞,∞ ≤

(

α(1 − β)

β(1− α)

)k

||e0(βL, ·)||∞ (2.14)

||e2k+1(·, ·)||∞,∞ ≤

(

α(1 − β)

β(1− α)

)k

||d0(αL, ·)||∞. (2.15)
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Proof Since the errors dk and ek are both in the kernel of the heat operator they
obtain, by the maximum principle, their maximum value on the boundary or on the
initial line. On the initial line and the exterior boundary both dk and ek vanish.
Hence

||d2k+1(·, ·)||∞,∞ ≤ ||e2k(βL, ·)||∞

||e2k+1(·, ·)||∞,∞ ≤ ||d2k(αL, ·)||∞.

Using Lemma 2.3 the result follows.

2.2 Semi-Discrete Case

Consider the heat equation continuous in time, but discretized in space using a
centered second order finite difference scheme on a grid with n grid points and ∆x =
L
n+1 . This gives

∂u
∂t

= A(n)u+ f(t) t > 0

u(0) = u0,
(2.16)

where the n× n matrix A(n) is given by

A(n) =
1

(∆x)2















−2 1 0

1 −2
. . .

. . .
. . . 1

0 1 −2















(2.17)

and f(t) = (f(∆x, t)+ 1
(∆x)2 g1(t), f(2∆x, t), . . . , f((n−1)∆x, t), f(n∆x, t)+ 1

(∆x)2 g2(t))
T ,

u0 = (u0(∆x), . . . , u0(n∆x))
T .

We note the following property of A(n) for later use: let p := (p1, . . . , pn)
T where

pj := j. Then

A(n)p = (0, . . . , 0,
−(n+ 1)

(∆x)2
)T . (2.18)

Likewise let q := (q1, . . . , qn)
T where qj := n+ 1− j. Then

A(n)q = (
−(n+ 1)

(∆x)2
, 0, . . . , 0)T (2.19)

We use the following notation: let v(t) be a time dependent vector valued function.
We define v(i, t) to be the i-th component of v(t). We are choosing this notation to
emphasize that the index i in the semi-discrete case plays the role of x in the con-
tinuous case. Furthermore if u(t) is another time dependent vector valued function,
the notation v(t) ≥ u(t) means that the inequality holds in each component.

Theorem 2.5 (Semi-Discrete Maximum Principle) Assume u(t) solves the
semi-discrete heat equation (2.16) with f(t) = (f1(t), 0, . . . , 0, f2(t))

T and u(0) =
(u1(0), . . . , un(0))

T . If f1(t) and f2(t) are non negative for t ≥ 0 and ui(0) ≥ 0 for
i = 1, . . . , n then

u(t) ≥ 0, ∀t ≥ 0.
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Proof We follow Varga’s proof in [22]. By Duhamel’s principle the solution u(t) is
given by

u(t) = eA(n)tu(0) +

∫ t

0
eA(n)(t−s)f(s)ds (2.20)

Now the matrix eA(n)t has only non negative entries. To see this write A(n) =
−2I(n) + J(n) where J(n) contains only non negative entries and I(n) is the identity
matrix of size n× n. We get

eA(n)t = e−2I(n)teJ(n)t

= e−2teJ(n)t

= e−2t
∞
∑

l=0

J l(n)t
l

l!

where the last expression has clearly only non negative entries. Since the matrix
exponential in (2.20) is applied only to vectors with non-negative entries, it follows
that u(t) can not become negative.

Corollary 2.6 The solution u(t) of the semi-discrete heat equation (2.16) with f(t) =
( 1
(∆x)2 g1(t), 0, . . . , 0,

1
(∆x)2 g2(t))

T and u0 ≡ 0 satisfies the inequality

||u(j, ·)||∞ ≤
n+ 1− j

n+ 1
||g1(·)||∞ +

j

n+ 1
||g2(·)||∞, 1 ≤ j ≤ n. (2.21)

Proof Consider ũ(t) solving

∂ũ
∂t

= A(n)ũ+ f̃ , t > 0

ũ(j, 0) = n+ 1− j
n+ 1 ||g1(·)||∞ + j

n+ 1 ||g2(·)||∞, 1 ≤ j ≤ n,
(2.22)

with f̃ = ( 1
(∆x)2 ||g1(t)||∞, 0, . . . , 0,

1
(∆x)2 ||g2(t)||∞)T . Using the properties (2.18) and

(2.19) of A(n) and the linearity of (2.22) we find that the solution ũ of (2.22) does
not depend on t and is given by the steady state solution

ũ(j) =
n+ 1− j

n+ 1
||g1(·)||∞ +

j

n+ 1
||g2(·)||∞, 1 ≤ j ≤ n.

The difference φ(j, t) := ũ(j) − u(j, t) satisfies the equation

∂φ
∂t

= A(n)φ+



















1
(∆x)2

(||g1(·)||∞ − g1(t))

0
...
0

1
(∆x)2 (||g2(·)||∞ − g2(t))



















, t > 0

φ(j, 0) = n+ 1− j
n+ 1 ||g1(·)||∞ + j

n+ 1 ||g2(·)||∞, 1 ≤ j ≤ n.

and hence the discrete maximum principle applies to φ. We get φ(j, t) ≥ 0 for all
t > 0 and 1 ≤ j ≤ n and thus

u(j, t) ≤
n+ 1− j

n+ 1
||g1(·)||∞ +

j

n+ 1
||g2(·)||∞, 1 ≤ j ≤ n.
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Likewise ψ(j, t) := ũ(j) + u(j, t) satisfies the equation

∂ψ
∂t

= A(n)ψ +



















1
(∆x)2

(||g1(·)||∞ + g1(t))

0
...
0

1
(∆x)2 (||g2(·)||∞ + g2(t))



















, t > 0

ψ(j, 0) = n+ 1− j
n+ 1 ||g1(·)||∞ + j

n+ 1 ||g2(·)||∞, 1 ≤ j ≤ n.

and therefore by discrete maximum principle ψ(j, t) ≥ 0 for all t > 0 and 1 ≤ j ≤ n.
Hence

u(j, t) ≥ −

(

n+ 1− j

n+ 1
||g1(·)||∞ +

j

n+ 1
||g2(·)||∞

)

, 1 ≤ j ≤ n.

We obtain thus a bound on the modulus of u, namely

|u(j, t)| ≤
n+ 1− j

n+ 1
||g1(·)||∞ +

j

n+ 1
||g2(·)||∞, 1 ≤ j ≤ n.

Now the right hand side does not depend on t, so we can take the supremum over t,
which leads to the desired result.

We decompose the domain into two overlapping subdomains Ω1 and Ω2 as in
figure 2. We assume for simplicity that αL falls on the grid point i = a and βL

bc for Ω2

Ω2

nba210

Ω1

bc for Ω2

bc for Ω1bc for Ω1

x

Figure 2: Decomposition in the semi-discrete case.

on the grid point i = b. We therefore have a∆x = αL and b∆x = βL. Note that
the number of grid points in the overlap goes to infinity as ∆x goes to zero. As in
the continuous case, the solution u(t) of (2.16) can be obtained by composing the
solutions v(t) on Ω1 and w(t) on Ω2, which satisfy the equations

∂v
∂t

= A(b−1)v + f (w)(t) t > 0

v(j, 0) = u0(j), 1 ≤ j < b,
(2.23)
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where f (w) := (f(1, t), . . . ,f(b− 2, t),f (b− 1, t) + 1
(∆x)2w(b− a, t))T and

∂w
∂t

= A(n−a)w + f (v)(t) t > 0

w(j − a, 0) = u0(j) b ≤ j ≤ n
(2.24)

where f (v) := (f(a + 1, t) + 1
(∆x)2v(a, t),f (a + 2, t), . . . ,f(n, t))T . To see why one

can compose v and w to obtain u, note first that v(t) = (u(1, t), . . . ,u(b − 1, t))T

and w(t) = (u(a + 1, t), . . . ,u(n, t))T is a solution of (2.23) and (2.24). To show
that these solutions are unique, assume there is a second pair of solutions ṽ 6= v and
w̃ 6= w to reach a contradiction. The differences φ := v− ṽ and ψ := w− w̃ satisfy
the equations

∂φ
∂t

= A(b−1)φ+ f (ψ)(t) t > 0

φ(0) = 0

where f (ψ) := (0, . . . , 0, 1
(∆x)2ψ(b− a, t))T and

∂ψ
∂t

= A(n−a)ψ + f (φ)(t) t > 0

ψ(0) = 0

where f (φ) := ( 1
(∆x)2

φ(a, t), 0, . . . , 0)T . By Corollary 2.6 we have

||φ(j, ·)||∞ ≤
j

b
||ψ(b− a, ·)||∞ (2.25)

and

||ψ(j, ·)||∞ ≤
n+ 1− a− j

n+ 1− a
||φ(a, ·)||∞. (2.26)

Evaluating equation (2.25) at j = a gives

||φ(a, ·)||∞ ≤
a

b
||ψ(b− a, ·)||∞. (2.27)

Similarly evaluating equation (2.26) at j = b− a yields

||ψ(b− a, ·)||∞ ≤
n+ 1− b

n+ 1− a
||φ(a, ·)||∞. (2.28)

Combining (2.27) and (2.28) leads to to

||ψ(b− a, ·)||∞ ≤
a(n + 1− b)

b(n + 1− a)
||ψ(b− a, ·)||∞. (2.29)

Now since 1 ≤ a < b ≤ n we have

a < b ⇐⇒ a(n+ 1) < b(n+ 1)

⇐⇒ a(n+ 1)− ab < b(n+ 1)− ba

⇐⇒
a(n+ 1− b)

b(n+ 1− a)
< 1
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and therefore (2.29) is a contradiction. Hence ψ ≡ 0 and by a similar argument
φ ≡ 0. Thus the solution of (2.16) is given by u(j, t) ≡ v(j, t) for 1 ≤ j < b and by
u(j, t) ≡ w(j−a, t) for b ≤ j ≤ n. Note that in the overlap, we have v(j, t) ≡ w(j, t)
for a < j < b.

The system (2.23) and (2.24), which is coupled trough the forcing term coming
from the boundary, can be solved using the Schwarz iteration

∂vk+1

∂t
= A(b−1)v

k+1 + f (wk) t > 0

vk+1(j, 0) = u0(j) 1 ≤ j < b,

with f (wk) = (f(1, t)+ 1
(∆x)2 g1(t),f (2, t), . . . ,f(b−2, t),f (b−1, t)+ 1

(∆x)2w
k(b−a, t))T

and
∂wk+1

∂t
= A(n−a)w

k+1 + f (vk) t > 0

wk+1(j − a, 0) = u0(j) b ≤ j ≤ n,

with f (vk) = (f(a+1, t)+ 1
(∆x)2v

k(a, t),f (a+2, t), . . . ,f(n−1, t),f (n, t)+ 1
(∆x)2 g2(t))

T .

Let dk(t) := vk(t)− v(t) and ek(t) := wk(t)−w(t) and consider the error equations

∂dk+1

∂t
= A(b−1)d

k+1 + f (ek) t > 0

dk+1(0) = 0
(2.30)

with f (ek) = (0, . . . , 0, 1
(∆x)2e

k(b− a, t))T and

∂ek+1

∂t
= A(n−a)e

k+1+ t > 0

ek+1(0) = 0
(2.31)

with f (dk) = ( 1
(∆x)2d

k(a, t), 0, . . . , 0)T .

Lemma 2.7 The error dk and ek of the Schwarz iteration (2.30), (2.31) for the
semi-discrete heat equation with two overlapping subdomains decays on the grid points
a and b at a rate depending on the size of the overlap. Specifically, we have

||dk+2(a, ·)||∞ ≤
α(1 − β)

β(1 − α)
||dk(a, ·)||∞ (2.32)

||ek+2(b, ·)||∞ ≤
α(1 − β)

β(1 − α)
||ek(b, ·)||∞. (2.33)

Proof By Corollary 2.6 we have

||dk+2(j, ·)||∞ ≤
j

b
||ek+1(b− a, ·)||∞, 1 ≤ j < b (2.34)

and

||ek+1(j, ·)||∞ ≤
n+ 1− a− j

n+ 1− a
||dk(a, ·)||∞, 1 ≤ j ≤ b− a. (2.35)
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Evaluating (2.35) at j = b− a we get

||ek+1(b− a, ·)||∞ ≤
n+ 1− b

n+ 1− a
||dk(a, ·)||∞. (2.36)

Likewise from (2.34) at j = a we get

||dk+2(a, ·)||∞ ≤
a

b
||ek+1(b− a, ·)||∞. (2.37)

Combining (2.36) and (2.37) we obtain

||dk+2(a, ·)||∞ ≤
a(n+ 1− b)

b(n+ 1− a)
||dk(a, ·)||∞.

Now using a∆x = αL, b∆x = βL and (n+ 1)∆x = L we get the desired result. The
second inequality (2.33) is obtained in the same way.

Given any vector valued function h(t) : IR+ −→ IRn we define

||h(·, ·)||∞,∞ := max
1<j<n

sup
t>0

|h(j, t)|

Theorem 2.8 The Schwarz iteration for the semi-discrete heat equation with two
subdomains converges at a rate depending on the size of the overlap. The error on
the two subdomains decays at the rate

||d2k+1(·, ·)||∞,∞ ≤

(

α(1 − β)

β(1 − α)

)k

||e0(b− a, ·)||∞

||e2k+1(·, ·)||∞,∞ ≤

(

α(1 − β)

β(1 − α)

)k

||d0(a, ·)||∞.

Proof Using Corollary 2.6 we have

||d2k+1(j, ·)||∞ ≤ ||e2k(b− a, ·)||∞, 1 ≤ j < b

||e2k+1(j, ·)||∞ ≤ ||d2k(a, ·)||∞, 1 ≤ j < b.

Using Lemma 2.7 the result follows.

3 Arbitrary number of subdomains

3.1 Continuous Case

We generalize the two subdomain case described in section 2 to an arbitrary number of
subdomains N . This leads to an algorithm which can be run in parallel. Subdomains
with even indices depend only on subdomains with odd indices. Hence one can solve
on all the even subdomains in parallel in one sweep, and then on all the odd ones in
the next one. Boundary information is propagated in between sweeps.

Consider N subdomains Ωi of Ω, i = 1, . . . , N where Ωi = [αiL, βiL]× [0,∞) and
α1 = 0, βN = 1 and αi+1 < βi for i = 1, . . . , N−1 so that all the subdomains overlap,

12



t

x
β1L β2L

Ω2Ω1 ΩN

α2L α3L αNL βN−1L βNL = Lα1L = 0

Figure 3: Decomposition into N overlapping subdomains.

as in figure 3. We assume also that βi ≤ αi+2 for i = 1, . . . , N − 2 so that domains
which are not adjacent do not overlap. The solution u(x, t) of (2.1) can be obtained
as in the case of two subdomains by composing the solutions vi(x, t), i = 1, . . . , N ,
which satisfy the equations

∂vi
∂t

= ∂2vi
∂x2

+ f(x, t) αiL < x < βiL, t > 0

vi(αiL, t) = vi−1(αiL, t) t > 0
vi(βiL, t) = vi+1(βiL, t) t > 0
v(x, 0) = u0(x) αiL < x < βiL,

(3.1)

where we introduced for convenience of notation the two functions v0 and vN+1 which
are constant in x and satisfy the given boundary conditions, namely v0(x, t) ≡ g1(t)
and vN+1(x, t) ≡ g2(t). The system (3.1) of equations, which is coupled through the
boundary, can be solved using the Schwarz iteration

∂vk+1
i
∂t

=
∂2vk+1

i

∂x2
+ f(x, t) αiL < x < βiL, t > 0

vk+1
i (αiL, t) = vki−1(αiL, t) t > 0

vk+1
i (βiL, t) = vki+1(βiL, t) t > 0

vk+1
i (x, 0) = u0(x) αiL < x < βiL,

(3.2)

where again vk0 (t) ≡ g1(t) and vkN+1(t) ≡ g2(t). Let eki := vki (x, t) − vi(x, t), i =
1, . . . , N and consider the error equations (compare figure 4)

∂ek+1
i
∂t

=
∂2ek+1

i

∂x2
αiL < x < βiL, t > 0

ek+1
i (αiL, t) = eki−1(αiL, t) t > 0

ek+1
i (βiL, t) = eki+1(βiL, t) t > 0

ek+1
i (x, 0) = 0 αiL < x < βiL,

(3.3)

with ek0(t) ≡ 0 and ekN+1(t) ≡ 0.
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ei ei+2ei−2

ei−1 ei+1

αi−2

αi−1 βi−1

βi−2 αi βi αi+2 βi+2

βi+1αi+1

Figure 4: Overlapping subdomains and corresponding error functions ei

For the following Lemma, we need some additional definitions to facilitate the
notation. We define α0 = β0 = 0, αN+1 = βN+1 = 1 and the constant functions
e−1 ≡ 0 and eN+2 ≡ 0.

Lemma 3.1 The error ek+2
i of the i-th subdomain of the Schwarz iteration (3.3) for

the heat equation decays on x = βi−1L and x = αi+1L at a rate depending on the
size of the overlap. Specifically we have

||ek+2
i (βi−1L, ·)||∞ ≤ riri+1||e

k
i+2(βi+1L, ·)||∞ + ripi+1||e

k
i (αi+1L, ·)||∞

+piqi−1||e
k
i (βi−1L, ·)||∞ + pisi−1||e

k
i−2(αi−1L, ·)||∞,

(3.4)

for i = 2, . . . , N and

||ek+2
i (αi+1L, ·)||∞ ≤ qiri+1||e

k
i+2(βi+1L, ·)||∞ + qipi+1||e

k
i (αi+1L, ·)||∞

+siqi−1||e
k
i (βi−1L, ·)||∞ + sisi−1||e

k
i−2(αi−1L, ·)||∞,

(3.5)

for i = 1, . . . , N − 1, where the ratios of the overlaps are given by

ri =
βi−1 − αi

βi − αi
, pi =

βi − βi−1

βi − αi
, qi =

αi+1 − αi

βi − αi
, si =

βi − αi+1

βi − αi
. (3.6)

Proof By Corollary 2.2 we have

||ek+2
i (x, ·)||∞ ≤

x− αiL

(βi − αi)L
||ek+1
i+1 (βiL, ·)||∞ +

βiL− x

(βi − αi)L
||ek+1
i−1 (αiL, ·)||∞. (3.7)

Since this result holds on all the subdomains Ωi, we can recursively apply it to the
errors on the right in (3.7), namely

||ek+1
i+1 (βiL, ·)||∞ ≤

βi − αi+1

βi+1 − αi+1
||eki+2(βi+1L, ·)||∞ +

βi+1 − βi

βi+1 − αi+1
||eki (αi+1L, ·)||∞

and

||ek+1
i−1 (αiL, ·)||∞ ≤

αi − αi−1

βi−1 − αi−1
||eki (βi−1L, ·)||∞ +

βi−1 − αi

βi−1 − αi−1
||eki−2(αi−1L, ·)||∞.

Substituting these equations back into the right hand side of (3.7) and evaluating (3.7)
at x = βi−1L leads to inequality (3.4). Evaluation at x = αi+1 leads to inequality
(3.5).
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This result is different from the result in the two subdomain case (Lemma 2.3),
because we cannot get the error directly as a function of the error at the same location
two steps before. The error at a given location depends on the errors at different
locations also. This leads to the two independent linear systems of inequalities,

ξk+2 ≤ Dξk (3.8)

and
ηk+2 ≤ Eηk, (3.9)

where the inequality sign here means less than or equal for each component of the
vectors ξk+2 and ηk+2. These vectors and the matrices D and E are slightly different
if the number of subdomains N is even or odd. We assume in the sequel that N is
even. The case where N is odd can be treated in a similar way. For N even, ξk is a
vector containing the time infinity norm of the point wise errors in the subdomains
Ωi with odd index according to

ξk =







































||ek1(α2L, ·)||∞
||ek3(β2L, ·)||∞
||ek3(α4L, ·)||∞
||ek5(β4L, ·)||∞
||ek5(α6L, ·)||∞

...
||ekN−3(βN−4L, ·)||∞
||ekN−3(αN−2L, ·)||∞
||ekN−1(βN−2L, ·)||∞
||ekN−1(αNL, ·)||∞







































and D is a banded (N − 1)× (N − 1) matrix

D =













































q1p2 q1r2
p3s2 p3q2 r3p4 r3r4
s3s2 s3q2 q3p4 q3r4

p5s4 p5q4 r5p6 r5r6
s5s4 s5q4 q5p6 q5r6

. . .
. . .

. . .
. . .

pN−3sN−4 pN−3qN−2 rN−3pN−2 rN−3rN−2

sN−3sN−4 sN−3qN−4 qN−3pN−2 qN−3rN−2

pN−1sN−2 pN−1qN−2 rN−1pN
sN−1sN−2 sN−1qN−2 qN−1pN













































.

(3.10)
Similar ηk is a vector containing the point wise errors of the subdomains Ωi with
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even index according to

ηk =































||ek2(β1L, ·)||∞
||ek2(α3L, ·)||∞
||ek4(β3L, ·)||∞
||ek4(α5L, ·)||∞

...
||ekN−2(βN−3L, ·)||∞
||ekN−2(αN−1L, ·)||∞
||ekN (βN−1L, ·)||∞































and E is a banded (N − 1)× (N − 1) matrix

E =





































p2q1 r2p3 r2r3
s2q1 q2p3 q2r3

p4s3 p4q3 r4p5 r4r5
s4s3 s4q3 q4p5 q4r5

. . .
. . .

. . .
. . .

pN−2sN−3 pN−2qN−3 rN−2pN−1 rN−2rN−1

sN−2SN−3 sN−2qN−3 qN−2pN−1 qN−2rN−1

pNsN−1 pNqN−1





































.

(3.11)
Note that the infinity norm of D and E equals one. This can be seen for example
for D by looking at the row sum of interior rows,

pisi−1 + piqi−1 + ripi+1 + riri+1 = pi(si−1 + qi−1) + ri(pi+1 + ri+1)
= pi + ri
= 1

(3.12)

and

sisi−1 + siqi−1 + qipi+1 + qiri+1 = si(si−1 + qi−1) + qi(pi+1 + ri+1)
= si + qi
= 1

(3.13)

whereas the boundary rows sum up to a value less than one, namely

q1p2 + q1r2 = q1(p2 + r2) = q1 < 1
pN−1sN−2 + pN−1qN−2 + rN−1pN = pN−1(sN−2 + qN−2) + rN−1pN

= pN−1 + rN−1pN < 1
sN−1sN−2 + sN−1qN−2 + qN−1pN = sN−1(sN−2 + qN−2) + qN−1pN

= sN−1 + qN−1pN < 1.

(3.14)

A similar result holds for the matrix E. Since the infinity norm of both D and E

equals one, convergence is not obvious at first glance. In the special case with two
subdomains treated in section 2 the matrices E and D degenerated to the scalar
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q1p2, which is strictly less than one and convergence followed. In the case of N
subdomains the information from the boundary needs to propagate inward to the
interior subdomains, before the algorithm exhibits convergence. Hence we expect
that the infinity norm of E and D raised to a certain power becomes strictly less
than one. We introduce the following Lemmas to prove convergence in the infinity
norm.

Lemma 3.2 Let r(A) ∈ IRp denote the vector containing the row sums of the p× p

square matrix A. Then
r(An+1) = Anr(A).

Proof Let 1I = (1, 1, . . . , 1)T . Then we have r(A) = A1I and hence

r(An+1) = An+11I = AnA1I = Anr(A).

Lemma 3.3 Let A be a real p× q matrix with aij ≥ 0 and B be a real q × r matrix
with bij ≥ 0. Define Ii(A) := {k : aik > 0} and Jj(A) := {k : bkj > 0} . Then for
C := AB we have

Ii(C) = {k : Ii(A) ∩ Jk(B) 6= ∅}

Proof We have, since aik, bkj ≥ 0

cij > 0 ⇐⇒
q

∑

k=1

aikbkj > 0

⇐⇒ ∃k s.t. aik > 0 and bkj > 0

⇐⇒ Ii(A) ∩ Jj(B) 6= ∅.

Hence for fixed i, cij > 0 if and only if Ii(A) ∩ Jj(B) 6= ∅.

Lemma 3.4 Dk and Ek have strictly positive entries for all integer k ≥ N−1
2 .

Proof We show the proof for the matrix D, the proof for E is similar. The row
index sets Ii(D) are given by

Ii(D) =

{

{1, . . . , i+ 2} i even
{1, . . . , i+ 1} i odd

1 ≤ i < 4

Ii(D) =

{

{i− 1, . . . , i+ 2} i even
{i− 2, . . . , i+ 1} i odd

4 ≤ i ≤ N − 3

Ii(D) =

{

{i− 1, . . . , N − 1} i even
{i− 2, . . . , N − 1} i odd

N − 3 < i ≤ N − 1

The column index sets are given by

Jj(D) = {1, . . . , 3} 1 ≤ i < 3

Jj(D) =

{

{j − 1, . . . , j + 2} j odd
{j − 2, . . . , j + 1} j even

3 ≤ j ≤ N − 2

JN−1(D) = {N − 2, N − 1}
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We are interested in the growth of the index sets Ii(D
k) as a function of k. Once

every index set contains all the numbers 1 ≤ j ≤ N − 1, the matrix Dk has strictly
positive entries. We show that every multiplication with D enlarges the index sets
Ii(D

k) on both sides by two elements, as long as the elements 1 and N − 1 are not
yet reached. The proof is done by induction: For D2 we have using Lemma 3.3

Ii(D
2) =

{

{1, . . . , i+ 4} i even
{1, . . . , i+ 3} i odd

1 ≤ i < 6

Ii(D
2) =

{

{i− 3, . . . , i+ 4} i even
{i− 4, . . . , i+ 3} i odd

6 ≤ i ≤ N − 5

Ii(D
2) =

{

{i− 3, . . . , N − 1} i even
{i− 4, . . . , N − 1} i odd

N − 5 < i ≤ N − 1

Now suppose that for k we obtained the sets

Ii(D
k) =

{

{1, . . . , i+ 2k} i even
{1, . . . , i+ 2k − 1} i odd

1 ≤ i < 2 + 2k

Ii(D
k) =

{

{i− 2k + 1, . . . , i+ 2k} i even
{i− 2k, . . . , i+ 2k − 1} i odd

2 + 2k ≤ i ≤ N − 2k − 1

Ii(D
k) =

{

{i− 2k + 1, . . . , N − 1} i even
{i− 2k, . . . ,N − 1} i odd

N − 2k − 1 < i ≤ N − 1

Then for k + 1 we have applying Lemma 3.3 again

Ii(D
k+1) =

{

{1, . . . , i+ 2(k + 1)} i even
{1, . . . , i+ 2(k + 1)− 1} i odd

1 ≤ i < 2 + 2(k + 1)

Ii(D
k+1) =

{

{i− 2(k + 1)− 1, . . . , i+ 2(k + 1)} i even
{i− 2(k + 1), . . . , i+ 2(k + 1)− 1} i odd

2 + 2(k + 1) ≤ i ≤ N − 2(k + 1) − 1

Ii(D
k+1) =

{

{i− 2(k + 1)− 1, . . . , N − 1} i even
{i− 2(k + 1), . . . , N − 1} i odd

N − 2(k + 1)− 1 < i ≤ N − 1

Hence every row index set Ii(D
k) grows on both sides by 2 when Dk is multiplied by

D, as long as the boundary numbers 1 and N −1 are not yet reached. Now the index
set I1(D

k) = {1, . . . , 2k} has to grow most to reach the boundary number N − 1, so
we need for the number of iterations

k ≥
N − 1

2

for the matrix Dk to have strictly positive entries.
The infinity norm of a vector v in IRn and a matrix A in IRn×n is defined by

||v||∞ := max
1<j<n

|v(j)|, ||A||∞ := max
1<i<n

n
∑

j=1

|Aij |.

Lemma 3.5 For all k > N
2 there exists γ = γ(k) < 1 such that

||Dk||∞ ≤ γ

||Ek||∞ ≤ γ
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Proof We prove the result for D; the proof for E is similar. We have from (3.12),
(3.13) and (3.14) that

r(D) =





















q1
1
...
1

pN−1 + rN−1pN
sN−1 + qN−1pN





















.

By Lemma 3.4 Dk has strictly positive entries for any k ≥ N
2 . Note also that

||Dk||∞ ≤ 1 since ||D||∞ ≤ 1. Now by Lemma 3.2 we have

||Dk+1||∞ = max
i
ri(D

k+1)

= max
i

∑

j

Dk
ijrj(D)

< 1

since Dk
ij > 0 for all i, j,

∑

j D
k
ij ≤ 1 for all i, rj(D) ∈ [0, 1] and r1(D) < 1,

rN−1(D) < 1 and rN (D) < 1.
Remark: It suffices for each row index set to reach one of the boundaries, either

1 or N − 1, for the infinity norm to start decaying. Hence is is enough that there are
no more index sets Ii(D

k) (compare the proof of Lemma 3.4) such that 2+ 2k ≤ i ≤
N − 1− 2k so that the requirement k ≥ N−1

2 can be relaxed to k > N−3
4 .

We now fix some k > N
2 and set

γ := max(||Dk||∞, ||E
k||∞) < 1. (3.15)

Lemma 3.6 The vectors ξ and η satisfy

||ξ2km||∞ ≤ γm||ξ0||∞ (3.16)

||η2km||∞ ≤ γm||η0||∞. (3.17)

Proof We show the result for ξ; the proof for η is similar. Recall equation (3.8),
ξk+2 ≤ Dξk. We want to show

ξ2k ≤ Dkξ0. (3.18)

To this end consider
zk+2 = Dzk (3.19)

together with z0 ≡ ξ0. By iterating (3.19) we obtain

zk+2 = Dkz0 (3.20)

Now we take the difference of (3.19) and (3.8), namely

zk+2 − ξk+2 ≥ D(zk − ξk). (3.21)

We want to show that ξ2k ≤ z2k which implies (3.18), since then

ξ2k ≤ z2k ≤ Dkz0 = Dkξ0.
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Initially we have ξ0 = z0. To prove the result by induction assume that ξk ≤ zk.
This implies zk − ξk ≥ 0 in every component. Together with (3.21) using that all
the entries of D are non negative we get

zk+2 − ξk+2 ≥ D(zk − ξk) ≥ 0.

Hence
ξk+2 ≤ zk+2

and we have proven that ξ2k ≤ z2k. After a similar argument for η we arrive at
η2k ≤ Ekη0 . Taking norms on both sides and applying Lemma 3.5 the result
follows.

Theorem 3.7 The Schwarz iteration for the heat equation with N subdomains con-
verges in the infinity norm in time and space. We have

max
1≤2i≤N

||e2km+1
2i (·, ·)||∞,∞ ≤ γm||ξ0||∞ (3.22)

max
1≤2i+1≤N

||e2km+1
2i+1 (·, ·)||∞,∞ ≤ γm||η0||∞. (3.23)

Proof We use again the maximum principle. Since the error eki is in the kernel of
the heat operator, by the maximum principle eki attains its maximum on the initial
line or on the boundary. On the initial line eki vanishes, therefore

max
1≤2i≤N

||e2km+1
2i (·, ·)||∞,∞ ≤ ||ξ2km||∞

max
1≤2i+1≤N

||e2km+1
2i+1 (·, ·)||∞,∞ ≤ ||η2km||∞.

Using Lemma 3.6 the result follows.
Note that the bound for the rate of convergence in Theorem 3.7 is not explicit.

This is unavoidable for the level of generality employed. But, if we assume for
simplicity that the overlaps are all of the same size then we can get more explicit
rates of convergence. We set ri = si = r ∈ (0, 1) and pi = qi = p ∈ (0, 1) where
p+ r = 1. The matrix D then simplifies to

D̃ =













































p2 pr

pr p2 pr r2

r2 pr p2 pr

pr p2 pr r2

r2 pr p2 pr
. . .

. . .
. . .

. . .

pr p2 pr r2

r2 pr p2 pr

pr p2 pr

r2 pr p2












































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and E to

Ẽ =









































p2 pr r2

pr p2 pr

pr p2 pr r2

r2 pr p2 pr

pr p2 pr r2

. . .
. . .

. . .
. . .

pr p2 pr r2

r2 pr p2 pr

pr p2









































.

In this case we can bound the spectral norm of D̃ and Ẽ by an explicit expression
less than one. The spectral norm of a vector v in IRn and a matrix A in IRn×n is
defined by

||v||2 :=

√

√

√

√

n
∑

i=1

v(i)2, ||A||2 := sup
||v||2=1

||Av||2.

Lemma 3.8 The spectral norms of D̃ and Ẽ are bounded by

||D̃||2 ≤ 1− 4pr sin2
π

2(N + 1)

||Ẽ||2 ≤ 1− 4pr sin2
π

2(N + 1)
.

Proof We prove the bound for D̃. The bound for Ẽ can be obtained similarly. We
can estimate the spectral norm of D̃ by letting D̃ = J + r2F where J is tridiagonal
and F has only O(N) nonzero entries and these are equal to 1. In fact ||F ||2 = 1.
Using that the eigenvalues of J are given by

λj(J) = p2 + 2pr cos
πj

N + 1
,

the spectral norm of D̃ can be estimated by

||D̃||2 ≤ ||J ||2 + r2||F ||2

= p2 + 2pr cos
π

N + 1
+ r2

= p2 + 2pr + r2 − 4pr sin2
π

2(N + 1)

= 1− 4pr sin2
π

2(N + 1)
,

since p+ r = 1.
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Lemma 3.9 Assume that all the N subdomains overlap at the same ratio r ∈ (0, 0.5].
Then the vectors ξ and η satisfy

||ξ2k||2 ≤

(

1− 4r(1 − r) sin2
π

2(N + 1)

)k

||ξ0||2

||η2k||2 ≤

(

1− 4r(1 − r) sin2
π

2(N + 1)

)k

||η0||2.

Proof The proof follows as in Lemma 3.6.
Note that r = 0.5, which minimizes the upper bound in Lemma 3.9, corresponds

to the maximum possible overlap in this setting.

Theorem 3.10 The Schwarz iteration for the heat equation with N subdomains that
overlap at the same ratio r ∈ (0, 0.5] converges in the infinity norm in time and space.
Specifically we have

max
1≤2i≤N

||e2k2i (·, ·)||∞,∞ ≤

(

1− 4r(1− r) sin2
π

2(N + 1)

)k

||ξ0||2 (3.24)

max
1≤2i+1≤N

||e2k2i+1(·, ·)||∞,∞ ≤

(

1− 4r(1− r) sin2
π

2(N + 1)

)k

||η0||2. (3.25)

Proof From the proof of Theorem 3.7 we have

max
1≤2i≤N

||e2k+1
2i (·, ·)||∞,∞ ≤ ||ξ2k||∞

max
1≤2i+1≤N

||e2k+1
2i+1 (·, ·)||∞,∞ ≤ ||η2k||∞.

Since ||x||∞ ≤ ||x||2 we get

max
1≤2i≤N

||e2k+1
2i (·, ·)||∞,∞ ≤ ||ξ2k||2

max
1≤2i+1≤N

||e2k+1
2i+1 (·, ·)||∞,∞ ≤ ||η2k||2.

Using Lemma 3.9 the result follows.

3.2 Semi-Discrete Case

We decompose the domain into N overlapping subdomains as given in figure 5. We
assume for simplicity that αiL falls on the grid points ai and βiL on the grid points
bi. The solution u(t) of (2.16) can now be obtained as in the case of two subdomains
by composing the solutions vi(t), i = 1, . . . , N which satisfy

∂vi
∂t

= A(bi−ai+1−1)vi + f
(vi−1,vi+1)

vi(j − ai, 0) = u0(j) ai < j < bi
(3.26)

where f (vi−1,vi+1) = (f(ai + 1, t) + 1
(∆x)2

vi−1(ai − ai−1, t),f (ai + 2, t), . . . ,f(bi −

2, t),f (bi − 1, t) + 1
(∆x)2vi+1(bi − ai+1, t))

T . These equations can be solved using the
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a1 b1

x

bc for Ω2 bc for ΩN

bc for Ω1

aN−1 bN−1 aN = bN = N

Ω1

Ω2 ΩN

ΩN−1

bc for Ω1

bc for ΩN

a0 = b0 = 0

Figure 5: Decomposition into N overlapping subdomains in the semi-discrete case.

Schwarz iteration

∂vk+1
i
∂t

= A(bi−ai+1−1)v
k+1
i + f (vk

i−1,v
k

i+1)

vk+1
i (0) = ui(0) ai < j < bi,

(3.27)

where f (vk
i−1,v

k

i+1) = (f(ai + 1, t) + 1
(∆x)2

vki−1(ai − ai−1, t),f (ai + 2, t), . . . ,f(bi −

2, t),f (bi − 1, t) + 1
(∆x)2v

k
i+1(bi − ai+1, t))

T . As in the two subdomain case, we form

the difference eki := v
k
i − v and consider the error equations

∂ek+1
i
∂t

= A(bi−ai+1−1)e
k+1
i + f̃

(ek
i−1,e

k

i+1)

ek+1
i (0) = 0.

(3.28)

where f̃
(ek

i−1,e
k

i+1) = (eki−1(ai − ai−1, t), 0, . . . , 0,e
k
i+1(bi − ai+1, t))

T . For the next
Lemma, we define for notational convenience a0 = b0 = 0, aN+1 = bN+1 = n+1 and
the constant vectors e−1 = eN+2 = 0.

Lemma 3.11 The error ek+2
i of the i-th subdomain of the Schwarz iteration for the

semi-discrete heat equation on the grid points bi−1 − ai and ai+1 − ai satisfies the
estimates

||ek+2
i (bi−1 − ai, ·)||∞ ≤ riri+1||e

k
i+2(bi+1 − ai+2, ·)||∞ + ripi+1||e

k
i (ai+1 − ai, ·)||∞

+piqi−1||e
k
i (bi−1 − ai, ·)||∞ + pisi−1||e

k
i−2(ai−1 − ai−2, ·)||∞,

(3.29)
for i = 2, . . . , N and

||ek+2
i (ai+1 − ai, ·)||∞ ≤ qiri+1||e

k
i+2(bi+1 − ai+2, ·)||∞ + qipi+1||e

k
i (ai+1 − ai, ·)||∞

+siqi−1||e
k
i (bi−1 − ai, ·)||∞ + sisi−1||e

k
i−2(ai1 − ai−2, ·)||∞,

(3.30)
for i = 1, . . . , N − 1, where the ratios of the overlaps are given as in Lemma 3.1
equation (3.6).
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Proof By Corollary 2.6 we have

||ek+2
i (j, ·)||∞ ≤

j

bi − ai
||ek+1

i+1 (bi − ai+1, ·)||∞ +
bi − ai − j

bi − ai
||ek+1

i−1 (ai − ai−1, ·)||∞

(3.31)
Since this result holds on all the subdomains Ωi, we can recursively apply it to the
errors on the right in (3.7), namely

||ek+1
i+1 (bi−ai+1, ·)||∞ ≤

bi − ai+1

bi+1 − ai+1
||eki+2(bi+1−ai+2, ·)||∞+

bi+1 − bi

bi+1 − ai+1
||eki (ai+1−ai, ·)||∞

and

||ek+1
i−1 (ai−ai−1, ·)||∞ ≤

ai − ai−1

bi−1 − ai−1
||eki (bi−1−ai, ·)||∞+

bi−1 − ai

bi−1 − ai−1
||eki−2(ai−1−ai−2, ·)||∞.

Putting those back into the right hand side of (3.31) and evaluating (3.31) at j = bi−1

and using ∆xai = αiL and ∆xbi = βiL for 0 ≤ i ≤ N + 1 leads to inequality (3.29).
Evaluation at j = ai+1 leads to inequality (3.30).

As in the continuous case we are lead to the two independent linear systems of
inequalities

ξk+2 ≤ Dξk (3.32)

and
ηk+2 ≤ Eηk. (3.33)

We assume again that the number of subdomains N is even. The case where N is
odd can be treated in a similar way. For N even, ξk is a vector containing the errors
on the grid points in the subdomains Ωi with odd index which are the boundaries of
the adjacent subdomains according to

ξk =







































||ek1(a1, ·)||∞
||ek3(b2 − a3, ·)||∞
||ek3(a4 − a3, ·)||∞
||ek5(b4 − a5, ·)||∞
||ek5(a6 − a5, ·)||∞

...
||ekN−3(bN−4 − aN−3, ·)||∞
||ekN−3(aN−2 − aN−3, ·)||∞
||ekN−1(bN−2 − aN−1, ·)||∞
||ekN−1(aN − aN−1, ·)||∞







































(3.34)

and D is the same banded (N − 1)× (N − 1) matrix given in (3.10). Similar ηk is a
vector containing the errors on the grid points in the subdomains Ωi with even index
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according to

ηk =































||ek2(b1 − a2, ·)||∞
||ek2(a3 − a2, ·)||∞
||ek4(b3 − a4, ·)||∞
||ek4(a5 − a4, ·)||∞

...
||ekN−2(bN−3 − aN−2, ·)||∞
||ekN−2(aN−1 − aN−2, ·)||∞

||ekN (bN−1 − aN , ·)||∞































(3.35)

and E is the banded (N − 1)× (N − 1) matrix given in 3.11. Defining γ as in (3.15)
we get the Theorem

Theorem 3.12 The Schwarz iteration for the semi-discrete heat equation with N

subdomains converges in the infinity norm in time and space. We have

max
1≤2i≤N

||e2km2i (·, ·)||∞,∞ ≤ γm||ξ0||∞ (3.36)

max
1≤2i+1≤N

||e2km2i+1(·, ·)||∞,∞ ≤ γm||η0||∞, (3.37)

where γ is defined as in (3.15).

Proof Using Corollary 2.6 we have

max
1≤2i≤N

||e2km+1
2i (·, ·)||∞,∞ ≤ ||ξ2km||∞

max
1≤2i+1≤N

||e2km+1
2i+1 (·, ·)||∞,∞ ≤ ||η2km||∞.

Using Lemma 3.6 the result follows.

Theorem 3.13 The Schwarz iteration for the heat equation with N subdomains that
overlap at the same ratio r ∈ (0, 0.5] converges in the infinity norm in time and space.
We have

max
1≤2i≤N

||e2k2i (·, ·)||∞,∞ ≤

(

1− 4r(1− r) sin2
π

2(N + 1)

)k

||ξ0||2 (3.38)

max
1≤2i+1≤N

||e2k2i+1(·, ·)||∞,∞ ≤

(

1− 4r(1− r) sin2
π

2(N + 1)

)k

||η0||2. (3.39)

Proof The proof follows as in Theorem 3.12.

4 The Algorithm in the Framework of Wave-

form Relaxation

For a linear initial value problem

∂u(t)

∂t
= Au(t) + f(t), u(0) = u0
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the standard waveform relaxation algorithm is based on a splitting of the matrix A
into A =M +N which yields

∂u(t)

∂t
=Mu(t) +Nu(t) + f(t), u(0) = u0.

This system of ODE’s is solved using an iteration of the form

∂vk+1

∂t
=Mvk+1 +Nvk + f , vk+1(0) = u0. (4.1)

where the starting function v0(t) is chosen as a constant function v0(t) = u0. In the
case of Block-Jacobi the matrix M is chosen to be block diagonal,

M =













D1 0
D2

. . .

0 DN













, (4.2)

and N contains all the remaining blocks. This allows for solving all the subsys-
tems Di in equation (4.1) in parallel. In the case where A equals A(n) from the
semi-discrete heat equation (2.16), the waveform relaxation algorithm with Block-
Jacobi splitting computes the same iterates as the Schwarz domain decomposition
algorithm presented in subsection 3.2 but with overlap ∆x (i.e. one grid point only).
More precisely it computes simultaneously the two independent sequences of iterates
generated by the Schwarz algorithm starting with the even or odd subdomains. To
see this, consider the subsystem Di, i = 1, ..., N which we define to consist of the
equations with number ai + 1, . . . , bi − 1. The equation vki (t) satisfies is

∂vk+1
i
∂t

= Div
k+1
i +



















1
(∆x)2v

k
i−1(ai − ai−1, t)

0
...
0

1
(∆x)2v

k
i+1(bi − ai+1, t)



















+

















f(ai + 1, t)
f(ai + 2, t)

...
f(bi − 2, t)
f(bi − 1, t)

















,

vk+1
i (j − ai, 0) = u0(j), ai < j < bi,

(4.3)
where we define for convenience of notation v0 = vN+1 = 0 and a0 = b0 = 0,aN+1 =
bN+1 = n+ 1. Note that the matrix Di = A(bi−ai) and hence the equation obtained
through the waveform relaxation algorithm (4.3) is identical with the equation ob-
tained from domain decomposition with overlap ∆x (3.27). The only difference is the
solution strategy employed. Using waveform relaxation traditionally all the subsys-
tems are solved at each step in parallel, whereas in overlapping domain decomposition
one may solve even subdomains and odd subdomains alternately. Hence the domain
decomposition algorithm computes only one of the independent sequences in figure 6
- the white one if we start with odd subdomains and the grey one if we start with even
ones - whereas the waveform relaxation algorithm computes both sequences simulta-
neously. Thus changing the solution strategy of the waveform relaxation algorithm
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k

x
1

2

3

4

5

Ω1 ≡ D1 Ω2 ≡ D2 ΩN ≡ DNΩ3 ≡ D3 . . .

Figure 6: Relation between waveform relaxation and domain decomposition for the semi-

discrete heat equation

for the semi-discrete heat equation to solve on even and odd subsystems alternately
one can cut the computational cost in half.

To extend this analogy to arbitrary overlaps, the concept of multi-splittings is
needed, which was first introduced by O’Leary and White in [19] for solving large
systems of linear equations on a parallel computer. The idea was generalized to
nonlinear problems by White in [23]. Jeltsch and Pohl generalized multi-splittings to
linear systems of ODE’s and waveform relaxation in [11]. We will need:

Definition 4.1 Let N ≥ 0 be a fixed integer. Let A,Mi,Ni and Ei be real n × n

matrices. The set of ordered triples (Mi, Ni, Ei) for i = 1, . . . , N is called a multi-
splitting of A if

1. A =Mi −Ni for i = 1, . . . , N

2. The matrices El are nonnegative diagonal matrices and satisfy

N
∑

i=1

El = I. (4.4)

Using the waveform relaxation algorithm, we get N new approximations vk+1
i at each

step according to

∂vk+1
i

∂t
=Miv

k+1
i (t) +Niv

k
i + f i, vk+1

i (0) = u0, (4.5)

which are combined using the matrices Ei to a new approximation vk+1 by

vk+1 =
N
∑

i=1

Eiv
k+1
i .
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Note that all the equations in (4.5) can be solved in parallel and in addition, com-
ponents of vk+1

i where Ei has a zero on the diagonal do not have to be computed
at all provided they do not couple to other components of vk+1

i where Ei has a non
zero diagonal entry. Jeltsch and Pohl prove in [11] that the multi-splitting algorithm
converges superlinearly on a finite time interval [0, T ] for all splittings and matrices
A, and on an infinite time interval linearly if A is an M-matrix and the splitting
is an M-splitting. However in the case of the semi-discrete heat equation, the rate
of convergence in their analysis may depend badly on ∆x since their level of gener-
ality includes the Schwarz method with one grid point overlap and spectral radius
1 − O(∆x2) - the block Jacobi algorithm (4.3). Jeltsch and Pohl also mention that
some overlap appears to be beneficial, a statement that we have substantiated and
quantified.

To see this, consider the case where the Ei are chosen in such a way that the do-
main decomposition algorithm described in the previous sections is recovered. This
can be obtained by choosing the N splittings of A according to the N subdomains
of the domain decomposition and letting Ei have the value one on the diagonal in
the interior of the corresponding subdomain, including the first point of the over-
lap and some arbitrary distribution in the overlap otherwise, satisfying (4.4). Then
the intermediate solutions vk+1

i computed by the multi-splitting algorithm for the
heat equation are identical to the solutions computed by the domain decomposition
algorithm described in the previous sections, with the only distinction that the multi-
splitting algorithm computes again two independent sequences of iterates which are
averaged in the overlap after each iteration according to the matrices Ei, whereas
the domain decomposition algorithm computes only one of those sequences. This is
because the multi-splitting algorithm solves on all the subdomains at every iteration
and we have chosen to solve in the domain decomposition algorithm only on even (re-
spectively odd) subdomains, saving half of the computation time. In the terminology
of Domain Decomposition our algorithm corresponds to the multiplicative Schwarz
algorithm with red black ordering whereas the multi-splitting algorithm corresponds
to the additive Schwarz algorithm.

The important point here is that our algorithm converges linearly independent of
the mesh size on unbounded time intervals. Hence the multi-splitting algorithm for
the semi-discrete heat equation, which computes identical iterates, must converge at
the same rate. Thus for certain PDE’s the analysis of Jeltsch and Pohl can be refined
to give ∆x independent rates of convergence if sufficient overlap is used.

5 Numerical Experiments

We perform numerical experiments to measure the actual convergence rate of the
algorithm. We consider the example problem

∂u
∂t

= ∂2u
∂x2

+ 5e−(t−2)2−(x− 1
4
)2 0 < x < 1, 0 < t < 3

u(0, t) = 0 0 < t < 3
u(1, t) = e−t 0 < t < 3
u(x, 0) = x2 0 < x < 1.

(5.1)
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To solve the semi-discrete heat equation, we use the backward euler method in time.
The first experiment is done splitting the domain Ω = [0, 1] × [0, 3] into the two
subdomains Ω1 = [0, α]× [0, 3] and Ω2 = [β, 1]× [0, 3] for three pairs of values (α, β) ∈
{(0.4, 0.6), (0.45, 0.55), (0.48, 0.52)}. Figure 7 shows the convergence of the algorithm
on the grid point a for ∆x = 0.01 and ∆t = 0.01. The solid line is the predicted
convergence rate according to Theorem 2.8 and the dashed line is the measured one.
The measured error displayed is the difference between the numerical solution on the
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Figure 7: Theoretical and measured decay rate of the error for two subdomains and three

different sizes of the overlap

whole domain and the solution obtained from the domain decomposition algorithm,
and we used the error after the first iteration as the initial error for the theoretical
error decay. We also checked the robustness of the method by refining the time step
and obtained similar results.

According to equation (1.1) we should get superlinear convergence after enough
iterations are performed. The reason why we do not see superlinear convergence in
the previous experiment is that the time interval is too long. Therefore for the second
experiment, we shorten the time interval to [0, 0.4]. We use the second of the splittings
of the previous experiment, namely α = 0.45 and β = 0.55. Figure 8 shows the
convergence of the algorithm, where again the solid line is the predicted convergence
rate and the dashed line is the measured one. We see superlinear convergence of the
algorithm.

We solve the same problem (5.1) using eight subdomains which overlap by 35%.
The mesh parameter ∆x is chosen to be 0.01 and time integration is performed again
using Backward Euler and a time step ∆t = 0.01. Figure 9 shows the decay of the
infinity norm of ξk which is defined in (3.34). The dashed line shows the measured
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Figure 8: Superlinear decay of the error for a small time interval compared with the linear

bound

decay rate and the solid line the predicted one. Note that the measured error decays
at the beginning faster than the predicted one. This is due to the fact that in our
analysis we assume the worst case by using the infinity norm in time. In reality the
smoothing property of the heat equation flattens high peaks in the error immediately
if they are surrounded by moderate values.

Hence we construct an example which corresponds to the worst case by starting
the iteration with a constant error of 0.5 over the whole domain, which corresponds
to setting the first iterate v0i equal to the solution on the whole domain plus 0.5.
We solve again using eight subdomains with overlap 35%. The decay of the infinity
norm of the error vector ξk is shown in figure 10. We see that now the measured
error decays at the predicted rate from the beginning.

6 Conclusion

We have shown in this paper how to construct a waveform relaxation algorithm
for the heat equation using domain decomposition. We proved convergence of the
algorithm depending on the size of the overlap, in spite of the unboundedness of the
differential operator. This led to a numerical method which converges independent
of the mesh parameter ∆x.

The one dimensional results given in this paper can be generalized to several di-
mensions, if a particular splitting is used. For example a rectangular domain (x, y) ∈
[0, L]× [0,W ] in two dimensions has to be partitioned into strips [αiL, βiL]× [0,W ],
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Figure 9: Theoretical and measured decay rate of the error in the case of eight subdomains

so that the subdomains overlap in one direction and extend over the whole domain
in the other direction. In [6] the one and two-dimensional heat equation are studied
numerically in the framework of multi-splittings; however the overlappings they use
are space-discretization dependent and shrink to zero in physical space if the mesh is
refined to zero. They show that an overlap by two rows of the submatrices gives a big
improvement of the convergence rate in one dimension, whereas in two dimensions
there is little improvement. Using the domain decomposition framework we have
introduced, this observation can be explained: in one dimension an overlap by two
rows corresponds to an increase of the original overlap by O(∆x) in physical space.
In two dimensions, however, the original overlap is increased only by O(∆x2) in the
method used in [6].
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