Time Domain Decomposition Methods

Martin J. Gander
martin.gander@math.unige.ch

University of Geneva

July 7th, 2006
Evolution Problems

Systems of ordinary differential equations $u' = f(u)$,
or partial differential equations $\frac{\partial u}{\partial t} = L(u) + f$.

Is it possible to do useful computations at future time steps, before earlier time steps are known?
Multiple shooting for boundary value problems

For the model problem

\[u'' = f(u), \quad u(0) = u^0, \quad u(1) = u^1, \quad x \in [0, 1] \]

one splits the spatial interval into subintervals \([0, \frac{1}{3}],[\frac{1}{3}, \frac{2}{3}],[\frac{2}{3}, 1]\), and then solves on each subinterval

\[
\begin{align*}
 u''_0 &= f(u_0), & u''_1 &= f(u_1), & u''_2 &= f(u_2), \\
 u_0(0) &= U_0, & u_1(\frac{1}{3}) &= U_1, & u_2(\frac{2}{3}) &= U_2, \\
 u'_0(0) &= U'_0, & u'_1(\frac{1}{3}) &= U'_1, & u'_2(\frac{2}{3}) &= U'_2,
\end{align*}
\]

together with the matching conditions

\[
\begin{align*}
 U_0 &= u^0, & U_1 &= u_0(\frac{1}{3}, U_0, U'_0), & U_2 &= u_1(\frac{2}{3}, U_1, U'_1), \\
 U'_1 &= u'_0(\frac{1}{3}, U_0, U'_0), & U'_2 &= u'_1(\frac{2}{3}, U_1, U'_1), & u^1 &= u_2(1, U_2, U'_2)
\end{align*}
\]

\[\iff \quad F(U) = 0, \quad U = (U_0, U_1, U_2, U'_0, U'_1, U'_2)^T. \]
Example: first iteration
Example: second iteration
Example: third iteration
Multiple shooting for initial value problems

For the model problem

\[u' = f(u), \quad u(0) = u^0, \quad t \in [0, 1] \]

one splits the time interval into subintervals \([0, \frac{1}{3}], [\frac{1}{3}, \frac{2}{3}], [\frac{2}{3}, 1]\), and then solves on each subinterval

\[
\begin{align*}
u'_0 &= f(u_0), & u'_1 &= f(u_1), & u'_2 &= f(u_2), \\
u_0(0) &= U_0, & u_1\left(\frac{1}{3}\right) &= U_1, & u_2\left(\frac{2}{3}\right) &= U_2,
\end{align*}
\]

together with the matching conditions

\[
U_0 = u^0, \quad U_1 = u_0\left(\frac{1}{3}, U_0\right), \quad U_2 = u_1\left(\frac{2}{3}, U_1\right)
\]

\[\iff \quad F(U) = 0, \quad U = (U_0, U_1, U_2)^T. \]
Example: first iteration
Example: second iteration

\[u(t) \]

\[U_0 \]

\[U_1 \]

\[U_2 \]
Example: third iteration

\[u(t) \]

\[U_0, U_1, U_2 \]
Using Newton’s Method

Solving $F(U) = 0$ with Newton leads to

$$
\begin{pmatrix}
U_0^{k+1} \\
U_1^{k+1} \\
U_2^{k+1}
\end{pmatrix}
=
\begin{pmatrix}
U_0^k \\
U_1^k \\
U_2^k
\end{pmatrix}
-
\begin{bmatrix}
1 & \frac{1}{3} & U_0^k \\
\frac{1}{3} & \frac{1}{3} & U_0^k \\
\frac{1}{3} & U_1^k & 1
\end{bmatrix}
^{-1}
\begin{pmatrix}
U_0^k - u^0 \\
U_1^k - u_1\left(\frac{1}{3}, U_0^k\right) \\
U_2^k - u_1\left(\frac{2}{3}, U_1^k\right)
\end{pmatrix}
$$

Multiplying through by the matrix, we find the recurrence

$$
U_0^{k+1} = u^0, \\
U_1^{k+1} = u_0\left(\frac{1}{3}, U_0^k\right) + \frac{\partial u_0}{\partial U_0}\left(\frac{1}{3}, U_0^k\right)(U_0^{k+1} - U_0^k), \\
U_2^{k+1} = u_1\left(\frac{2}{3}, U_1^k\right) + \frac{\partial u_1}{\partial U_1}\left(\frac{2}{3}, U_1^k\right)(U_1^{k+1} - U_1^k).
$$

General case with N intervals, $t_n = n\Delta T$, $\Delta T = 1/N$

$$
U_{n+1}^{k+1} = u_n(t_{n+1}, U_n^k) + \frac{\partial u_n}{\partial U_n}(t_{n+1}, U_n^k)(U_n^{k+1} - U_n^k).
$$
History of Time Parallel Algorithms

“For the last 20 years, one has tried to speed up numerical computation mainly by providing ever faster computers. Today, as it appears that one is getting closer to the maximal speed of electronic components, emphasis is put on allowing operations to be performed in parallel. In the near future, much of numerical analysis will have to be recast in a more “parallel” form.”

\[u' = f(u), \quad u(t_0) = u_0 \]
Parallel time stepping

“It appears at first sight that the sequential nature of the numerical methods do not permit a parallel computation on all of the processors to be performed. We say that the front of computation is too narrow to take advantage of more than one processor... Let us consider how we might widen the computation front.”

\[u' = f(u), \quad u(0) = u_0 \]
More Recent Space-Time Iterative Methods

- **Waveform Relaxation** Lelarasmee, Ruehli and Sangiovanni-Vincentelli (1982).

- **Parabolic multigrid** Hackbusch (1984); Bastian, Burmeiser and Horton (1990); Oosterlee (1992).

- **Multigrid waveform relaxation** Lubich and Ostermann (1987); Vandevalle and Piessens (1988).

- **Space-time multigrid** Horton and Vandevalle (1995)

- **Parallel Time Stepping** Womble (1990).

Deshpande, Malhotra, Douglas and Schultz, Temporal Domain Parallelism: Does it Work (1995)?

“We show that this approach is not normally useful”.
The Parareal Algorithm

The parareal algorithm for the model problem

\[u' = f(u) \]

is defined using two propagation operators:

1. \(G(t_2, t_1, u_1) \) is a rough approximation to \(u(t_2) \) with initial condition \(u(t_1) = u_1 \).

2. \(F(t_2, t_1, u_1) \) is a more accurate approximation of the solution \(u(t_2) \) with initial condition \(u(t_1) = u_1 \).

Starting with a coarse approximation \(U_n^0 \) at the time points \(t_1, t_2, \ldots, t_N \), parareal performs for \(k = 0, 1, \ldots \) the correction iteration

\[U_{n+1}^{k+1} = G(t_{n+1}, t_n, U_n^{k+1}) + F(t_{n+1}, t_n, U_n^k) - G(t_{n+1}, t_n, U_n^k). \]
Original Convergence Result for Parareal

Theorem (Lions, Maday, and Turinici, 2001)

If \(t_{n+1} - t_n = \Delta T \), \(G \) is \(O(\Delta T) \) and \(F \) is exact, then at iteration \(k \) the error for a linear problem is \(O(\Delta T^{k+1}) \).

Example of the convergence behavior for \(\Delta T \) fixed:

\[u' = -u + \sin t, \quad u(t_0) = 1.0, \quad t \in [0, 30], \text{ trapezoidal rule,} \]

\(\Delta T = 1.0 \) and \(\Delta t = 0.01 \)
Back to Multiple Shooting for IVPs

Theorem (Chartier and Philippe 1993)

If the initial guess U^0 is close enough to the solution, then under appropriate regularity assumptions, the multiple shooting algorithm converges quadratically.

Result (G, Vandevalle 2003)

Approximation of the Jacobian on a coarse time grid leads from

$$ U_{n+1}^{k+1} = u_n(t_{n+1}, U_n^k) + \frac{\partial u_n}{\partial U_n}(t_{n+1}, U_n^k)(U_n^{k+1} - U_n^k). $$

to

$$ U_{n+1}^{k+1} = F(t_{n+1}, t_n, U_n^k) + G(t_{n+1}, t_n, U_n^{k+1}) - G(t_{n+1}, t_n, U_n^k), $$

which is the parareal algorithm.
Parareal is a Time Multigrid Method

Theorem (G, Vandewalle, 2003)

Let F be method ϕ doing \tilde{m} steps and G be method Φ, and let $I_{\Delta t}^{\Delta T}$ be the selection operator at $1, \tilde{m} + 1, 2\tilde{m} + 1, \ldots$ and $I_{\Delta t}^{\Delta T}$ be the extension operator with 1 and any values in between.

If in the time multigrid algorithm

- a block Jacobi smoother is used, $S = EM_{jac}^{-1}$, where $M_{jac} + N_{jac} = M$, and E is the identity, except for zeros at positions $(1,1), (\tilde{m} + 1, \tilde{m} + 1), (2\tilde{m} + 1, 2\tilde{m} + 1)$ \ldots

- The initial guess u^0 contains U^0_n from the parareal initial guess at positions $1, \tilde{m} + 1, 2\tilde{m} + 1$ \ldots

then it coincides with the parareal algorithm.
A General Convergence Result

For the non-linear IVP $u' = f(u)$, $u(t_0) = u_0$.

Theorem (G, Hairer 2005)

Let $F(t_{n+1}, t_n, U_n^k)$ denote the exact solution at t_{n+1} and $G(t_{n+1}, t_n, U_n^k)$ be a one step method with local truncation error bounded by $C_1 \Delta T^{p+1}$. If

$$|G(t + \Delta T, t, x) - G(t + \Delta T, t, y)| \leq (1 + C_2 \Delta T)|x - y|,$$

then

$$\max_{1 \leq n \leq N} |u(t_n) - U_n^k| \leq \frac{C_1 \Delta T^{k(p+1)}}{k!}(1 + C_2 \Delta T)^{N-1-k} \prod_{j=1}^{k} (N-j) \max_{1 \leq n \leq N} |u(t_n) - U_n^0|$$

$$\leq \frac{(C_1 T)^k}{k!} e^{C_2 (T-(k+1)\Delta T)} \Delta T^{pk} \max_{1 \leq n \leq N} |u(t_n) - U_n^0|.$$
Numerical experiments: Brusselator

\[\dot{x} = A + x^2 y - (B + 1)x \]
\[\dot{y} = Bx - x^2 y, \]

Parameters: \(A = 1 \) and \(B = 3, \) \(B > A^2 + 1 \) \(\implies \) limit cycle.

Initial conditions: \(x(0) = 0, \) \(y(0) = 1. \)

Simulation time: \(t \in [0, T = 12] \)

Discretization: Fourth order Runge Kutta, \(\Delta T = \frac{T}{32}, \) \(\Delta t = \frac{T}{320}. \)
The diagrams show the results of numerical experiments with two different algorithms for solving a specific problem. The left diagram plots the variables x_1 and x_2 over the range of 0 to 4, while the right diagram plots the variable X over the range of 0 to 12. The algorithms are compared in terms of their convergence and stability characteristics.
Numerical experiments: Arenstorf orbit

\[
\begin{align*}
\ddot{x} &= x + 2\dot{y} - b \frac{x + a}{D_1} - a \frac{x - b}{D_2} \\
\ddot{y} &= y - 2\dot{x} - b \frac{y}{D_1} - a \frac{y}{D_2},
\end{align*}
\]

\[D_1 = ((x+a)^2+y^2)^{(3/2)}, \quad D_2 = ((x-b)^2+y^2)^{(3/2)}\]

Parameters: \(a = 0.012277471, \quad b = 1 - a\).

Initial conditions: \(x(0) = 0.994, \quad \dot{x} = 0, \quad y(0) = 0, \quad \dot{y}(0) = -2.00158510637908\)

Simulation time: \(t \in [0, \quad T = 17.06]\)

Discretization: Forth order Runge Kutta, \(\Delta T = \frac{T}{250}, \quad \Delta t = \frac{T}{10000}\).

See also Saha, Stadel and Tremaine, a parallel integration method for solar system dynamics, 1997.
Results for the Lorenz Equations

\[\begin{align*}
\dot{x} &= -\sigma x + \sigma y \\
\dot{y} &= -xz + rx - y \\
\dot{z} &= xy - bz
\end{align*} \]

Parameters: $\sigma = 10$, $r = 28$ and $b = \frac{8}{3} \implies$ chaotic regime.
Initial conditions: $(x,y,z)(0) = (20,5,-5)$
Simulation time: $t \in [0, T = 10]$
Discretization: Fourth order Runge Kutta, $\Delta T = \frac{T}{180}$, $\Delta t = \frac{T}{1800}$.
Error, L2 in x, Linf in t

iteration
Numerical experiments for PDEs: Burgers equation

\[u_t + uu_x = \nu u_{xx} \quad \text{in} \quad \Omega = [0, 1] \]
\[u(x, 0) = \sin(2\pi x) \]

Viscosity \(\nu = \frac{1}{50} \), homogeneous boundary conditions
Centered finite difference discretization, \(\Delta x = \frac{1}{50} \)
Backward Euler in time, \(\Delta T = \frac{1}{10} \), \(\Delta t = \frac{1}{100} \).
Burgers equation: convergence behavior
Convergence for the Heat Equation

Theorem

The parareal algorithm applied to the heat equation $u_t = \Delta u$ discretized with an L-stable method in time converges superlinearly on bounded time intervals,

$$\max_{1 \leq n \leq N} ||u(t_n) - U_n^k||_2 \leq \frac{\gamma_s^k}{k!} \prod_{j=1}^{k} (N - j) \max_{1 \leq n \leq N} ||u(t_n) - U_n^0||_2,$$

where the constant $\gamma_s < 1$ is universal for each L-stable method. On unbounded time intervals the convergence is linear,

$$\sup_{n>0} ||u(t_n) - U_n^k||_2 \leq \gamma_l^k \sup_{n>0} ||u(t_n) - U_n^0||_2,$$

where $\gamma_l < 1$ is universal for each L-stable method.
Convergence Constants for the Heat Equation

<table>
<thead>
<tr>
<th>method</th>
<th>order</th>
<th>γ_s</th>
<th>γ_I</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE</td>
<td>1</td>
<td>0.2036321888</td>
<td>0.2984256075</td>
</tr>
<tr>
<td>SDIRK 3.1</td>
<td>3</td>
<td>0.1717941220</td>
<td>0.2338191487</td>
</tr>
<tr>
<td>SDIRK 3.2</td>
<td>3</td>
<td>0.2073822267</td>
<td>0.1718033767</td>
</tr>
<tr>
<td>Radau IIA</td>
<td>5</td>
<td>0.0634592650</td>
<td>0.0677592165</td>
</tr>
</tbody>
</table>

Note that higher order time integration methods lead to faster convergence of the parareal algorithm than lower order methods.
Convergence for pure Advection Problems

Theorem
The parareal algorithm applied to the advection equation $u_t = u_x$ with backward Euler in time converges superlinearly on bounded time intervals,

$$\max_{1 \leq n \leq N} \| u(t_n) - U_n^k \|_2 \leq \frac{\alpha_s^k}{k!} \prod_{j=1}^{k} (N - j) \max_{1 \leq n \leq N} \| u(t_n) - U_n^0 \|_2,$$

where the constant α_s is universal, $\alpha_s = 1.224353426$.

Remarks:
- No convergence result for unbounded time intervals.
- As soon as more than N iterations are needed, the method looses all interest.
Martin J. Gander Time Domain Decomposition
The graph shows the error and the superlinear bound over iterations. The error decreases significantly after the 7th iteration, indicating rapid convergence. The superlinear bound is represented by the red line, which peaks and then decreases sharply, mirroring the error's behavior after iteration 7.
Further Applications and Results on Parareal

- **Oscillatory Problems:** Cortial, Farhat, Chandesris (2003, 2006)
- **Control of Quantum Systems:** Maday, Salomon, Turinici (2002, 2006)
- **Reservoir Simulation:** Garrido, Espedal, Fladmark (2003, 2005)
- **Navier-Stokes:** Fischer, Hecht, Maday (2003)
- **Stability Analysis:** Staff and Rønquist (2003)
- **Molecular Dynamics:** Baffico, Bernard, Maday, Turinici, Zerah (2002)
- **Finance:** Bal, Maday (2002)

Google hits for parareal algorithm (6.7.2006): 470
Conclusions

Parallel speedup in time is possible, but the speedup is more modest than in space.

Further results:

- Two multilevel versions of the algorithm.

Future work:

- Study of the hyperbolic case with boundary conditions, and the second order wave equation.
- Analysis of Parareal for DAEs.
- Preservation of symplectic structure in Parareal.