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Abstract. Most numerical approximations of frequency-domain wave propagation problems
suffer from the so-called dispersion error, which is the fact that plane waves at the discrete level
oscillate at a frequency different from the continuous one. In this paper, we introduce a new tech-
nique to reduce the dispersion error in general Finite Difference (FD) schemes for frequency-domain
wave propagation using the Helmholtz equation as guiding example. Our method is based on the
introduction of a shifted wavenumber in the FD stencil which we use to reduce the numerical dis-
persion for large enough numbers of grid points per wavelength (or for small enough meshsize), and
thus we call the method asymptotic dispersion correction. The advantage of this technique is that
the asymptotically optimal shift can be determined in closed form by computing the extrema of a
function over a compact set. For 1d Helmholtz equations, we prove that the standard 3-point stencil
with shifted wavenumber does not have any dispersion error, and that the so-called pollution effect is
completely suppressed. For higher dimensional Helmholtz problems, we give easy to use closed form
formulas for the asymptotically optimal shift associated to the second order 5-point scheme and a
sixth-order 9-point scheme in 2d, and the 7-point scheme in 3d that yield substantially less dispersion
error than their standard (unshifted) version. We illustrate this also with numerical experiments.

Key words. Frequency-Domain wave propagation, Finite difference method, Helmholtz equa-
tion, Numerical dispersion, Asymptotic dispersion correction.

1. Introduction. The Helmholtz equation is a model problem for time-harmonic
wave propagation. On a bounded domain Q C R?, it is given by

—Au(z) — Ku(z) = f(z), z € Q, (1.1)

where k is the so-called wavenumber, f is a given right hand side, and we will specify
the necessary boundary conditions later when needed.

Solving this problem numerically for large k is difficult (see e.g. [14]), mainly
because of its elliptic yet non-coercive nature, and that solutions oscillate with period
proportional to 1/k. In addition, at the continuous level, plane waves are given by
e*®0 for @ € S% ! whereas, at the discrete level, plane waves are given by elFa®@
where kg is the discrete wavenumber, which depends on @ and the meshsize h, and we
usually have kq(0, h) # k, which is called the dispersion error. The dispersion error is
also responsible for the pollution effect [17, 20, 24, 32], which is the fact that keeping
kh small is not enough to prevent the relative error to grow with the wavenumber.

For the hp-Finite Element method for Helmholtz problems, it is known that the
pollution effect can actually be suppressed (see e.g. [17, 19, 20, 21, 24, 32]) if kh/p
is small enough, and p > C'log(k) for a large enough constant C. Such results have
been obtained for Discontinuous-Galerkin methods as well in [22].

In addition to the previous results, the pollution effect can be suppressed in 1d.
We refer for instance to [1], where a stabilized FEM without dispersion error is built,
or to [31] where a CIP-FEM is shown to be pollution free if some parameter is suitably
chosen. For 2d problems, we refer for example to [12, 16, 33] where several methods
have been designed to reduce the dispersion error and pollution effect.

For Finite-Difference (FD) methods, techniques have also been derived to reduce
the dispersion error. For the 1d Helmholtz equation, a FD scheme without dispersion
error is given in [27, 15], and this suppresses the pollution effect. It is derived using a
Taylor series of the solution which permits to define a generalized 3-point stencil. For
2d Helmholtz problems, a dispersion correction using eigenvalues has been designed
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n [13]. Although the matrix associated to the stencil is modified, numerical results
indicate that this method heavily reduces the pollution effect. Another widely used
strategy is to consider FD stencils with free parameters that are then optimized to
minimize the dispersion error. This technique has been applied to various stencils
and we refer for example to [6, 28, 5, 10, 11, 29, 30]. This approach has then been
investigated further in [8], where a sixth-order 9-point stencil is considered, with
coefficients that are polynomials in (kh) with free parameters. These parameters are
then determined numerically by minimizing the averaged truncation error of plane
waves. For three-dimensional problems, a dispersion-minimizing scheme based on
free parameters that are determined by minimizing the dispersion error can be found
in [5]. A similar method is used in [26, 25] where the behavior of a multigrid method
is also numerically studied. It is shown that a FD scheme with dispersion correction
leads to a convergent multigrid method for some wavenumber /meshsize combinations
for which the un-corrected scheme leads to divergent multigrid methods (see also
[3, 7, 4]).

Dispersion minimizing schemes that do not rely on numerical optimization to
determine the free parameters for 1d can be found in [2, 3], and for 2d in [4] for
a 9-point stencil, where a shifted wavenumber is introduced in the stencil. For 1d
Helmholtz problems, the shift suppresses the dispersion error. In 2d, the shift is
explicitly determined so that the dispersion error is minimized for a large enough
number of grid points per wavelength. Numerical simulations then show that this
asymptotically optimal shift is close to the numerically best one even for a small
number of grid points per wavelength. The major drawback of these approaches is
the derivation of the explicit shift itself, which is based on minimizing the distance
between the discrete and continuous dispersion relations (see [4, Theorem 4.1]), and
can thus not be extended easily to other FD schemes or 3d.

We show here that the dispersion error associated to a general FD scheme can
be reduced without relying on numerical optimization. Our method is based on the
expansion of the discrete wavenumber k; as the meshsize goes to zero. A shifted
wavenumber is next introduced in the stencil to minimize the leading-order term
in the expansion of (k4(@,h) — k). We show that this shifted wavenumber can be
determined in closed form by computing the extrema of the remainder which is a
trigonometric polynomial in d — 1 variables defined on a compact set.

Our paper is organized as follows: We first present the new shifted wavenumber
idea for the 1d Helmholtz equation and prove that the resulting FD scheme has neither
dispersion error nor does it suffer from the pollution effect. We present next the
general dispersion minimizing scheme based on a shifted wavenumber, and compute
the shift in closed form for the 5-point and 9-point stencils in 2d, and for the 7-point
stencil in 3d, so they can easily be used in existing codes. We conclude with numerical
experiments to illustrate how much the shift reduces the relative error.

2. Suppressing the dispersion error for the 3-point stencil in 1d. We
consider the one dimensional Helmholtz equation on ©Q = [0, 1] with homogeneous
Dirichlet boundary conditions,

—u"(z) — k?u(z) f(z) in (0,1),
{ u(z) = 0, x € {0,1}, (2.1)

where f is a given source term. Since Problem (2.1) can be singular for some values
of k, we assume in what follows that

k* ¢ TN,
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which ensures that k2 is not an eigenvalue of the Laplace operator with homogeneous
Dirichlet boundary conditions at {0,1}.

We consider a uniform grid {z;}7_, = {j/(n+1)}’_, with n € N* interior points
and meshsize h = 1/(n + 1). Using a 3-point stencil for the second order derivative,
the discrete problem associated to (2.1) reads

1

2 (wim1 = 2u; + ui1) — Kug = f(z;), i=1--,n, (2.2)

where  is the shifted wavenumber introduced in [14] given by
~ 2
k= ﬁ(l—cos(kh)).

Inserting u; := e'fa%i into (2.2) with f = 0 and neglecting the boundaries, we get
that the discrete wavenumber k4 is solution to

k2h?
cos(kqh) =1— 5

This yields
kg =k,
and thus this scheme does not have dispersion error. We also assume that
kh ¢ wN,

since otherwise, we would have k € {0,v/2/h,2/h} and therefore % no longer converges
to k as h — 0, and the stencil would no longer be consistent.

In what follows, we compute the [*° error for the 3-point stencil with shifted
wavenumber. We begin by computing the local truncation error.

THEOREM 2.1. Assume that f € C?>(0,1) and let 7; be the local truncation error,

i = = (o) — 2u(e) + i) — Bu(e) — £(20)

We then have the estimate

h? k%h?

[Tl = max |5 < ||fﬂ||fﬁ<>(o,1)+ 12 ||f||Loc(0,1)

1<i<n - 12
E*R? |~
e e [

Proof. Using a Taylor expansion, there exists &, € (z;_1,7;) and & € (z;,7i41)
such that

~ h?
7= —u"(x;) — K*u(x;) — fz;) — byl

(1 (&) +u®g) -
Adding and subtracting k?u(z;) and using Eq. (2.1), we get
h2
24
(&) +ugn) -

3

T, = 7’1},//(%1') — kzu(xl) - f($z> - (E2 - kz)u(xl)

h2
24

(@ (e) +ugh)

=~ — Fu(:) -



Noting that

uW (@) = —f"(@) = K (= f(2) = Ku(2)) = —f"(2) + K f(2) + k'u(2),

we obtain the estimate. O
Using a Taylor expansion, we have
2 (kh)*  k*n?

(kh)
< — = .
2 ~— h? 4! 127 (2:3)

- 2
‘/ﬁ —k2’ = 5 |1 — cos(kh) -

from which, together with Theorem 2.1, we can see that the shift does not modify the
dependence with respect to k, h of the upper bound of the truncation error.
The discrete problem (2.2) can be written as a linear system

A’k\u:.fv

where Ay := h™2tridiag(—1,2 — k*h?, —1), w := (v;)", and f = (f(z;))—,. The
eigenvalues of Ay are

4 . [jnh\? ,
)\j(k) = ﬁsm (2) —kQ, ] = 1, ,n.
As a result,

Ai(k) =0 < k%=,

and thus the matrix Az is non-singular as soon as k is not an eigenvalue of the
(continuous) Laplace operator acting on HE(0,1).
Let e := (u; — u(x;));_, be the error, which satisfies

AEEE =T,

where T = (7;)1_, is the vector of local truncation errors. We now estimate HA~ H
oo

without dispersion correction, k= k, and with dispersion correction, k=k.
THEOREM 2.2.
e No dispersion correction: Assume that kh < 2 and that \;(k) # 0, then

h 1
= Tsm ()] [sm(/h)]

14 e

with cos(f) = 1 — (kh)?/2.
o With dispersion correction: Assume that kh ¢ ©N and k ¢ ©N, then

-
k

< .
oo — |sin(kh)| k| sin(k)|

Proof. We use [9, p. 15, Corollary 4.2] to compute explicitly the elements of the
inverse of Az which yields

L i U; 2 VU, i 52 . .
(=)™ = 1(21‘;() 2 )](“‘) i <,

(43),, = Uy (st ) O
k /i qvitg bimd Uiy )Un—il 5y L
(=1 [Bli=a+1 Un(35) 1> 7,



where a := (2 — k2h2)/h2, b := —1/h? and Uj(z) are the Chebychev polynomials of
the second kind that are defined as

U(x) := smii?((z@l)e)mth vt <
~snh(d) with z := cosh(9) if |z| > 1.

Note that

Un( a ) sin((n+1)0)  sin(/h)

26 ) 7 sin(@)  sin(d)

and that the following bound holds:

a
R <
‘Ul <2|b>‘ =

sin((l + 1)0) ’ <1

sin(6) = |sin(0)|
The infinity norm of A-’g ! can then be estimated as
bl - ps Sl < ot
E oo i<n k il — a i 2
L<ign 1b] ‘Un (m)‘ | sin(0)|
h2n h

| sin(6)|| sin(6/h)| = | sin(0)||sin(/h)|

If no dispersion correction is used, k= k, the assumptions ensure that § = arccos(1 —
(kh)?/2) is well-defined and the previous estimate gives the result. If dispersion
correction is used, k = k, note that

a _ k2h2

m - - = 1 — (1 — cos(kh)) = cos(kh),

which is strictly smaller than 1 since kh ¢ 7N. This gives § = +kh and the bound on

HA% 1 translates into

‘ o0

h

At ‘ <
H k lleo = |sin(kh)|| sin(k)|’

which concludes the proof. O

Using Theorem 2.2, we can now get the final error estimate. We are also going
to consider a source term f that can appear in some physical applications which may
depend on the wavenumber k.

THEOREM 2.3. Let the assumptions of Theorem 2.2 hold, and assume that the
source term f satisfies

1fllpe ST N S K2

where the notation < means that the omitted constants do not depend on k and h.
e No dispersion correction: If k = k, then the error satisfies

lewlo < |Sm(9ﬁ|2§i<9/h>| (1 ok <1 " |nl<k>|>> ’

where 0 is given in Theorem 2.2.
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o With dispersion correction: If% = E, then the error satisfies

. kh 1 ((kh) 2 _
I k||oo5|sin(kh)||sin(k)|< Fo TR (HISin(k)I))’

from which one can see, for any k such that k,kh ¢ =N, that the error
decreases like O(G™2) for any wavenumber, where G := 2w /(kh) denotes the
number of points per wavelength.
Proof. To get the final error estimate, we need some bounds on u satisfying (2.1),
which is actually explicitly given by

sin(kx —

k) 1 . 1 1 .
uw) = T [ty + 1 [ sinty - 2) f)ds
and thus satisfies the estimate

1 1
lollim oy < 1100 (s * 7 (2.4)

Using Theorem 2.1 and the estimate (2.4), we get for the infinity norm of the error
the upper bound

IN

il <[4z imi

h2 k2h2
1 "
< AE . <12 IIf ||L°<>(0,1) + 12 ”f”L“(O»l))

k*h? ~ 1 1
—1 2 1.2 _
14 oo< o [E D 171l 0.1 <k|sin(k;)| +k>

-1 2 2 1
< Af]5 ~ <(kh) + k(kh) <1 + |sm(k)|>> )
where we used (2.3) and the assumptions on f to get the last upper bound. The proof
can then be completed by applying Theorem 2.2. O
We now make some comments regarding the results of Theorem 2.3:
e No dispersion correction: If no dispersion correction is used, k = k, Theorem
2.3 together with a Taylor expansion gives

1 11 2kh (1 cos(k)
Sin(0) sin(6/h) _ khsin(k) | sin(k) (16 - k485m(k)> +O0(h?),

from which we see that as h — 0, there is a term of the form k(kh)* in
the expansion of the upper bound of the error ||ey||,,. The presence of the
pollution effect suggests that the above bound cannot be improved.

o Using dispersion correction: If dispersion correction is used, k = k, then, since
limgp—0(kh)/sin(kh) = 1, this term does not contribute to the convergence
rate. The FD scheme with dispersion correction does not suffer from the
pollution effect since, for any k such that k, kh ¢ 7N, the error decreases like
O(G™2) for any wavenumber. Notice however that the convergence rate is
deteriorating if k comes close to a continuous or a discrete eigenvalue.

REMARK 2.4 (Suppressing dispersion error for general 1d FD schemes). We
consider a uniform grid and the following general stencil associated to the Helmholtz
operator:

(Hpu), == — (Dju), — k* (Myu), ,

i
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where the subscript i means the approximation is computed at grid point x;. The
(discrete) symbol can then be defined as oq(k, &, h) = ei¢% (Hhe@”)i and it can always
be written as

Jd(ka 57 h) =092 (57 h) - ksz(f, h)a

where o _g2(§, h) and opr(§, h) are the discrete symbols associated to the F'D discretiza-
tion of the operator ¢ — —0%p and the constant multiplication operator ¢ + 1 X ¢,
and o_p2(&,h) — €% and opr(€,h) — 1 as h — 0.
We recall the discrete wavenumber is defined as kq satisfying ca(k,kq,h) = 0.
Now setting ¥ to
-~ 0-92 (kv h)

W = ) 25)

we have limp,_,o kK=K In addition, when using this shifted wavenumber, the discrete
wavenumber kg verifies

oa(k, ka, ) = 0= 0_p2 (ka, h) — K2ons (a, ).
Therefore, Ed satisfies
o_o2(ka,h) o _ 0ok h)

O'M(jﬂ\d,h) UM(kvh) ’

from which we see that Ed =k is a solution showing there is no dispersion error.
We now apply the previous derivation to the FD scheme from [18, Eq. (2.4)]
whose stencil is (with the notations of the present paper)

! 1+ 203 — a)us + oy
—ﬁ(uiﬂ_2Ui+ui—1)—k2aul+l+ ( Ga)uz+auz L

Note that we get the standard 3-point second order stencil for « = 0 and a Taylor
expansion also shows that, when applied to the homogeneous Helmholtz equation, this
stencil is fourth order for o = 1/2 (see also [28]). The discrete symbols for this stencil
are

o_g2(&h) = % (1 —cos(éh)), onm (&, h) = é (2acos(éh) + 6 — 2a) .

The shifted wavenumber is then defined by (2.5) which gives

2 6 1 — cos(kh)
~ h2 \acos(kh) +3—a)’

and one can check the FD stencil using ¥ instead of k is now free from dispersion
error. A Taylor expansion also yields

~ h?
K2 =k%+ k4ﬁ (20— 1) + O(h%)

which shows that the FD scheme with shifted wavenumber is again 2nd order for a« = 0
and 4-th order for o = 1/2. We also emphasize that the proof of Theorem 2.2 could
be extended to the a—scheme above since the matriz is again tri-diagonal.
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3. Reducing dispersion error for general FD schemes in higher dimen-
sions. For Helmholtz problems in dimension d > 1, we cannot suppress the dispersion
error completely, but we can reduce it. To do so, we introduce the symbol of the con-
tinuous Helmholtz operator H = —(A + k?) which is

oe(k, &) = [€* — k2.

We now consider a uniform grid embedded in R¢, with meshsize h, and a general finite
difference discretization of ‘H defined as

(Hnu); = —(Apu); — k*(Myu);,

where the subscript ¢ indicates that the approximation is computed at the grid point
x;. The discrete symbol is then

oalk, & h) = (7€), (Hne™<),.
The discrete wavenumber is, for any 8 € S¥~1, kg := kq(k, 0, h) that satisfies
oa(k,kqB,h) =0,
and we usually have
ka(k,0.h) # k,

which is again the dispersion error. We also introduce the discrete and continuous
dispersion relations

D.:={€ R | |¢? - k* =0},
Dy :={& € R o4(k,& 1) =0}.

For a consistent numerical scheme, we have limp_,o o4(k, &, h) = o.(k, &) for all &, &.
As a result,

lim kq(k, k0. h) = k,

for every k, 8. In what follows, we first compute an expansion of kg as h goes to 0 and
next introduce the so-called asymptotic optimal shifted wavenumber which is actually
defined up to a free parameter that is next used to minimize the dispersion error for
h small enough.

3.1. Expansion of the discrete wavenumber for small meshsize. From
now on, we assume that
(H1) The discrete symbol admits the expansion

oa(k, k0, h) = hPE(k, k@) + O(hPT),

for a smooth function .

(H2) For a given wavenumber k, the sequence of functions (Ve¢oq(k,-,h)), con-
verges uniformly to Veo.(k,-) on a compact neighborhood of & = k@ for
RS

(H3) For a given &, the sequence of functions (Oxo4(-, &, b)), converges uniformly
to Oxo.(+, &) on a compact neighborhood of the wavenumber k.
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We emphasize that (H1) is satisfied for any FD scheme that is of order p on plane
waves. This means that

(Hnue); = hPE(k, kO)ug(x;) + O(RPT1),

for any plane wave ug(x) = €*¢ where § € S?!. As a result, assumption (H1)
can be derived by computing directly the Taylor expansion of the discrete symbol at
& = kO and keeping the leading order term. It is also worth noting that, although
(H2) and (H3) seem rather technical, they are also easily checked by computing the
Taylor expansion of the derivatives of the discrete symbol with respect to (k, £).

We show below the existence of a discrete wavenumber for small enough meshsize.

PROPOSITION 3.1. Assume that (H1) — (H2) hold. Then for each k,0 we have
some hg > 0 such that for all h < hg, there exists a discrete wavenumber kq(k, 0, h)
satisfying oq(k, kq@,h) = 0.

Proof. Let us fix k,0 and let § € R be some given constant. A Taylor expansion
gives

oa(k, (k£ 6hP)0,h) = 04(k, kO, h) + 6hPVeou(k, kO, h) - @ + O(h*P).
From (H2), as h — 0, we have that
Veoa(k,kO,h) = Veo(k, k0) + o(1) = 2k0 + o(1),
and using then (H1), we get
aq(k, (k£ 0hP)0,h) = h¥ (E(k, kO) £ 2k5) + O(hPT1).

For some positive constant C' such that 2€(k, k@) < C, we now set

1
b= (E(hk0) = O),

which gives

oa(k, (k + 6hP)0,h) = h? (2E(k, kO) — C) + O(hP*T1h),
oa(k, (k — 6hP)0, h) = Ch? + O(hPTH).
From these, we see that there exists hg such that for all h < hg, we have oq4(k, (k +
dhP)0,h) < 0 and o4(k, (k—0hP)0,h) > 0. Since the discrete symbol o4 is continuous
in all its variables, we obtain that there exists kq(k,0,h) € (k — 0hP, k + 0hP) such
that O'd(k, kq0, h) =0.0
We can now compute the expansion of the discrete wavenumber k4 as h — 0.
THEOREM 3.2. Assume that (H1) and (H2) hold.
(i) Then the discrete wavenumber has the expansion
hp
kq(k,0,h) =k — ﬁg(k, k@) + O(hPt1h).

(i) If in addition, Dy has a polar representation of the form
V0 € S there is a unique &€ € Dy such that € = |€|6,

then the dispersion error can be defined as below and satisfies the estimate

hP
. _ p+1
ererzga}i)fldlst (D.NL(6),DyN L(O)) o% mgx|5(k,k‘0)| + O(hPTh),

where L(0) is the line passing through the origin with direction vector 6.
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Proof. For (i), we start from (H1) which gives
oa(k, k40, h) — oq(k, kO, h) = 0 — hPE(k, kO) + O(hPTY).
Using a Taylor expansion with integral remainder, this gives
(kg — k)R(O,h) = —hPE(k, kO) + O(hPT1),

with
1
R(6,h) = / 0 -Veog(k,{k+ s(kq—k)}0,h)ds.
0

Since kq — k as h — 0, we have &, := {k+ s(kq—k)}0 — k@ and, for h small enough,
the sequence &, remains in a compact neighborhood of k8. Assumption (H2) then
gives that

Veoa(k, {k + s(kq — k)}0,h) = Veoo(k, ko)

uniformly, and we can exchange the limit and integral symbols. Since V¢o. = 2§, we
obtain

1
lim R(0,h) = 2k/ 0 -0ds = 2k.
h—0 0

We then finally get

1

= T o) (—hPE(k, kO) + O(hP11)) = —@E(k,ke) o,

(ka — k) o

which is the desired estimate.
To prove (ii), note that our assumption and the definition of the discrete wavenum-
ber imply that the discrete dispersion relation can be written as

Dy = {kq(k,0,h)0 | 0 € ST '}.

Since the continuous dispersion relation is the sphere centered at 0 with radius &, the
dispersion error satisfies

max dist (D, N L(6), Dy N L(O))
6csd-1t

max |kO — k40|
fecsd-1t

hP
%S(k,ke)‘ + O(hPH),

= max
fesd-1

where we used the result from (i) to get the last estimate. O

_ 3.2. Definition of the shifted wavenumber. We now introduce a real shift
k := k(k,h) in the finite difference stencil, which leads to the discrete symbol

Jd(kagah) = J—A(£5 h) 7/];'20_M(€a h)7
where 0_a(€,h) — [€]? and o (€,h) — 1, for all €, as h — 0. We assume that

k =k + kyh?,
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and compute the expansion of the discrete symbol ad(E, kO,h) as h goes to 0. A
Taylor formula with integral remainder gives

1
oa(ke, k0, h) = o4(k, k6, h) + k,h? / Opoa(k + skyhP k6, h) ds.
0

Using (H3), we can invert the limit and integral signs to get

1
}lllr% Oroa(k + skyh?, kO, h) ds —/ Oroc(k,kO,h)ds = —2k.
—

From (H1), we then obtain
oq(k, k0, h) = —2kk,h? + hPE (k, kO) + O(hP+Y) = h? (—2kk, + E(k, kO)) + O(hPT),

and Theorem 3.2 gives

hP

kq(k,0,h) =k — 5 (—2kk, + E(k, k0)) + O(hPT).
From this, we can minimize the dispersion error for small enough meshsize by taking
ke = argkznin (02‘18%)(1 |—2kk, + E(k, k9)> . (3.1)

In what follows, we call k3% the asymptotically optimal shift, since it minimizes the
dispersion error as h — 0.

We now give an explicit formula for the asymptotically optimal shift.

THEOREM 3.3. Assume that there exists some Onin, Omax Such that

gmin = g(ky kemin) S g(k; ke) S g(ka kerﬂax) = 5max7

where the lower and upper bounds may depend on the wavenumber k. Then the solution
of (3.1) is unique, and is given by

1
k,asy gmax 5min )
and the relative dispersion error satisfies
k'd (Easy’ 0, h) -k _ h? 5max - gmin p+1
pesi K = %2 2| Fo,

where kY = k + hPES.

Proof. It can be checked by direct computations that the function k, € R —
maxgega—1 |—2kk, + E(k, kO)| is convex. As a result, it has a unique minimum from
which the uniqueness of k3* follows.

For all 8 € S4~!, we have

—2kky, 4 Emin < —2kky, + E(k, kO) < —2kk), + Exax.
Since £(k, k@) reaches its extrema, this gives

maxx |~2kky + E(k, k)| = max {|~2kky + Eninl , |=2kky + Enaxl} = F(ky),
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and we now need to find the argmin of F'(k,) to get k;*. We emphasize that both
kp — —2kk, + Emin and ky, — —2kk, + Enax are affine functions with the same slope
and thus the minimal value of F' is reached for k5% such that

(72kkgsy + gmin) = - (*2kk;sy + Emax) )

from which we can derive the announced formula. To get the estimate on the relative
dispersion error, we use Theorem 3.2 which yields

~ P
ka(K*Y kO, h) =k — ;Lk (—2kk2 + E(k, k6)) + O(hP*+),

and next use that maxg ‘—Qkkgsy + E(k, kO)‘ = ‘—2]{16;53’ + Emax’. 0
The relative dispersion error without shift satisfies
kq(k,0,h) — k;’ h?

k 7max{|gma>(‘ >‘gmin|}+0(hp+1>.

fesd-1 T 2k2

Using then Theorem 3.3, we obtain that the shift reduces the relative dispersion error
by the factor
maxg |E(k, k)] _ omax {|Enax|, [Eminl}

= =2 2
Rf maxeg |—2]€k/’gsy + g(k, k0)| |5max - gmin| (3 )

We now get some lower bounds for the reduction factor R (Emax, Emin) defined as

max (|al, [b])

b) =2
Rf(aa ) |a—b|

Assuming first that 0 < @ < b, we have —b < @ — b < 0 and thus |a — b| < |b| from
which we infer
[b] o] _

>200 =2
la—b = bl

Rf(a, b) =2

Noting that R¢(—a, —b) = R¢(a, b) and R¢(a,b) = R¢(b, a), we have proved that
V(a,b) € (R")? U (R™)? with a #b: R(a,b) > 2. (3.3)

Assuming now that ¢ < 0 < b and |a| < |b|, we have |a — b| < 2|b| and thus

1o >1

Re(a,b) = 2 .
lab) =20

Using again the symmetry properties of R¢, we obtain
V(a,b) € (RT x R7) U (R™ x R") with |a| # [b] : Re(a, b) > 1.

We emphasize that R¢(a,b) = 1 if and only if a = —b but in this case, we would have
Emin = —&max and thus the asymptotic shift is £ = 0. It is worth noting that, in
the next section, we only end up being in the case (3.3) for each stencil considered.
As a result, the reduction factor is in each case greater than 2. More precisely, we
prove in Theorem 4.1 that R = 4 for the 5-point stencil, Theorem 4.2 gives that
R¢ = 64 for a sixth-order 9-point stencil and we show in Theorem 4.3 that R¢ = 3 for
the 7-point stencil in 3d.

12



4. Asymptotically optimal shift for some standard FD stencils. We now
compute the asymptotically optimal shift in 2d for the standard second-order 5-point
stencil, a sixth-order 9-point stencil, and the second-order 7-point stencil in 3d. In each
case, we first compute the function £ with a Taylor expansion of the discrete symbol,
followed by its lower and upper bounds. Applying Theorem 3.3, we can then get the
asymptotically optimal shift, as well as the improvement on the relative dispersion
error by computing the reduction factor Rf. We also show that the asymptotically
optimal shift can be used to reduce the dispersion error even when a relatively small
number of grid points per wavelength is used. Note that there is no extra cost when
using this asymptotically optimal shift in solving the associated discretized systems,
the improvement in the discrete solutions comes for free.

4.1. Application to the 5-point stencil in 2d. The second order 5-point
stencil for the Helmholtz operator in 2d is defined as

2457t _ i1~ Uiong H A Ui — i1
u = U
h ,j h2 2,99
:

and the discrete symbol is therefore

4 — 2(cos(h&y) + cos(hé&s))

3 — k2

o P (k, &, h) =

A Taylor expansion gives

h2
0" (k. €.h) = (k. €) — 35 (€1 + &) + O(h?).

Since any 6 € S! can be written as 6 = (cos(s),sin(s)) for s € [0, 27], we obtain

£k, K8) = = (cos(s)" + sin5)") =~ (2cos(s)" ~ 2eos(s)? +1)

and it is easy to verify that the hypotheses (H1),(H2) and (H3) hold. We now intro-
duce the shifted wavenumber as

b =k + koh2,

with ko defined by (3.1).
THEOREM 4.1. The asymptotically optimal shift for the standard 5-point differ-
ence scheme and the associated reduction factor are

k3
asy — — 4.
2 320 R

Proof. To use Theorem 3.3, we have to find the extrema of £(k, k@) for 8 € S*.

Setting X := cos(s)?, this is equivalent to finding the extrema of

k‘4
X)) =-1 (2X? —2X +1).

It is easy to see that 1/2 <2X% —2X +1 <1 for all X € [0,1] and thus
k4 k4

ﬁa gmax = *ﬂ~
13

gmin = -



Theorem 3.3 then gives for the asymptotically optimal shift

gmin + gmax _ k3

kasy — =_
2 4k 32

From (3.2), the reduction factor is

max {|Emax| ; [Emin|} _

Re=2 4.
! |gmax_gmin|
0
The stencil with shifted wavenumber thus becomes
> —Uit1,j — Wim1j + AU — U1 — Uiy K
(i), = o T g I S (2 (41)

We now verify the efficiency of the method presented above by computing numerically
an optimal shift k3* which minimizes the error between the discrete wavenumber kg

and the continuous wavenumber k. The computation of kg satisfying
o ;P (k, ka8, h) =0,

is done numerically since the optimal shift is obtained by computing first k4(0, k2)
satisfying

o P (k + kah? kq(0,k2)0, h) = 0,

and next by minimizing ks — maxg |k — kq(k2)|. The optimization is done using the
Matlab function fminsearch.

According to [4, Remark 5.2], the discrete dispersion relation is disconnected for
G < m. When using the asymptotically optimal shift k5™ (see Theorem 4.1), this
requirement translates to

27 B 8G*
(k+E5Yh2)h  8G2 — 72

G(kQ) = <m,

where G = 2w /(kh) is the number of grid points per wavelength associated to the
unshifted discrete Helmholtz equation. Accordingly, the dispersion relation of Hipt

becomes disconnected for G < (1 + +/5)/4 and we thus restrict our numerical opti-
mization to G > 2.5. The relative dispersion error is

. . ‘kd(E, 9) — k‘
Mraisp (k) = max max —— ——

)

where kg is the discrete wavenumber and k is going to be either k, koY =k + h2k5™
or koPt =k + kSP*h?. We show in Figure 4.1 the relative error between the asymptotic
shift k5™ and the optimized one kgpt as well as the relative dispersion error Errg;sp (%)
From Figure 4.1, we see that the relative error between k5™ and k5" is smaller than
2% for G > 3 and thus our asymptotic derivation can be used even for meshsize
and wavenumber combinations such that kh < 27/3 =~ 2. We also note that, for G
small, the relative dispersion error is large. This can be explained by the fact that

the discrete dispersion relation becomes disconnected for G small and even empty for
smaller G (see [4, Theorem 5.1]).

14
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Fia. 4.1. Left: Log-log plot of the relative dispersion error for the 5-point FD stencil using
~ ~ - . asy _,opt
either k = k (no dispersion correction), k = k + h2kgpt or k =k + h%k3™. Right: %7&'2' as a

2

function of G. We used K = {20, 40, 80,100, 140, 160, 180, 200, 250, 300, 600} .

2. Application to a 6th order 9-point stencil. We now derive the asymp-
totically optimal shift for the 9-point 6-th order FD scheme from [4, Theorem 4.1]
whose stencil is

(7)o (5 ) o

1-2a ke
+ — = | (w(wi—1,y) +v(@ig1,y5) + v, yi-1) + 0(@i, ¥j41)) - (4.2)

h? 4

1—a 1-b—c
- < ® + k§ 1 ) (v(zi—1,yj-1) + v(@ig1, ¥j-1) + 0(Tim1,Yj4+1) + 0(Tit1, Yj41))

where a, b, c and k, are positive constants given by
k

8 _
= 5Tl ky=k- oG

|
N o

5
= - b:
a 6,

with ¢y being a free-parameter. The discrete symbol associated to 7—[9 P satisfies the
expansion
k8hS

9—pts _ C 6,2 4
o, "7(k,k0,h) = 0182 (2cos(0)°m= — 4 cos(0)°m= + 6 cos(0)*m

189¢5 cos(0)* — 4 cos(6)*n? — 189 cos(H)?cy + %) + O(h®)
ReE (k, kO, c2) + O(h®).

2

+

We first determine the constant ¢ by minimizing the asymptotic dispersion error.
We thus set

¢y = argmin |€ (k, kO, c2)]| .

ca2
THEOREM 4.2. The asymptotically optimal shift for the 9-point stencil and asso-
ciated reduction factor are
2 k7
s=-T . K =——"_  and Rf=064

54’ 6 12288’
15
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Proof. We introduce the function F' such that
8
L
604872
Setting X = cos(d) € [-1,+1], we then have to find first the extrema of

E(k, kO, co) = (cos(6), c2). (4.3)

F(X,co) =2m°X® —4n? X0 + 672 X* + 189X ¢y — 4m2 X2 — 189X ?¢y + 2.

Computing the solution to F'(X,,cs) = 0, we obtain
2 2
X, € {0, j:g, j:\2£ (w2 /37t 1897r202)} .
71'

Assuming that c; < —72/63 to avoid complex square roots, we get

20189 -1
T e, 5 (Bt 151207 + 3572155)} :

F(X 2
( C,CQ)E{TF, ) 4 S

Studying the variation of these functions (or simply plotting them) for co < —72/63,
we obtain
-1

Fmin(CQ) - @

(87" 4+ 15127m%¢cy + 35721c3) < F(X, ¢2) < Frnax(c2),

where
2

m 189
FmaX(CQ) = max {7-(23 § - 402} .

Using (4.3), we then get

76027;71_2}7}[1&,((62) <E(k, kO, ca) < —%Fn}m(cz),
from which we finally get
k8 k8
Emin(c2) = —mFmax(Cz), Emax(c2) = _WFmin(02)~

From these estimates, we also obtain

8

max |€ (k, kO, c2)]

max = Goagr2 X UFmax(c2)] [ Fmin(c2)[} = K(c2),

and ¢5 = argmin K (c2). From Figure 4.2, we see that K(c2) = |Fnax(c2)| and thus

2

G2 = [*aa*@

]
To get a single value for ¢j, we maximize the reduction factor (see (3.2)) which, for

2 2. . .
c2 € [~ %3, — 53] is given by

max {|gmaX| ) |gmin|} o 167T2
|Emax — Emin|  16m* 4+ 151272¢y + 357213
16

Rf(CQ) =2




=Pl

-0.25 -0.2 -0.15
Fic. 4.2. Graph of K(c2).

. . . . 2 2 . . .
Since the function cp + R¢(cz) is decreasing on [—%;, — 3], it reaches its maximum

at co = —g—z and we thus set
* m°
=g
This gives
Re(cy) = 64
as well as
Enin = Emin(63) = ~ o B = Emae(6h) = g ok

Theorem 3.3 finally gives that the asymptotically optimal shift is

k7
12288°

kgsy - grnin + gmax) -

4k (
0

We show in Figure 4.3 the relative error between the asymptotically optimal shift
and the numerically optimized one where the optimization has been performed as in
Section 4.1. From these numerical results, we see that the asymptotically optimal shift
is close to the numerically optimized one up to G > 5 and that the relative dispersion
error is also reduced even for a small number of grid points per wavelength.

4.3. Application to a 7-point stencil in 3d. The second order 7-point stencil
for the Helmholtz operator in 3d is defined as

(Hmu) —Uit1,5k — Wim1jk = Wi k1 — Yijk—1 — Wij4+1,k — Wij—1,k T 6Ui ik
b gk 52

- KUk,
and the discrete symbol is thus

6 — 2(cos(h&1) + cos(héa) + cos(hé3))

3 -k

o Pt (k& ) =

17
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FiG. 4.3. Left: Log-log plot of the relative dispersion error for the 9-point FD stencil using
~ ~ ~ asy _ .opt
either k = k (no dispersion correction), k = k + hOSkSP" or k = k + hOk5™ . Right: L l

G as a
function of G. We used K = {20, 40, 80, 100, 140, 160, 180, 200, 250, 300, 600} .

kg™ |

Since any 6 € S? can be written as 8 = (cos(i) sin(s), sin(i) sin(s), cos(s)) for ¢ €
[0,27] and s € [0, 7], a Taylor expansion gives

k‘4
E(k,kO) = - ((cos(¢p) sin(s))* + (sin(i) sin(s))* + cos(s)*)
and the asymptotically optimal shift can then be computed.
THEOREM 4.3. For the 7-point finite difference scheme in 3d, we have the asymp-
totically optimal shift and related reduction factor
k3

k;sy:—%, Rf:3

Proof. Setting X = cos(s)? and Y = cos(¢)?, we get

k4

(XP+(1-X)P (Y +(1-Y)?)) = —%f(x,w

and we now have to compute the extrema of f over [0,1]2. A computation gives
Ixf(X,Y) = X(2+g(Y)) —2¢(Y) with g(Y) = Y? + (1 — Y)2. Since g(Y) > 1/2,
2+ 2¢(Y) > 0, for any fixed Y, the function X € [0,1] — f(X,Y) is decreasing for
0< X <29(Y)/(2429(Y)) and increasing otherwise. As a result, we have

2g(Y)

Y(X,Y)e[0,1)?: f <2+29(Y)’

Y)f;ﬂx:Y>sImm{fu,YxfmAw}s1.

Noting then that

f< 2g9(Y) Y)_12Y2—2Y+1 /2 1

1 1
=23/

2+2(Y) " ) 2 Y2-Y+1 3’

[

we obtain

1 11
F(53) = rxv < s -1

18
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FiG. 4.4. Left: Log-log plot of the relative dispersion error for the 7-point FD stencil using
~ ~ ~ asy _j.opt
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2 as a
function of G. We used K = {20, 40, 80, 100, 140, 160, 180, 200, 250, 300, 600} .

[k5™ |

and thus
Emin = i Emax = K
min — 127 max — 36 .
Using Theorem 3.3, we find k3™ = % = f%.
From (3.2), the reduction factor is
Rf _ 2max{|gmax 7|grnin|} _ 3
|€max - 5min|
0
The 7-point finite difference stencil with shifted wavenumber is therefore
7_17th U1k — Wim15k — Wi k41 — Wigk—1 — Wij+1,k — Uij—1k T 6u; 5k
h ) iie h2

E3h2\?
- (k_36> Uik

We show in Figure 4.4 the relative dispersion error Errgisp (%), for k € {k,Easy,EOPt}
as well as the relative error between k5™ and the numerically optimized shift com-
puted as in Section 4.1. This shows that the asymptotically optimal shift is close
to the numerically optimized one even for a relatively small number of grid points
per wavelength, and that both reduce the relative dispersion error compared to the
standard 7-point FD stencil.

5. Numerical experiments. We now test the asymptotically optimal shift
numerically to see the effect of dispersion correction when solving some Helmholtz
boundary value problems. We start with the 3-point stencil in 1d, followed by the
5-point stencil in 2d, to solve Helmholtz problems with Robin boundary conditions.
Then, we test the 9-point stencil with Dirichlet boundary conditions.

5.1. Numerical results for 1d problems. We illustrate now by numerical
experiments that, for one dimensional Helmholtz problems, no dispersion error leads
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Fi1G. 5.1. Log-log plots of the errors for Robin boundary conditions. Left: k = 200. Right:
k = 2000.

to no pollution effect as well. The Helmholtz equation with homogeneous Robin
boundary condition at x =1 is

_ull(x) - k2u(x) = f(x)v in ]0, 1[3
u(0) = 0, (5.1)
w'(1) — iku(1) 0,

where f is a given source term. We discretize (5.1) with the 3-point stencil (2.2) at
n interior grid points, and use a ghost point for the Robin boundary condition. We
assume the right-hand-side f to be

f =sin(kz),
which gives the closed form solution

x cos(kx 1+ 2e%F — 24k
e n(z) = _ zcos(kx) ) .

ok + sin(kx) ( ITE:

Denoting by u the discrete solution, we compare the relative errors

o e (@)l
i n@).

for the scheme (2.2) with and without the real shift k. For the Robin boundary
condition, we also compute the error when using the real shift k£ on the boundary. We
compute the error for k fixed and a number of grid points per wavelength given by

G = 2—2 =320, 160, 140, 120, 100, 80, 40, 30, 20, 15, 10, 8, 5, 3, 2.

The results are shown in Figure 5.1 and clearly show the pollution effect when no
dispersion correction is used which confirms our theoretical results from Section 2
(see Theorem 2.3). It is also worth noting that using the real shift on the Robin
condition does not have a major impact on the error.
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Fic. 5.2. Relative error with and without shifted wavenumber.

5.2. Numerical experiments in 2d with the 5-point stencil. We solve the
test problem (see also [33, p. 22, Example 2])

—Au—Fk*u =0, inQ=(0,1)2
u =f, on{0}x[0,1]U{1} x [0,1], (5.2)
Opu+iku =g, on[0,1] x {0} U][0,1] x {1},

where f, g are defined so that u(z,y) = sin(k(z + y)v/2/2) is the exact solution.

We discretize the Robin boundary condition with a ghost point to achieve second
order accuracy and also use the shifted wavenumber in the Robin condition. To
compare the efficiency of the 5-point FD scheme with shifted wavenumber, we compute

where uy, (k) is the numerical solution without shift (hence k = k) or using the shifted
wavenumber (in that case k = k=k— h%k3/32).

We compute numerically (see Figure 5.2) the relative error for meshsizes h =
1/(n+1) withn =27 and j =4,---,10, and k = 20,40, 80, 160. These results show
that the shifted wavenumber can not cancel the pollution effect in 2d, but it reduces
the error for large enough number of grid points per wavelength. We also compute
the reduction factors in Table 5.1. This shows that the shift roughly reduces the
relative error by a factor 2 for large enough numbers of grid points per wavelength.
Note that it is not beneficial to use the asymptotically optimal shift if too few grid
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n 27 25 20 27 28 2° 210
k=20 0.6153 | 0.5514 | 0.5406 | 0.5376 | 0.5353 | 0.5342 | 0.5335
k=40| 1.1662 | 0.8251 | 0.5594 | 0.5190 | 0.5136 | 0.5126 | 0.5123
k=280 2.1981 | 0.6594 | 0.8327 | 0.5723 | 0.5118 | 0.5052 | 0.5045
k = 160| 1.0015 | 2.2481 | 0.6354 | 0.8776 | 0.6078 | 0.5119 | 0.4988

TABLE 5.1
Ratio of the errors erro (/k\) /erreo (k) for varying meshsize and wavenumber.

points per wavelength are used. This is expected, since we define kY by minimizing
the dispersion error as the meshsize goes to zero. Nevertheless, since the dispersion
error is still reduced when using the asymptotically optimal shift (see Figure 4.1) for
G > 5, we can still expect to reduce the relative error when enough grid points per
wavelength are used to get accurate solutions. Also note again that the numerical
cost for solving the linear system with or without shift is identical.

5.3. Numerical experiments in 2d with the 9-point stencil. We now solve
the test problem

(5.3)

—Au—k*u =0, inQ=(-1,1)2,
u = f, on 082,

where f is chosen so that u(x,y) = sin(k(z +3)v/2/2) is the exact solution. We solve
(5.3) with the 9-point stencil (4.2) where the constants are

5 5 ¢ 8 w2 it
=—, b==-—2 =— = —G?% ky=k(l1-=G*
T 6 20 “T 15 54 ( 30 ) ’
for the FD scheme without dispersion correction. Since G = 27 /(kh), these constants

become with dispersion correction

8 w2 2T -2
SR Y (P L 4
‘T4 ((k+h6kgsy)h) ’ (5-4)

. 4 o —4
B = (k+ hORy (1= (— = .
g = (ke hks )< 30 ((k+h6kgsy)h) >

The value for kg™ is defined in Theorem 4.2. We emphasize that the constants from
(5.4) satisfy as h — 0 the expansions
asy_é_ﬂ;2 -2 7 asy __ _14 —4_L6 —6) 7
= 54G +O(h"), k) —k‘(l SOG 192G +O(h"),

where we can use either G or h. Since the 9-point stencil is sixth-order accurate, only
the expansion up to order 6 is going to matter for the error and we then neglect the
O(h") term above to define our FD scheme with dispersion correction. Using these,
we now have the same stencil as the one obtained in [4, Theorem 4.1] by minimizing
the distance between the discrete and continuous dispersion relations thanks to an
asymptotic analysis. Our new approach is however much easier to use, and also to
extend to other FD stencils.

Using the same notations as in Subsection 5.2, we show in Figure 5.3 the evolution
of the relative error, for a fixed wavenumber, and varying meshsize, and in Table 5.2
the reduction factor. From these results, one can see that, for small enough meshsize,
it is highly beneficial to use dispersion correction since it can lower the relative error
by a factor up to 100 in some cases.
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Fic. 5.3. Relative error with and without shifted wavenumber.

n 24 25 26 27 28 29 210
k=20 2.231 | 0.167 | 0.022 | 0.006 | 0.013 | 0.014 | 0.050]
k=40 0.994 | 4.647 | 0.174 | 0.023 | 0.006 | 0.013 | 0.015]
k=380|0.999 | 0.997 | 2.627 | 0.177 | 0.023 | 0.006 | 0.013
k = 160] 0.999 | 0.999 | 0.998 | 0.458 | 0.178 | 0.023 | 0.006

% TABLE 5.2
Ratio of the errors erroo (k) /erreo (k) for varying meshsize and wavenumber.

6. Conclusions and outlook. We introduced a new dispersion correction tech-
nique for finite difference discretizations of Helmholtz problems. The technique is
based on a modified wavenumber, which can be obtained in closed form for arbitrary
finite difference discretizations by obtaining the extrema of an associated function
defined on a compact set. This function is simply obtained from the Taylor expansion
of the discrete symbol of the FD stencil considered. We applied our method to several
standard stencils from the literature and our numerical experiments show that, for
small enough meshsize, reducing the dispersion error also reduces the relative error
in the solution.

A next step is to extend our new technique to finite element discretizations, where
dispersion correction is more difficult to achieve. Our technique can also be extended
to other time-harmonic wave propagation problems like for instance electromagnetic
waves modeled by the Maxwell system, linear elasticity, or even linearized water-wave
models (e.g. Serre-Green-Nagdhi or Nwogu equations). It might also be possible to
derive asymptotically optimal shifts for finite-difference methods in the time-domain
(FDTD).

23



Acknowledgements: We thanks an anonymous referee who helped us to greatly
improve our paper. This research was supported by the Swiss National Science Foun-
dation.

Appendix A. Asymptotically optimal shift as G — +oo .
We discuss in this appendix the extension of some results from Section 3 as
G — +0o0 instead of h — 0 and thus the O appearing below have to be understood as
G — +00. We are also going to track the dependence with respect to the wavenumber
k and thus denote by O a O that may depend on k. First of all, we need to replace
assumptions (H1) — (H2) — (H3) by the new assumptions
(H1)" The discrete symbol admits the expansion

oa(k,k0,G) = K*G™PH(0) + k*O(G™P71),

for a smooth function .
(H2)" For a given wavenumber k, the sequence of functions (Veoq(k, -, G)), con-
verges uniformly to Veo.(k,-) on a compact neighborhood of & = k6 for
6 e St
In addition, the derivative of the discrete symbol with respect to £ verifies
Veoi(k,kO,G) = Veo(k, kO) +kO(G™P).
—_———
—2k6
(H3)" The derivative of the discrete symbol with respect to its first variable k sat-
isfies
Ooq(k,k0,G) = Opo(k, k) +O(G™1).
———

=—2k

It is worth noting that (H1) — (H2)' — (H3)' are satisfied at least for the stencils
considered in this paper. Using the above assumptions, we can compute an asymptotic
expansion of kg as G — +oo.

THEOREM A.1. Assume that (H1)' — (H2)" hold. Then, the discrete wavenumber
satisfies as G — 400 the asymptotic expansion

kq(k,0,G) =k — G‘ng(O) + kO(G™P~1) + KOk (G™2P).

Proof. A Taylor expansion gives
oa(k,ka®,h) — 0a(k, kO, h) = (kg — k)Veoa(k, k0, G) + Ok (|ka — kI?).
Using then (H1)-(H2)’ and that o4(k, kq0,h) = 0 , we obtain
—k2GTPH(O) + K*O(GP7Y) = (kg — k) (2k + kO(G™P)) + Op(ka — k|?),  (A.1)

from which we see that (kg — k) = kO (G~P). The equality (A.1) can then be recast
as

_E2GPH(B) + K2O(G-P1) + K20W(G-2)
ACERO(eED))

_ %G*P%(e) L RO(GPY) + kOW(G2),
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(ke — k) =



which concludes the proof. O

Below, we always use Theorem A.1 by keeping only terms up to order G:p*I and
then we neglect the Oy (G~2P) term. We introduce the shifted wavenumber k defined
as

k:=k+ G Pk,

Using (H3)" and Theorem A.1, one can show that the discrete wavenumber associated
to the stencil using & instead of k satisfies the expansion

ka(k,0,G) =k — G—pg (—2% + ’H(H)) +EO(G™P7).

The asymptotically optimal shift can thus be defined as

1

_zlikp +’H(0)D .

kp® :=argmin [ max
kp 6eSd—

Assuming that
VO € ST Hiin < H(O) < Hinaxs

we can follow the proof of Theorem 3.3 to obtain an explicit formula for the asymp-
totically optimal shift, namely

asy _ _
k> =

4 (Hmin + 7'tmax) .

In addition, the relative dispersion error when using the shift satisfies

ka(k*Y.0,G) — k
k

Hmax - Hmin

— (1P
¢ 2

max
feSd—1

+OGY,  (A2)

where kY = k + k3 G™P. Since the relative dispersion error without shift verifies

ka(k,0,G) — k
2

max ' =GP max {|Hmax| , [Hmax|} + OGP, (A.3)
fcSa-1

we can define the reduction factor Ry as in Eq. (3.2),

max {|Hmax| B |Hmin|}
|Hmax - Hrnin| .

Rf:=2

To conclude this appendix, it is worth noting that if (H1)" — (H2)" — (H3)’ hold
then the estimates (A.2) and (A.3) are valid where terms higher than O(G=?~1) do
not appear and may actually depend on k. Therefore, at least up to order G771,
the relative dispersion error behaves like G™P for large G and thus keeping the num-
ber of grid point fixed yields a relative dispersion error that is independent of the
wavenumber. We emphasize that this claim can be observed numerically.
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