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In subsystem density functional theory (DFT), the bottom-up strategy to approximate the multivariable functional
of the non-additive kinetic energy (NAKE) makes it possible to impose exact properties on the corresponding non-
additive kinetic energy potential (NAKEP). Such a construction might lead to a non-symmetric and non-homogeneous
functional, which excludes the use of such approximations for the evaluation of the total energy. We propose a general
formalism to construct a symmetric version based on a perturbation theory approach of the energy expression for
the asymmetric part. This strategy is then applied to construct a symmetrized NAKE corresponding to the NAKEP
developed recently [Polak et. al., J. Chem. Phys. 156, 044103 (2022)] making it possible to evaluate consistently
the energy. These functionals were used to evaluate the interaction energy in several model intermolecular complexes
using the formal framework of subsystem DFT. The new symmetrized energy expression shows a superior qualitative
performance over common decomposable models.

I. INTRODUCTION

The non-additive kinetic energy functional (NAKE) is a
component of the total energy in various formal frameworks
of density functional theory1 and it is a key bifunctional in
many variants of the Frozen-Density Embedding Theory2–5.
It is defined as:

T nad
s [ρA,ρB] := Ts[ρA +ρB]−Ts[ρA]−Ts[ρB], (1)

where the density functional of the non-interacting kinetic en-
ergy Ts is given via the constrained search6. Here, the admis-
sible domain for pure state spin-unpolarized electron density
functions ρA and ρB is the NA- and NB-representable function
space7. They represent the density of the quantum many body
problem for NA and NB electrons respectively. The separa-
tion of the full system into two subsystems A and B is non-
unique and so is also the decomposition of any total den-
sity ρtot = ρA +ρB. Thus, the functionals in the Hohenberg-
Kohn (HK) formalism for subsystem DFT3 impose further
constraints on the density function spaces in order to be well-
defined4.

The partial functional derivative of T nad
s with respect to ρA

provides the potential that describes a chemical system A em-
bedded in a field generated by ρB electrons. It will be referred
to as the non-additive kinetic energy potential (NAKEP):

vnad
T [ρA,ρB] :=

δ

δρA
T nad

s [ρA,ρB]

=
δ

δρ
Ts[ρ]

∣∣∣∣
ρ=ρtot

− δ

δρ
Ts[ρ]

∣∣∣∣
ρ=ρA

. (2)
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Its existence is subject to the admissibility of the chosen pairs
of densities8. Minimizing the bifunctionals on an admissi-
ble domain leads to the true constrained HK energy and opti-
mal embedded density of the subsystem formulation9. Apply-
ing the Kohn-Sham (KS) DFT framework10 provides a well-
defined orbital-free solution procedure within FDET3. It car-
ries a variational relation to the real HK energy of the total
system.

In general, one has no access to the exact analytical ex-
pressions of the formulas (2) and (1), and consequently, prac-
tical considerations are limited to the use of approximations
(denoted with a tilde ṽnad

T [ρA,ρB]). There are two main
paradigms for any semilocal framework of approximating the
non-additive terms:

top−down : T̃s[ρ]−→ T̃ nad
s [ρA,ρB]−→ ṽnad

T [ρA,ρB] (3)
or
bottom−up : ṽnad

T [ρA,ρB]−→ T̃ nad
s [ρA,ρB]

if decomposable T̃ nad
s

−→ T̃s[ρ].
(4)

The top-down strategy uses some explicit approximate for the
density functional Ts and applies it for Definition (1) and its
functional derivative (2). The resulting non-additive kinetic
bifunctional will be referred to as decomposable since the an-
alytic form for the relevant kinetic energy component (T̃s) is
accessible. The accuracy of the approximant to the NAKEP
is directly related to the quality of the approximation used to
Ts

11,12. Common embedding methods incorporate such a de-
composable T̃ nad

s (see dedicated reviews in Ref. 8,9,13,14).
In addition to the local and semilocal NAKEP models2, non-
local approximants have been used for the same purpose15,16.

The alternative, bottom-up strategy starts with the construc-
tion of an approximation for the NAKEP. A corresponding
density functional approximant T̃s does not necessarily exist,
see for example the models introduced in Refs. 17,18, the ap-
proximant from Lastra et. al19, or the more recent construc-
tion from Polak et. al.20. These functionals are, therefore,
denoted as non-decomposable. The potentials based on invert-
ing the KS equation21–25 also represent a bottom-up construc-
tion subject to the condition that the admissible densities are
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considered26. The bottom-up approach has been further used
in orbital-free DFT methods (OF-DFT) by Chai and Weeks27.
Here, exact physical conditions are used to modify the Eu-
ler equation from OF-DFT in case of a semilocal approxima-
tion to the kinetic energy. Similar to the non-decomposable
model in subsystem DFT, the resulting densities yield supe-
rior properties compared to their counterparts in common lo-
cal and semilocal models. However, Chai and Weeks empha-
size that an immediate evaluation of the energy is not possible
and continue to use a numerically tedious coupling parameter
approach.

We use the following notation for an approximant to the
NAKEP that is decomposable or non-decomposable: ṽnad(x)

T ,
where x is a placeholder for the chosen model. It is
enough if only a component of the approximant is non-
decomposable such that the whole functional becomes non-
decomposable, i.e. ṽnad(non-decomposable)

T . This particular com-
ponent can be further identified as a non-decomposable po-
tential vnon-decomposable

T . In the special case, where it does not
depend on the embedded density ρA, a corresponding approx-
imant to the NAKE is

T̃ [ρA,ρB] :=
∫

ρAvnon-decomposable
T [ρB]. (5)

The left hand side of Eq. (5) is only decomposable if there
exists a functional T̃s such that each of the three terms on the
right hand side of Eq. (1) can be evaluated and they reproduce
T̃ from Eq. (5) exactly. The non-decomposable potential can
be obtained analytically upon partial functional differentiation
with respect to ρA because the integral is homogeneous of de-
gree 1 in ρA.

The formula in (5) is not guaranteed to obey symme-
try upon interchanging the densities (i.e. T̃ nad

s [ρA,ρB] ̸=
T̃ nad

s [ρB,ρA]). The exact NAKE and any decomposable ap-
proximant derived from the top-down strategy are symmetric
due to the symmetry property of Eq. (1). In particular, the to-
tal density should have the same resulting properties upon in-
terchanging the labels A and B because it consists of the sum
of the FDET optimized fragment densities (ρtot = ρA + ρB).
Asymmetry is, thus, a visible defect, when one evaluates sub-
system dependent different energy values. Imposing symme-
try on the NAKE approximant with the bottom-up approach
through a NAKEP approximant, is, however, a difficult en-
deavor. So far as we are aware, the possible lack of symmetry
and its effects has gone undiscussed in the literature to date.

In this work, we propose an approach to “symmetrize” any
semilocal bottom-up non-decomposable model, where the en-
ergy bifunctional expression given in Eq. (5) applies. In math-
ematics, the symmetrization of a multivariable functional is a
process that converts any function into a symmetric function
for any number of arguments. The result becomes indistin-
guishable upon permutation of all variables. There are several
ways of constructing such a mapping; we are going to elabo-
rate on a strategy that works in the spirit of perturbation the-
ory. A first order correction to the approximant to the NAKE
developed by the partial functional derivative ensures sym-
metry while retaining the desired properties of the associated
non-decomposable approximant to the NAKEP.

In the next section, Sec. II, we introduce a general for-
malism for the symmetrization of any bifunctional. Section
III displays the application on an already well-established
semilocal non-decomposable model, the NDCS approxima-
tion. Here, we profit from the fact that the energy functional
corresponding to the NDCS approximant to the NAKEP be-
comes available. Finally, in Sec. IV we present numerical
results of the original asymmetric NDCS energy functional
and the symmetrized NDCS (sym-NDCS) functional by dis-
cussing approximated interaction energies for a chosen set of
chemical complexes.

II. SYMMETRIZATION OF AN ENERGY
BIFUNCTIONAL CORRESPONDING TO A
NON-DECOMPOSABLE ṽnad

T

The symmetrization of a general energy bifunctional
F [ρA,ρB] for any admissible pair of densities (ρA,ρB) (i.e.
the functional is well defined on a suitable domain) can be
achieved in many ways. First, in order to elaborate on a cor-
rection to the functional, we need an estimation of the asym-
metry:

Fasym[ρA,ρB] := F [ρB,ρA]−F [ρA,ρB]. (6)

For a rigorous symmetrization, we assume that Fasym does not
vanish on measurable volume spaces.

The simplest way to symmetrize a bifunctional is to take the
arithmetic average: Fsym[ρA,ρB] := 1

2 [F [ρA,ρB]+F [ρB,ρA]].
Then,

Fsym[ρA,ρB] = F [ρA,ρB]+
1
2

Fasym[ρA,ρB]. (7)

However, this strategy may not be physically realistic and
lack the desired properties of the non-decomposable func-
tional upon partial functional derivation. So we need a more
rigorous representation of a correction to F that preserves the
features of the bottom-up construction up to some order.

We propose a more refined approach in this work. It uses
the partial functional derivative of the asymmetric term as a
first order perturbation correction on the given approximant to
the NAKEP. This approach utilizes the directional derivative
along ρA (the choice of ρA is arbitrary but well motivated,
since one performs an optimization in ρA while ρB is fixed)
to compensate the variation caused by the asymmetric part. It
should be emphasized that the existence of such a derivative is
not essential and depends on the form of the energy functional.
Our resulting formula with the perturbation correction reads

Fsym-p[ρA,ρB] := F [ρA,ρB]+Csym

∫
ρA

δ

δρA
Fasym[ρA,ρA],

(8)
where Csym is a real constant corresponding to the step size
of the functional derivative. This constant in front of the cor-
rection should be set such that our formula is symmetric. We
can use the advantage that the asymmetric part is fully ac-
cessible. Enforcing the simple symmetry condition on Csym:
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Fsym-p[ρA,ρB] = Fsym-p[ρB,ρA] results in (see Appendix A),

Csym = Fasym[ρA,ρB]

[∫
ρA

δ

δρA
Fasym[ρA,ρB]

−
∫

ρB
δ

δρB
Fasym[ρB,ρA]

]−1

. (9)

In the next section, we are going to apply this symmetriza-
tion formalism to an established semilocal non-decomposable
non-additive kinetic approximant as an illustration of the
mathematical framework.

III. SYMMETRIZED NDCS ENERGY FUNCTIONAL

We will make use of the symmetrization framework from
Sec. II to access the energy observable in the so-called
NDCS model introduced in the work by Polak et. al.20. The
non-decomposable NDCS approximant to the NAKE or just
NDCS energy functional (see Eq. (5)) reads

T NDCS[ρA,ρB] :=
∫

ρA f NDCS[ρB]vNDCS[ρB], (10)

where the non-decomposable functional consists of a special
potential

vNDCS[ρB] :=
1
8
[
|∇ρB|2ρ

−2
B −∇

2
ρBρ

−1
B

]
, (11)

which is controlled in a particular region of space by a multi-
plication with a switching function

f NDCS[ρB] := (1− e−ρB). (12)

The potential in Eq. (11) is derived by imposing some phys-
ically exact limit conditions and then modifying the formula
due to the restriction to the complete space of admissible den-
sity functions. The associated switching function in (12) is
supposed to restrict vNDCS only to a certain domain of the vol-
ume space, where the said exact limit conditions are satisfied.
We note that both formulas only depend on ρB. This feature
permits a homogeneous energy expression of the NDCS ap-
proximant to the NAKE, see Eq. (10), that directly recovers
the potential with the switching function upon taking the par-
tial functional derivative,

δ

δρA
T NDCS[ρA,ρB] = f NDCS[ρB]vNDCS[ρB]. (13)

Now, the NDCS energy functional T NDCS from (10) is a
priori not symmetric because of the special form of the limit
potential vNDCS. Numerical estimates in Sec. IV will give an
idea of how big the discrepancy can be in some cases. In order
to use the perturbation correction framework from the previ-
ous section, we need an analytic expression of the asymmetric
part and its functional derivative,

T NDCS
asym [ρA,ρB] := T NDCS[ρB,ρA]−T NDCS[ρA,ρB], (14)

which is equivalent to the definition given in (6). The corre-
sponding potential, i.e. the functional derivative with respect
to ρA, is given by

vNDCS
asym [ρA,ρB] :=

δ

δρA
T NDCS

asym [ρA,ρB]

=
δ

δρA
T NDCS[ρB,ρA]−

δ

δρA
T NDCS[ρA,ρB].

(15)
The second term on the right hand side is directly accessible
due to (13), while the first term needs a very careful analy-
sis because of the dependence on ρA in the switching function
and in the potential. Its computation of the functional deriva-
tive with respect to ρA can be found in Appendix B. Here, sev-
eral simplifications of complex terms result in a very compact
expression. It confirms the applicability of the perturbation
based symmetrization strategy. For the directional derivative
of the first order perturbation correction term (see Eq. (8)) we
need the following integral (see Eq. (B.14) in Appendix B),

∫
ρA

δ

δρA
T NDCS[ρB,ρA] =

∫ [
ρB|∇ρA|2(1− f NDCS[ρA])(ρ

−1
A

−1)−∇
2
ρB f NDCS[ρA]

]
.

(16)
In this special form, the NDCS switching function from (12)
appears twice in opposite order. In volume elements, where
one part is “switched off”, the other one is “switched on”.
Hence, we shall expect a contribution of the perturbation term
on the whole domain. Using Eqs. (15),(13) and (16), the final
directional derivative of T NDCS

asym reads

∫
ρAvNDCS

asym [ρA,ρB] =
∫

ρA
δ

δρA
T NDCS[ρB,ρA]−

∫
ρA

δ

δρA
T NDCS[ρA,ρB]

=
∫

ρA
δ

δρA
T NDCS[ρB,ρA]−T NDCS[ρA,ρB]

=
∫ [

ρB|∇ρA|2(1− f NDCS[ρA])(ρ
−1
A −1)−∇

2
ρB f NDCS[ρA]

]
−T NDCS[ρA,ρB].

(17)
Then, the new symmetry perturbation correction of the NDCS
energy functional (sym-NDCS) is given by (see Eqs. (8) and
(17))

T sym-NDCS[ρA,ρB] := T NDCS[ρA,ρB]+Csym

∫
ρAvNDCS

asym [ρA,ρB]

(18)

= T NDCS[ρA,ρB]+Csym

(∫ [
ρB|∇ρA|2(1− f NDCS[ρA])

×(ρ−1
A −1)−∇

2
ρB f NDCS[ρA]

]
−T NDCS[ρA,ρB]

)
= (1−Csym)T NDCS[ρA,ρB]+Csym

∫ [
ρB|∇ρA|2(1− f NDCS[ρA])

×(ρ−1
A −1)−∇

2
ρB f NDCS[ρA]

]
. (19)

Finally, the symmetry constant is derived with Eqs. (9), (17)
and (14):
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Csym = T NDCS
asym [ρA,ρB]

[∫
ρA

δ

δρA
T NDCS

asym [ρA,ρB]

−
∫

ρB
δ

δρB
T NDCS

asym [ρB,ρA]

]−1

= T NDCS
asym [ρA,ρB]

[∫
ρA

δ

δρA
T NDCS[ρB,ρA]−T NDCS[ρA,ρB]

−
∫

ρB
δ

δρB
T NDCS[ρA,ρB]+T NDCS[ρB,ρA]

]−1

= T NDCS
asym [ρA,ρB]

[
T NDCS

asym [ρA,ρB]+
∫

ρA
δ

δρA
T NDCS[ρB,ρA]

−
∫

ρB
δ

δρB
T NDCS[ρA,ρB]

]−1

. (20)

We remark from the above formula that the symmetry con-
stant does not necessarily have to be a half as in Eq. (7).
Its value depends only on the magnitude of the asymmetric
discrepancy T NDCS

asym . In particular, the contribution from both
directional derivatives play an important role. If one experi-
ences a significant energy difference when interchanging the
subsystems, then this odd behavior is reflected in the mag-
nitude of the symmetry constant Csym. This concerns cases
where the opposite labeling of A and B might violate the im-
posed exact conditions on the limit potential20. The symmetry
constant finds then the best correction contribution to enforce
symmetry.

The final full approximant of the NAKEP in the NDCS
model is constructed by a combination of a decomposable ap-
proximant to the NAKEP and the non-decomposable NDCS
functional from Eq. (13),

ṽnad(NDCS)
T [ρA,ρB] := ṽdecomposable

T [ρA,ρB]+ f NDCS[ρB]vNDCS[ρB].
(21)

Typical decomposable NAKE approximants are provided by
the gradient expansion framework8,13,14. If T̃s is local or
semilocal in ρ , the potential is analytically derivable28. The
local case is referred to as a local density approximation
(LDA) and can be described with the Thomas-Fermi (TF)
model for the uniform electron gas29,30. Its kinetic energy
expression is given by

T̃ TF
s [ρ] :=CTF

∫
ρ

5/3, (22)

[where CTF =
3
10 (3π2)2/3] and the corresponding non-additive

formula, which is decomposable, reads

T̃ nad(TF)
s [ρA,ρB] :=CTF

∫ (
(ρA +ρB)

5/3 −ρ
5/3
A −ρ

5/3
B

)
.

(23)
The resulting approximant for the NAKEP is the functional
derivative,

ṽnad(TF)
T [ρA,ρB] :=

δ

δρA
T̃ nad(TF)

s [ρA,ρB]

=
5
3

CTF

(
(ρA +ρB)

2/3 −ρ
2/3
A

)
.

(24)

For the decomposable approximant in formula (21), the TF
NAKEP (24) is applied because the NDCS limit potential is
used to address the flaws by any LDA approach20,

ṽnad(NDCS)
T [ρA,ρB] := ṽnad(TF)

T [ρA,ρB]+ f NDCS[ρB]vNDCS[ρB],
(25)

and the resulting full approximant to the NAKE reads

T̃ nad(NDCS)
s [ρA,ρB] = T̃ nad(TF)

s [ρA,ρB]+T NDCS[ρA,ρB]. (26)

From now on, we can use the sym-NDCS expression given in
(19) as the NDCS energy functional in (26),

T̃ nad(sym-NDCS)
s [ρA,ρB] = T̃ nad(TF)

s [ρA,ρB]+T sym-NDCS[ρA,ρB].
(27)

The final functional, T̃ nad(sym-NDCS)
s , constructed above satis-

fies the desired relation

ṽnad(NDCS)
T [ρA,ρB] =

δ

δρA
T̃ nad(sym-NDCS)

s + small correction,

(28)
where the small correction is due to the higher order correc-
tions in perturbation theory and ṽnad(NDCS)

T is the approximant
to the NAKEP introduced in Ref.20.

IV. NUMERICAL ILLUSTRATIONS

In this section, we discuss the errors in energy obtained us-
ing densities obtained by means of the NDCS approximant
(see Eq. (25)) for the NAKEP. The analyses are made for
the same set of weakly bound intermolecular complexes as
the ones considered in the Ref. 20 in which the errors of the
NDCS approximant for the NAKEP were analysed. We start
by showing the asymmetry discrepancy due to the correspond-
ing NDCS energy functional (see Eq. 14) and then discuss
the performance of the approximant to the NAKE with the
symmetrized energy functional, sym-NDCS (see Eq. 27), in
comparison to the energy obtained with optimized densities
by means of the TF approximant of the NAKEP (see Eq. (24))
and the KS energy reference of the total system.

To determine, the errors in the quantities derived from a
given approximation to the NAKE (and NAKEP), the proce-
dure introduced for the same purpose in Ref31 was used for
NDCS and sym-NDCS approximats. It consists of perform-
ing subsystem DFT calculations, in which the densities ρA
and ρB are optimized in “freeze-and-thaw” (F&T) iterations,
and comparing the results to the corresponding ones obtained
from the conventional KS calculations. Note that the notion
of embedded subsystem and environment becomes irrelevant
if the two densities are optimized. Although the subsystem
DFT1 has its fundamental flaw (the subsystem densities are
ill-defined in exact formulation8), if applied using the same
approximation for the exchange-correlation functional and the
same finite basis sets in both subsystem-DFT and reference
KS calculations, it provides a tool to “measure” the quality of
a given approximation to the NAKE (and NAKEP). Any dis-
crepancy between the total density obtained from subsystem
DFT and from the corresponding reference KS densities can
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be uniquely attributed to the errors in the approximation to the
NAKEP. Discrepancies of energies, on the other hand, are due
to both errors in the approximation to NAKEP and to NAKE.

We denote further any densities ρA and ρB as the solution
to the F&T protocol described above. The total energy in the
subsystem DFT1 for two interacting systems reads3

EKS-FDET
vAB

[ρA,ρB] := EKS
vA

[ρA]+EKS
vB

[ρB]

+T nad
s [ρA,ρB]+Enad

xc [ρA,ρB]

+ J[ρA,ρB]+VA[ρB]+VB[ρA],

(29)

where the general KS energy functional10,32 is defined as

EKS
v [ρ] := Ts[ρ]+Exc[ρ]+ J[ρ]+V [ρ], (30)

with the non-interacting kinetic energy Ts defined via the con-
strained search6, the exchange-correlation energy of an inter-
acting system Exc

10, the Coulomb functional J33, which is
also used in its bifunctional form,

J[ρA,ρB] :=
∫ ∫

ρA(rrr)ρB(rrr′)
|rrr− rrr′|

drrrdrrr′, (31)

and finally, the energy functional of an external potential v,
V [ρ] :=

∫
vρ . For two subsystems, the total external poten-

tial is considered as a direct sum vAB := vA + vB, while the
functionals are given with their density counterpart,

VA[ρB] =
∫

vAρB, VB[ρA] =
∫

vBρA. (32)

The non-additive functionals in Eq. (29 consists then of the
common kinetic and exchange-correlation functionals in the
KS formalism (30), see Eq. (1) and

Enad
xc [ρA,ρB] := Exc[ρA +ρB]−Exc[ρA]−Exc[ρB]. (33)

Our computation will access the energy upon complexation
by subtracting the KS energy of the isolated subsystems,

Eint[ρA,ρB] := EKS-FDET
vAB

[ρA,ρB]−EKS
vA

[ρ iso
A ]−EKS

vB
[ρ iso

B ],
(34)

whereρ iso
A and ρ iso

B correspond to an isolated KS treatment
of system A and B respectively. This interaction energy
Eint[ρA,ρB] will be used in this work as a global measure of
quality for the evaluated KS-FDET energies (see (29)) from
the optimized densities. The use of approximations to the
non-additive functionals and to the exchange-correlation en-
ergy is indicated by the tilde notation Ẽx

int[ρA,ρB], where x is
a placeholder for the chosen approximant to the NAKE, e.g.
x=NDCS.

For the numerical evaluation and discussion of a NAKEP
approximant generated error, a representative set of inter-
molecular complexes has been chosen. Their geometries were
implemented at the equilibrium structure obtained from a
KS GGA/6-311G(d,p) calculation with the Gaussian software
package34: (i) the 1996 exchange functional and gradient-
corrected correlation functional of Perdew, Burke and Ernz-
erhof (PBE)35,36 as the generalized gradient approximation of
the exchange-correlation functional, and (ii) the 6-311G(d,p)

pople basis set37,38. For the F&T computations within the
FDET multiscale method, we use the FDETaco library39

based on the PySCF40 program. The embedding potential
approximants are numerically implemented using functions
from PySCF. Thereby, the density of each subsystem is ex-
panded in a supermolecular manner11 with the same basis set
as that in (ii). For the non-additive exchange-correlation func-
tional the same approximant as in (i) is used.

In Sections IV A and IV B, we report the interaction ener-
gies of the optimized densities, which are obtained after suc-
cessful convergence of the self-consistend supercycle of cal-
culations (F&T). The corresponding KS reference values are
extracted from a KS computation of the total system within
the same methodology.

IV.A. Asymmetric Interaction Energies

The formula for the NDCS energy functional (see Eq. (14))
has an asymmetric character. Applying the T̃ nad(NDCS)

s in Eq.
(29) may yield a total energy, which differs upon exchanging
the F&T optimized ρA and ρB. We can observe this difference
in Table I.

Table I. Interaction energies in kcal/mol from Eq. (34) using the non-
symmetrized approximation to the NAKE given in Eq. (26) obtained
from F&T optimized ρA and ρB for two assignments of labels A and
B for the subsystems. ẼNDCS

int [ρA,ρB] shows the values, where the
symmetry from the first two columns is used. ẼNDCS

int [ρB,ρA] shows
the result upon the interchange of the subsystem densities ρA and ρB.
EKS

int is the reference interaction energy from KS calculations for the
whole complex.

Complex Interaction energies from subsystem DFT

A B ẼNDCS
int [ρA,ρB] ẼNDCS

int [ρB,ρA] EKS
int

Li+ H2O -39.82 -37.90 -37.48
Li+ CO2 -21.87 -20.72 -21.47
Li+ F− -194.80 -188.32 -187.56
Li+ Cl− -162.07 -157.22 -153.57
Li+ OH− -195.79 -189.80 -191.69
K+ F− -131.51 -140.90 -141.83
K+ Cl− -112.80 -119.64 -116.62
K+ OH− -138.21 -140.80 -142.08
Mg2+ O2− -696.66 -670.52 -666.35
Mg2+ H2O -87.24 -83.96 -85.21
Be2+ O2− -947.31 -883.99 -857.56
Be2+ H2O -176.28 -153.96 -149.97

ẼNDCS
int [ρA,ρB] corresponds to the original labeling of em-

bedded subsystem A and subsystem B, while ẼNDCS
int [ρB,ρA]

stands for the inverse. It is also evident that all functionals
that are used in calculating the interaction energies apart from
the NDCS approximant, are completely symmetric upon this
interchange (see formula (34) and (29)). Thus, any difference
can be directly appointed to the discrepancy obtained from

5



the asymmetric component of the NDCS kinetic energy func-
tional (see Eq. (14)). Although the notion of embedded sub-
systems A and B becomes irrelevant after the F&T procedure,
we can still distinctly choose the optimized subsystem densi-
ties by counting the even and odd number of F&T supercycles.
The last column shows the KS reference interaction energies
for a direct comparison.

We observe that the total asymmetry ranges from a
difference of about 2kcal/mol in the case of Li+−H2O
(−39.82kcal/mol for ẼNDCS

int [ρA,ρB] and −37.90kcal/mol
for ẼNDCS

int [ρB,ρA]) up to about 64kcal/mol in the case
of Be2+-O2− (−947.31kcal/mol for ẼNDCS

int [ρA,ρB] and
−883.99kcal/mol for ẼNDCS

int [ρB,ρA]). This difference has
to be observed on top of the reference KS interaction en-
ergy, which represents a relative effective change of about
2% − 7%. In many cases it seems that ẼNDCS

int [ρB,ρA] pro-
vides more accurate interaction energies by being closer to
the KS reference. This is attributed to the fact that the original
NDCS model is introduced for subsystems B, which represent
tightly bound electrons to the nuclei20. This trend is, how-
ever, not consistent as in some systems the two symmetries
are showing results, which overshoot the KS reference in one
symmetry, and undershoot it in the other one (see for example
the case of K+−Cl−). Nevertheless, a robust model should
not depend on the choice of the labeling, or more precisely,
display such a significant variation in the energy results upon
interchange.

In the next subsection, Sec. IV B, we will apply the sym-
metrized NDCS energy functional for the evaluation of the
interaction energies on the same set of chemical systems.

IV.B. Symmetric Interaction Energies

In Table II we show the approximated interaction energy re-
sults with the use of the symmetrized NDCS energy functional
(sym-NDCS) for the full NDCS approximant to the NAKE
(see Eq. (27)). In addition to that, computed interaction en-
ergies with the TF approximant for the NAKE (see Eq. (23))
as well as the KS reference values are printed. Relative per-
centage errors to the reference value are given in parentheses
to display the performance.

Since the approximants used are now completely symmet-
ric by construction, we can omit the notion of A and B, and
concentrate the discussion of the F&T results on the respec-
tive chemical complexes. The relative interaction energy error
decreases by a factor of 3.5 in the case of Li+−OH− (from
2.82% for TF to 0.79% for sym-NDCS) or in the case of
Be2+−H2O by at least a factor of 2 (from 24.36% for TF to
11.63% for sym-NDCS). In addition to the fact that the new
symmetrized NDCS formula provides symmetric energies, it
also outperforms in all cases the decomposable local density
functional. We already know that NDCS provides more accu-
rate densities20, and thus, the evaluated energy functionals are
expected to be closer to the reference value. Hereby, the ap-
proximated interaction energy improves in some cases more
than just by a margin, see for example Li+−CO2. NDCS also
stays robust by providing small errors in complexes, where

Table II. Interaction energies in kcal/mol from Eq. (34) using the
TF approximant given in Eq. (23), x=TF, and the sym-NDCS ap-
proximant, x=sym-NDCS, given in Eq. (27), to the NAKE, obtained
from F&T optimized densities. EKS

int is the reference interaction en-
ergy from KS calculations for the whole complex. For comparison,
the absolute relative percentage errors (|Ẽx

int−ẼKS
int |/ẼKS

int ∗100%) are
given in parentheses.

Interaction energies from subsystem DFT

Complex TF sym-NDCS KS

Li+ H2O -40.66 -39.02 -37.48
(8.48) (4.11)

Li+ CO2
-22.41 -21.39 -21.47
(4.37) (0.37)

Li+ F− -196.75 -192.04 -187.56
(4.90) (2.39)

Li+ Cl− -164.08 -160.05 -153.57
(6.84) (4.22)

Li+ OH− -197.09 -193.20 -191.69
(2.82) (0.79)

K+ F− . . . a -136.94 -141.83
(. . . ) (3.45)

K+ Cl− . . . a -116.77 -116.62
(. . . ) (0.13)

K+ OH− . . . a -139.80 -142.08
(. . . ) (1.61)

Mg2+ O2− -691.91 -684.44 -666.35
(3.84) (2.71)

Mg2+ H2O -89.21 -85.94 -85.21
(4.69) (0.85)

Be2+ O2− -954.86 -920.58 -857.86
(11.31) (7.31)

Be2+ H2O -186.51 -167.41 -149.97
(24.36) (11.63)

a No converged results are available.

the TF model does not converge. These challenging system
are similar to the ones reported in the publication about the
NDCS model in Ref. 20. Future orbital and graphical analy-
sis about the potassium complexes and other systems, which
experience charge leak issues, will give more detailed insight
about the superior performance of NDCS.

Finally, we want to compare the sym-NDCS interaction en-
ergies in Table II to the asymmetric ones in Table I. The sym-
metrized values are not equal to the average of both symmetry
results. In fact, averaging would provide interaction energies
with a higher relative error in most cases. The sym-NDCS
interaction energies use a symmetry constant Csym (see Eq.
(20)) in order to find a more sophisticated portion of the cor-
rection to the functional, which results in a specific value ly-
ing in between the two symmetry results. The computation of
Csym can be done after the F&T optimization of the subsys-
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tem densities ρA and ρB because it only depends on the value
of the asymmetry functional T NDCS

asym and its functional deriva-
tive. Therefore, we can evaluate the constant without further
effort after the F&T procedure when calculating the energies,
and directly obtain a symmetrized result.

V. CONCLUSIONS

As shown in our previous works, non-decomposable ap-
proximants for the NAKEP provide more robust and superior
electron densities than the decomposable ones constructed
from local or semilocal approximants for Ts in subsystem
DFT. We attribute this to the imposed exact physical and
mathematical properties on the NAKEP approximant. They
can be useful for properties which are available numerically as
expectation values evaluated for the embedded wavefunction
or in extensions of FDET for excited states41,42, which do not
involve the evaluation of the total energy. Unfortunately, the
corresponding non-decomposable approximant to the NAKE
(see Eq. (5)) is not suitable for the evaluation of energies be-
cause it might violate the symmetry of the non-additive kinetic
energy. The issue of asymmetry can always occur when us-
ing a bottom-up strategy to construct an approximant to the
NAKEP, whereas the exact NAKE or approximations derived
from the top-down strategy are always symmetric.

In this work, we propose a new formally sound frame-
work to symmetrize a non-decomposabel approximant to the
NAKE. Sec. II describes a symmetrization procedure, which
can be applied to any density functional expression by using
a perturbation theory approach for the evaluation of the en-
ergy. The resulting formula (see Eq. (8)) only needs access
to the asymmetric part of the functional and its functional
derivative to provide a completely symmetric expression for
the energy functional. Computing the derivative results in a
compact formula for a bottom-up constructed approximant,
which is physically motivated (see Appendix B). Meanwhile,
the optimized embedded density continues to profit from the
fact that it is obtained through a supercycle of self-consistent
computations within an embedding potential, which includes
the non-decomposable approximant to the NAKEP.

The application to the recently developed NDCS model
shows the numerical validation of symmetric interaction ener-
gies for a set of charge transfer complexes in Sec. IV. It retains
a superior performance over local decomposable models when
using the sym-NDCS functional for the NDCS approximant
to the NAKE (see Eq. (27)). Other non-decomposable ap-
proximants to the NAKEP, where the corresponding approx-
imant to the NAKE violates the symmetry, use the proposed
symmetrization framework (Sec. II) to gain access to the en-
ergies. Future applications beyond bifunctionals, such as to
multivariable models that lack symmetry, are also possible.
In principle, the construction of symmetric NAKE consistent
with a given non-decompsable approximant for the NAKEP
proposed in this work is also applicable for NAKEPs obtained
form inverting the KS equation. Such a construction would,
however, involve an additional intermediate step - expressing
a given potential as a density functional.
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Appendix A: First Order Symmetry Correction

In this section, we will present the derivation of the sym-
metry constant in (9) from the enforced symmetry condition:

Fsym-p[ρA,ρB] = Fsym-p[ρB,ρA] (A.1)

⇔ F [ρA,ρB]+Csym

∫
ρA

δ

δρA
Fasym[ρA,ρB]

= F [ρB,ρA]+Csym

∫
ρB

δ

δρB
Fasym[ρB,ρA]

⇔Csym

[∫
ρA

δ

δρA
Fasym[ρA,ρB]−

∫
ρB

δ

δρB
Fasym[ρB,ρA]

]
= F [ρB,ρA]−F [ρA,ρB]

(6)⇔Csym = Fasym[ρA,ρB]

[∫
ρA

δ

δρA
Fasym[ρA,ρB]

−
∫

ρB
δ

δρB
Fasym[ρB,ρA]

]−1

.

The term in the denominator does not vanish because the gen-
eral functional F is conditioned not to be symmetric.

Appendix B: Functional derivative of T NDCS[ρB,ρA]

The following section will show the full derivation of the
functional derivative of T NDCS[ρB,ρA] with respect to ρA. The
main difference to the simple differentiation of the original
NDCS functional (13) is the interchanged argument. There-
fore, the switching function (12) and NDCS limit potential
(11) both depend now on ρA,

δ

δρA
T NDCS[ρB,ρA] =

δ

δρA

∫
f NDCS[ρA]vNDCS[ρA]ρB. (B.1)

We are going to apply the well known variational method to
find the functional derivative (B.1). For any differentiable
functional F , a variation represented by a test function η pro-
vides the descriptor of the directional derivative43,∫

δ

δρ
F [ρ]η =

d
dε

[
F [ρ + εη ]

]
ε=0

. (B.2)
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Hence, we obtain the following formula for the functional
derivative from (B.1) with (10),

∫
δ

δρA
T NDCS[ρB,ρA]η =

d
dε

[
T NDCS[ρB,ρA+εη ]

]
ε=0

=
d

dε

∫
f NDCS[ρA + εη ]vNDCS[ρA + εη ]ρB

∣∣∣∣
ε=0

=
∫ d

dε

[
f NDCS[ρA + εη ]

]
ε=0︸ ︷︷ ︸

(I)

vNDCS[ρA]ρB

+
∫

f NDCS[ρA]
d

dε

[
vNDCS[ρA + εη ]

]
ε=0︸ ︷︷ ︸

(II)

ρB. (B.3)

We calculate the derivatives (I) and (II) separately. The
first one is obtained directly due to the simple form of the

switching function (see Eq. (12)),

(I) =
d

dε

[(
1− e−(ρA+εη)

)]
ε=0

= ηe−ρA . (B.4)

The second one needs a more careful treatment of the terms in
the special form of the NDCS limit potential (see Eq. (11)),

(II) =
d

dε

[
|∇(ρA + εη)|2(ρA + εη)−2

−∇
2(ρA + εη)(ρA + εη)−1

]
ε=0

=

[
2∇(ρA + εη)⊺∇η(ρA + εη)−2

−2∇(ρA + εη)⊺∇(ρA + εη)(ρA + εη)−3
η

−
(
∇

2
η(ρA + εη)−1 −∇

2(ρA + εη)η(ρA + εη)−2)]
ε=0

=−∇
2
ηρ

−1
A +∇

2
ρA(ρA)

−2
η +2∇ρ

⊺
A∇ηρ

−2
A

−2∇ρ
⊺
A∇ρAρ

−3
A η . (B.5)

Thus, due to (B.5) and (B.4), (B.3) is composed out of the
following two integrals:

∫ [
(I)vNDCS[ρA]+ f NDCS[ρA](II)

]
ρB =

∫
e−ρA

[
|∇ρA|2ρ

−2
A −∇

2
ρAρ

−1
A

]
ηρB

+
∫
(1− e−ρA)

[
−∇

2
ηρ

−1
A +∇

2
ρA(ρA)

−2
η +2∇ρ

⊺
A∇ηρ

−2
A −2∇ρ

⊺
A∇ρAρ

−3
A η

]
ρB︸ ︷︷ ︸

(III)

. (B.6)

For the application of the formula (B.2), we need the test func-
tion η to appear without its derivatives. The first integral on
the right hand side obeys this property, whereas the second in-
tegral (which denoted as (III)) does have higher order deriva-
tives of η . A common strategy to replace these is to use the
Greens identity (see for instance 44) for twice differentiable
functions, which vanish at infinity,∫

∇ρ
⊺
A∇ρB =−

∫
ρA∇

2
ρB. (B.7)

We group the terms in the integral (III) according to the
order of the derivative,

(III) =
∫ (

1− e−ρA
)[

∇
2
ρAρ

−2
A −2|∇ρA|2ρ

−3
A

]
ρBη︸ ︷︷ ︸

(i)

+ 2
∫ (

1− e−ρA
)

ρ
−2
A ρB∇ρ

⊺
A∇η︸ ︷︷ ︸

(ii)

−
∫ (

1− e−ρA
)

ρ
−1
A ρB∇

2
η︸ ︷︷ ︸

(iii)

. (B.8)

Now, (i) does not require any more calculus because there are
no derivatives of η involved. In (ii), however, we need to

apply Greens identity (B.7) once,

(ii) =−2
∫

∇
[
(1− e−ρA)ρB∇ρ

⊺
Aρ

−2
A

]
η =−2

∫ [
e−ρA ρB∇ρ

⊺
A∇ρAρ

−2
A

+(1− e−ρA)∇ρ
⊺
B∇ρAρ

−2
A +(1− e−ρA)ρB∇

2
ρAρ

−2
A

+(1− e−ρA)ρB∇ρ
⊺
A∇ρA(−2)ρ−3

A

]
η

=
∫ [

4(1− e−ρA)ρB|∇ρA|2ρ
−3
A −2e−ρA ρB|∇ρA|2ρ

−2
A

−2(1− e−ρA)∇ρ
⊺
B∇ρAρ

−2
A −2(1− e−ρA)ρB∇

2
ρAρ

−2
A

]
η

=
∫ [

∇ρ
⊺
B∇ρA(−2(1− e−ρA))ρ−2

A +ρB

(
(1− e−ρA)(4|∇ρA|2ρ

−3
A

−2∇
2
ρAρ

−2
A )+ e−ρA(−2|∇ρA|2ρ

−2
A )

)]
η .

In the last expression for (ii), we have grouped the terms inside
the bracket according to the appearance of ρB. This formula
has no derivatives of η involved. The third integral (iii) needs
twice the application of Greens identity (B.7) because of ∇2η ,

8



(iii) =
∫ [

∇
(
(1− e−ρA)ρBρ

−1
A

)⊺]
∇η

=
∫ [

e−ρA ρBρ
−1
A ∇ρ

⊺
A +(1− e−ρA)ρ−1

A ∇ρ
⊺
B +(1− e−ρA)ρB(−1)ρ−2

A ∇ρ
⊺
A

]
∇η

=−
∫

∇

[
e−ρA ρBρ

−1
A ∇ρ

⊺
A +(1− e−ρA)ρ−1

A ∇ρ
⊺
B − (1− e−ρA)ρBρ

−2
A ∇ρ

⊺
A

]
η

=
∫ [

e−ρA |∇ρA|2ρBρ
−1
A − e−ρA∇

2
ρAρBρ

−1
A − e−ρA ∇ρ

⊺
B∇ρAρ

−1
A + e−ρA |∇ρA|2ρBρ

−2
A − e−ρA∇ρ

⊺
B∇ρAρ

−1
A

−(1− e−ρA)∇2
ρBρ

−1
A +(1− e−ρA)∇ρ

⊺
B∇ρAρ

−2
A + e−ρA ∇ρ

⊺
A∇ρAρBρ

−2
A +(1− e−ρA)∇ρ

⊺
B∇ρAρ

−2
A

−2(1− e−ρA)ρBρ
−3
A |∇ρA|2 +(1− e−ρA)ρBρ

−2
A ∇

2
ρA

]
η

=
∫ [

−∇
2
ρBρ

−1
A (1− e−ρA)+∇ρ

⊺
B

(
∇ρA(1− e−ρA)[2ρ

−2
A ]+∇ρAe−ρA [−2ρ

−1
A ]

)
+ρB

(
(1− e−ρA)

[
∇

2
ρAρ

−2
A −2|∇ρA|2ρ

−3
A

]
+ e−ρA

[
2|∇ρA|2ρ

−2
A −∇

2
ρAρ

−1
A + |∇ρA|2ρ

−1
A

])]
η ,

This final expression seems to have blown up because of the
many products from the derivative in Greens identity. Nev-
ertheless, the result is an integral that has now no derivatives

in η . To see how these terms do simplify with the ones from
the other integrals, we sum now step by step everything back
together. At first (ii) and (iii),

(ii)+(iii)

=
∫ [

−∇
2
ρBρ

−1
A (1− e−ρA)+∇ρ

⊺
B

([
∇ρA2ρ

−2
A −∇ρA2ρ

−2
A

]
(1− e−ρA)+

[
∇ρA(−2)ρ−1

A

]
e−ρA

)
+ρB

(
(1− e−ρA)

[
∇

2
ρAρ

−2
A

−2|∇ρA|2ρ
−3
A +4|∇ρA|2ρ

−3
A −2∇

2
ρAρ

−2
A

]
+ e−ρA

[
2|∇ρA|2ρ

−2
A −∇

2
ρAρ

−1
A + |∇ρA|2ρ

−1
A −2|∇ρA|2ρ

−2
A

])]
η

=
∫ [

−∇
2
ρBρ

−1
A (1− e−ρA)+∇ρ

⊺
B∇ρAe−ρA

[
−2ρ

−1
A

]
+ρB

(
(1− e−ρA)

[
2|∇ρA|2ρ

−3
A −∇

2
ρAρ

−2
A

]
+ e−ρA

[
−∇

2
ρAρ

−1
A + |∇ρA|2ρ

−1
A

])]
η ,

where some terms in the last two brackets canceled out each
other. It is left to add (i) to get back to (B.8),

(III) = (i)+(ii)+(iii)

=
∫ [

−∇
2
ρBρ

−1
A (1− e−ρA)+∇ρ

⊺
B∇ρAe−ρA

[
−2ρ

−1
A

]
+ρB

(
(1− e−ρA)

[
2|∇ρA|2ρ

−3
A −∇

2
ρAρ

−2
A +∇

2
ρAρ

−2
A

−2|∇ρA|2ρ
−3
A

]
+ e−ρA

[
−∇

2
ρAρ

−1
A + |∇ρA|2ρ

−1
A

])]
η

=
∫ [

−∇
2
ρBρ

−1
A (1− e−ρA)+∇ρ

⊺
B∇ρAe−ρA

[
−2ρ

−1
A

]
+ρB

(
e−ρA

[
−∇

2
ρAρ

−1
A + |∇ρA|2ρ

−1
A

])]
η . (B.9)

Here again, the simplification lead to a more compact final
integral formula for (III), which allows the use of the func-
tional derivative representation from (B.2). The last step is to
add this integral back to (B.6) with the use of (B.9),

∫
δ

δρA
T NDCS[ρB,ρA]η

=
∫

e−ρA
[
|∇ρA|2ρ

−2
A −∇

2
ρAρ

−1
A

]
ηρB +(III)

=
∫ [

−∇
2
ρBρ

−1
A (1− e−ρA)+∇ρ

⊺
B∇ρAe−ρA

[
−2ρ

−1
A

]
+ρB

(
e−ρA

[
−∇

2
ρAρ

−1
A + |∇ρA|2ρ

−1
A + |∇ρA|2ρ

−2
A

−∇
2
ρAρ

−1
A

])]
η

=
∫ [

−∇
2
ρBρ

−1
A (1− e−ρA)+∇ρ

⊺
B∇ρAe−ρA

[
−2ρ

−1
A

]
+ρB

(
e−ρA

[
|∇ρA|2(ρ−2

A +ρ
−1
A )−2∇

2
ρAρ

−1
A

])]
η

=
∫ [

−∇
2
ρBρ

−1
A (1− e−ρA)+ρBe−ρA |∇ρA|2

(
ρ
−2
A +ρ

−1
A

)
−2e−ρA

[
∇ρ

⊺
B∇ρAρ

−1
A +ρB∇

2
ρAρ

−1
A

]]
η . (B.10)
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In the last equation, we group the terms in a more compact
way. The formula for the functional derivative of T NDCS with
respect to ρA is given in the big brackets inside the integral,

δ

δρA
T NDCS[ρB,ρA] =−∇

2
ρBρ

−1
A (1− e−ρA)+ρBe−ρA |∇ρA|2

×
(
ρ
−2
A +ρ

−1
A

)
−2e−ρA

[
∇ρ

⊺
B∇ρAρ

−1
A +ρB∇

2
ρAρ

−1
A

]
.
(B.11)

We are also able to derive the directional derivative,∫
ρA

δ

δρA
T NDCS[ρB,ρA] =

∫ [
−∇

2
ρB(1− e−ρA)

+ρBe−ρA |∇ρA|2
(
ρ
−1
A +1

)
−2e−ρA

[
∇ρ

⊺
B∇ρA +ρB∇

2
ρA

]]
.

(B.12)
With the help of Greens identity (B.7), we can further rewrite
the first of the last two terms in (B.12),

−2
∫

e−ρA ∇ρ
⊺
B∇ρA = 2

∫
ρB∇

(
e−ρA∇ρA

)
=

∫
2ρB

(
e−ρA ∇

2
ρA − e−ρA |∇ρA|2

)
.

(B.13)

Therefore, equation (B.12) even more simplifies to∫
ρA

δ

δρA
T NDCS[ρB,ρA]

(B.13)
=

∫ [
−∇

2
ρB(1− e−ρA)+ρBe−ρA |∇ρA|2ρ

−1
A +ρBe−ρA |∇ρA|2

+e−ρA
[
2ρB∇

2
ρA −2ρB|∇ρA|2 −2ρB∇

2
ρA

]]
=

∫ [
−∇

2
ρB(1− e−ρA)+ρBe−ρA |∇ρA|2(ρ−1

A −1)
]

(12)
=

∫ [
ρB|∇ρA|2(1− f NDCS[ρA])(ρ

−1
A −1)−∇

2
ρB f NDCS[ρA]

]
,

(B.14)

where we reintroduced in the last equation the switching func-
tion f NDCS. This final compact formula (B.14) corresponds to
the result given in (16).
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