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Abstract

Schwarz waveform relaxation methods are Schwarz methods applied to evolution
problems. Like for steady problems, they are based on an overlapping domain
decomposition of the spatial domain, and an iteration which only requires sub-
domain solutions, now in space-time, to get better and better approximations of
the global, monodomain solution. Fourier analysis has been used to study the
convergence of both Schwarz and Schwarz waveform relaxation methods. We
show here that their convergence is however quite different: for steady problems
of diffusive type, Schwarz methods converge linearly, which is also well predicted
by Fourier analysis. For a time dependent heat equation however, the Schwarz
waveform relaxation algorithm first has a rapid convergence phase, followed by
a slow down, and eventually convergence increases again to become superlin-
ear, none of which is predicted by classical Fourier analysis. Introducing a new
Fourier analysis combined with kernel estimates, we can explain this behavior
for the heat equation. We then generalize our approach to the case of advec-
tion reaction diffusion problems. We illustrate all our results with numerical
experiments.

Keywords: Fourier analysis in time, Schwarz Waveform Relaxation

1. Introduction

Schwarz Methods and Schwarz Waveform Relaxation methods are power-
ful algorithms to approximate solutions of partial differential equations (PDEs)
on parallel computers, see e.g. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] and references
therein. They are based on a decomposition of the computational domain into
subdomains, and an iteration that only computes subdomain solutions, and
which converges to the solution on the entire computational domain. Schwarz
methods were invented by Hermann Amandus Schwarz [11] in order to prove
existence and uniqueness of solutions for the Laplace problem on general do-
mains. They became a computational tool to solve elliptic partial differential
equations with Miller [12], and then mainstream parallel solvers with the sem-
inal work of Lions [13] and Dryja and Widlund [14]; for a historical review,
see [15, 16]. Schwarz waveform relaxation methods are for solving time depen-
dent partial differential equations, and their name goes back to the invention
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of waveform relaxation methods for circuit simulation in [17]. They are also
based on a decomposition of the computational domain into subdomains and
a subdomain iteration, but now problems in space and time are solved in each
subdomain [18, 2, 3, 19]. Schwarz waveform relaxation methods were also instru-
mental in the development of optimized transmission conditions between sub-
domains, leading to optimized Schwarz (waveform relaxation) methods [20, 7],
even though first optimized transmission conditions can already be found in
[21], see [22] for a more complete literature review. First analyses for these
methods for parabolic problems were based on maximum principle arguments,
see e.g. [3], but more detailed information on the convergence mechanisms can
be obtained using Fourier analysis [23], which was essential for the optimiza-
tion of transmission conditions, see [22] for elliptic problems, [7, 8, 24, 10] for
parabolic problems, and [5, 25] for hyperbolic problems. Schwarz waveform re-
laxation methods are one of four classes of space-time parallel methods, which
have been intensively researched over the past two decades in the context of
PinT (parallel in time) methods, see [26] for a historical review, and [27] for
recent applications.

In [3, 2] and [23], two different bounds for the convergence of Schwarz wave-
form relaxation were proved when applied to the heat equation on the spatial
domain Ω :=(−a, a) split into two equal subdomains Ωj with an overlap L: the
error enj on subdomain Ωj at iteration n satisfies the linear bound ‖enj (0, ·)‖L∞ ≤(
a−L
a+L

)n
‖e0j (0, ·)‖L∞ using maximum principle arguments, which is sharp for

long time windows, and the superlinear bound ‖enj (0, ·)‖L∞ ≤ erfc( nL
2
√
νT

)‖e0j (0, ·)‖L∞
using detailed heat kernel estimates, which is sharp for short time windows ,
and we will call these the linear and superlinear bounds in what follows. More
insight on the convergence behavior can be obtained using Fourier analysis,
both for Schwarz methods applied to elliptic problems, and Schwarz waveform
relaxation methods applied to parabolic and hyperbolic problems. But the con-
vergence mechanisms for these two classes of methods differ: Schwarz methods
for elliptic problems converge linearly, already shown by Schwarz himself [11],
and Schwarz waveform relaxation methods for parabolic problems obey both
the linear and superlinear convergence estimates above. We show in Figure 1
on the left how the error decreases as the iteration of the Schwarz algorithm
progresses when applied to a screened Laplace problem (η − ∆)u = f . We
see that after a rapid initial phase, the convergence is linear: every new iter-
ation gives the same error decay as the previous one, which is well predicted
by Fourier analysis shown in red in Figure 1, see Section 2 for more details.
On the right in Figure 1 we show how the error decreases as the iteration of
the Schwarz waveform relaxation algorithms progresses when applied to a heat
equation ∂tu = ∆u+ f , see Section 3 for more details. We clearly see that the
convergence behavior is much more complicated in the time dependent case,
compared to the steady case: there is an initial phase of rapid convergence,
followed by a significant slow down, and then convergence speeds up again and
eventually becomes superlinear. The Fourier bound shown in red in Figure 1
on the right does not seem to well capture any phase of the convergence. Our
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Figure 1: Decay of the error as function of the iteration for a Schwarz algorithm applied to
a screened Laplace equation (left) and a Schwarz waveform relaxation algorithm applied to a
heat equation (right).

goal here is to understand this difference in convergence behavior, since Fourier
analysis leads to a very similar convergence factor in both the steady and time
dependent cases, and we want to connect the Fourier bound with the linear and
superlinear bounds from [2] and [23].

Our paper is structured as follows: in Section 2, we review Fourier mode
analysis for Schwarz methods when applied to the screened Laplace equation,
which leads to the linear convergence observed in Figure 1 on the left. In Sec-
tion 3, we present a new Fourier mode analysis combined with kernel estimates
for when Schwarz waveform relaxation is applied to the heat equation, which
allows us to explain where the different convergence behaviors observed in Fig-
ure 1 on the right come from. In Section 4, we generalize our analysis of the
complicated convergence behavior observed in Figure 1 (right) to the advection-
reaction-diffusion equation. We give conclusions and an outlook on future work
in Section 5.

2. Fourier analysis for Schwarz applied to stationary PDEs

We consider for our stationary PDE the screened Laplace equation

L̃u := ηu−4u = f, in Ω := R2, (1)

with η > 0. If the domain Ω is split into the two overlapping subdomains Ω1 :=
(−∞, L)×R and Ω2 := (0,+∞)×R, where  L > 0 is the overlap parameter, then
the classical alternating Schwarz algorithm solves for iteration index k = 1, . . .

L̃uk1 = f on (−∞, L)× R, L̃uk2 = f on (0,+∞)× R,
uk1(L, ·) = uk−12 (L, ·) on R, uk2(0, ·) = uk1(0, ·) on R. (2)

The error ekj := u − ukj , j = 1, 2 satisfies by linearity the same algorithm (2)
but with right hand side f = 0. If the initial error is a pure sine signal on the
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interface, e02(L, y) := sin(λy), then the errors for each iteration k = 1, 2, . . . can
be obtained by a direct computation to be

ek1(x, y) = e−(2k−1)L
√
η+λ2

e
√
η+λ2x sin(λy),

ek2(x, y) = e−(2k−1)L
√
η+λ2

e−
√
η+λ2x sin(λy),

(3)

and we thus obtain

ek1(0, y) = e−(2k−1)L
√
η+λ2

sin(λy) =: ρ(λ)2k−1 sin(λy), (4)

which means that at each iteration the initial sine error is contracted by the
convergence factor ρ(λ). This result is consistent with the definition of the
convergence factor in [22] which was obtained by a Fourier transform in the y
direction with Fourier variable ω,

ρF (ω) :=

√
êk+1
1 (0, ω)

êk1(0, ω)
= e−L

√
η+ω2

, (5)

where êk1(x, ω) = ê02(L, ω)e−(2k−1)L
√
η+ω2

e
√
η+ω2x is the Fourier transform of

ek1 . This means that êk1(0, ω) = ρF (ω)2k−1ê11(0, ω), and ρF (ω) actually describes
the convergence speed of the algorithm when the frequency ω is introduced.

There is an interesting graphical interpretation of this convergence process
which will be very useful later to understand the main difference for time
dependent problems: when introducing as initial error the pure sine signal
e02(L, y) := sin(λy), the error at iteration k can in fact be given in closed
form, ek1(0, y) = v((2k − 1)L, y), where v is the bounded solution of L̃v = 0
on (0,+∞)×R with the boundary condition v(0, y) = sin(λy). This is because
in the Schwarz algorithm (2) for zero right hand side for the error, the left and
right subdomain problems become by symmetry the same, one just solving on
Ω1 in the negative x direction, and the other solving on Ω2 in the positive x
direction, and thus these solutions can be concatenated. We show in Figure 2
on the left the level sets of v(x, y) as a function of x and y for λ = 3π. We can
see how the sine error mode is contracted by ρ(λ) when x grows, which is also
illustrated in Figure 2 on the right. The Fourier analysis used in [22] is thus
perfectly well adapted to study the convergence of a pure sine error frequency
injected as initial guess into the Schwarz algorithm applied to an elliptic prob-
lem, and the slope of the linear convergence observed in Figure 1 on the left
corresponds precisely to the convergence of the error frequency which converges
the most slowly.

We solved for this experiment on the left the Laplace equation on the domain
(0, 16)×(0, 16) decomposed into Ω1 := (0, 8.025)×(0, 1) and Ω2 := (8, 16)×(0, 1),
used a standard 5 point finite difference scheme with spatial steps ∆x = ∆y =
16

3200 = 0.005, and initialized the Schwarz algorithm with random numbers in
(−1, 1).
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Figure 2: Left: level sets of the solution of the Laplace equation in the (x, y)-plane when
v(0, y) = sin(3πy). Right: slices of the scaled solution (for better visibility) at x = 0, x = 1

3

and x = 2
3

.

3. Kernel Fourier Analysis for Schwarz Waveform Relaxation

For time dependent equations we consider as our model problem the heat
equation on the domain Ω := R,

Lu :=
∂u

∂t
− ν ∂

2u

∂x2
= f in Ω× (0, T ),

u(·, 0) = 0 in Ω,

where ν > 0 is a positive parameter and T ∈ (0,∞). We decompose the
space-time domain Ω× (0, T ) into two space-time subdomains Ω1 × (0, T ) and
Ω2 × (0, T ), with Ω1 := (−∞, L) and Ω2 := (0,∞), where L > 0 is again
the overlap parameter. The alternating Schwarz waveform relaxation algorithm
then computes for iteration index k = 1, 2, . . .

Luk1 = f on (−∞, L)× (0, T ), Luk2 = f on (0,+∞)× (0, T ),

uk1(L, ·) = uk−12 (L, ·) on (0, T ), uk2(0, ·) = uk1(0, ·) on (0, T ),
uk1(·, 0) = u0 on (−∞, L), uk2(·, 0) = u0 on (0,+∞).

(6)
The error ekj := u− ukj , j = 1, 2 satisfies by linearity again the same algorithm
(6) but with right hand side f = 0 and initial condition u0 = 0.

We can again interpret the Schwarz waveform relaxation algorithm graphi-
cally, since the subdomain solutions in (6) have the same symmetry with respect
to the x variable as in the screened Laplace case. In Figure 3 on the left we
show the level sets of the solution of the heat equation when it is solved with
the boundary condition v(0, t) = sin(3πt) and zero initial condition, u0(x) = 0.
We see that in contrast to the screened Laplace case in Figure 2 the sine is
not only contracted, it is also transported in time and distorted for small t, see
also Figure 3 on the right. The sine function is not an eigenfunction of the
Schwarz waveform relaxation iteration, and this is the main reason that the
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Figure 3: Left: level sets of the solution of the heat equation in the (x, t)-plane when v(0, t) =
sin(3πt). Right: slices of the scaled solution at x = 0, x = 1 and x = 2.

convergence of the Schwarz waveform relaxation algorithm is so different from
the convergence of the Schwarz algorithm, as we have seen in Figure 1: while
for the screened Laplace equation the convergence is linear as indicated by the
Fourier analysis, for the heat equation there are three distinct phases for the
convergence, which are generated by the transport and distortion of the sine
function.

To understand in detail the error decay of the Schwarz waveform relaxation
algorithm, we use now Laplace transforms, which are the pendent to Fourier
transforms for initial value problems. The Laplace transform of a function
f ∈ L1(R) satisfying |f(t)| ≤ Ceαt, C > 0 and α constants, is defined by1

F(f)(s) =

∫ +∞

0

f(t)e−stdt, <(s) ≥ α,

where s := σ+ iω, σ, ω ∈ R. If we initialize the algorithm (6) for the error with
an initial error at the interface e02(L, t) = g(t), then the Laplace transform of

the heat equation in the subdomain Ωj is sêk+1
j −ν ∂

2êk+1
j

∂x2 = 0, and the solutions
are for k ≥ 1 given by

êk1(x, s) = ĝ(s)e−(2k−1)
√

s
νLe
√

s
ν x,

êk2(x, s) = ĝ(s)e−(2k−1)
√

s
νLe−

√
s
ν x,

(7)

similar to the Fourier mode analysis of the screened Laplace case in (3). This
leads to the complex convergence factor, see e.g. [28],

ρL(ω) :=

√
êk+1
1 (0, s)

êk1(0, s)
= e−

√
σ+iω
ν L, (8)

1We still use the Fourier transform symbol F here to denote the Laplace transform.
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which looks very similar to the convergence factor for the screened Laplace case
in (5), and thus suggests similar linear convergence.

If we introduce however the kernel function

K(x, t) =
x

2
√
π

e−
x2

4t

t3/2
, (9)

and use the Laplace transform formula

e−x
√
s = F(t→ K(x, t))(s), (10)

we can obtain a closed form expression of the error at the k−th iterate, k ≥ 1,
in terms of the initial guess g on the interface: from

êk1(0, s) = ĝ(s)e−(2k−1)L
√

s
ν = ĝ(s)F(t→ K((2k − 1)

L√
ν
, t), (11)

we obtain by back-transforming (11) the convolution product

ek1(0, t) =

∫ t

0

g(t− τ)K((2k − 1)
L√
ν
, τ)dτ. (12)

This result holds in particular for the pure sine initial guess g(t) := sin(λt), and
shows that the error is clearly not anymore a sine that is contracted by ρL(λ).

We now study in detail the behavior of the error given by the convolution
formula (12). We split the integral into two parts,

z1(x, t;λ) :=

∫ +∞

0

sin(λ(t− τ))K(x, τ)dτ,

z2(x, t;λ) := −
∫ +∞

t

sin(λ(t− τ))K(x, τ)dτ,

then the error is given by the sum

ek1(0, t) = z1((2k − 1)
L√
ν
, t;λ) + z2((2k − 1)

L√
ν
, t;λ). (13)

We will show in Lemma 1 that the first term z1 can be explicitly computed:
it is a sine which is contracted by the Fourier convergence factor (8), and this
shows precisely to which extend the linear convergence of the stationary case
also appears in the evolution case. We next explain the behavior of the second
term z2: the convergence factor corresponding to z2 can also be computed, see
Theorem 2, and for large time it can even be neglected for the study of Schwarz
waveform relaxation methods, see Theorem 1.

To prove these results, we use the symmetry in the x coordinate of the
heat equation: let v be the bounded solution of the homogeneous heat equation
Lv = 0 on (0,+∞)×(0,+∞) with the initial condition v(·, 0) = 0 and the bound-
ary condition v(0, ·) = g. The Laplace transform of the error in the Schwarz

7



waveform relaxation algorithm (6) then satisfies êk1(0, s) = ĝ(s)e−(2k−1)
√

s
νL =

v̂((2k − 1)L, s) and êk2(L, s) = v̂(2kL, s). As a consequence, to obtain the er-
ror of the Schwarz waveform relaxation algorithm at iteration k, it suffices to
evaluate v at x = (2k − 1)L for ek1(0, ·) and at x = 2kL for ek2(L, ·), which
explains the importance of the level sets of v we have observed in Figure 3 for
the performance of the algorithm.

The next theorem shows that the error of the Schwarz waveform relaxation
algorithm behaves as predicted by the Laplace analysis for large time for a given
Fourier mode λ.

Theorem 1. Let T = +∞. If the Schwarz waveform relaxation algorithm (6)
is initialized with the pure sine frequency error e02(L, t) = sin(λt), then for large
time t >> 1, we have

ek1(0, t) = |ρL(λ)|2k−1 sin(λt− (2k − 1)L

√
λ

2ν
) +O(

1

t1/2
),

with an analogous expression for ek2 .

Before proving this theorem, we give a more accurate result when the algo-
rithm is applied to a single frequency λ. The convergence speed is the result of
a competition between the Fourier convergence factor ρL(λ)2k−1 and the term
z2. The Fourier convergence factor gives linear convergence, while the second
term decreases as described in the next theorem.

Theorem 2. Let T = +∞. If the Schwarz waveform relaxation algorithm (6)
is initialized with the pure sine frequency e02(L, t) = sin(λt) then the error is
given by

ek1(0, t) = |ρL(λ)|2k−1 sin(λt− (2k − 1)L

√
λ

2ν
) + z2((2k − 1)

L√
ν
, t;λ),

where z2 satisfies for large frequency λ

z2((2k − 1)
L√
ν
, t;λ) =

1

λ
K((2k − 1)

L√
ν
, t) +O(

1

λ3
),

and for large iteration k

‖z2((2k + 1)
L√
ν
, ·;λ)‖L∞(0,+∞) ∼ (

2k − 1

2k + 1
)2‖z2((2k − 1)

L√
ν
, ·;λ)‖L∞(0,+∞).

An analogous result also holds for ek2 .

The proof of Theorem 1 and Theorem 2 relies on two lemmas. The first
lemma gives an explicit formula for z1.

Lemma 1. For x > 0, we have

z1(x, t;λ) =
∫ +∞
0

sin(λ(t− τ))K(x, τ)dτ

= |e−x
√
iλ| sin(λt− x

√
λ
2 ) = e−x

√
λ
2 sin(λt− x

√
λ
2 ).

(14)
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Proof. Using a trigonometric identity for the sine, and the fact that the kernel
K(x, t) in (9) is real, we obtain∫ +∞

0

sin(λ(t− τ))K(x, τ)dτ

= sin(λt)

∫ +∞

0

cos(λτ)K(x, τ)dτ − cos(λt)

∫ +∞

0

sin(λτ)K(x, τ)dτ

= sin(λt)Re
(∫ +∞

0

e−iλτK(x, τ)dτ

)
+ cos(λt)Im

(∫ +∞

0

e−iλτK(x, τ)dτ

)
.

Now by the definition of the Laplace transform (10), we get∫ +∞

0

e−iλτK(x, τ)dτ = F(K(x, ·))(iλ) = e−x
√
iλ = e−x

√
λ
2 (1+i),

so that we obtain for the original integral∫ +∞

0

sin(λ(t− τ))K(x, τ)dτ = e−x
√

λ
2 (sin(λt) cos(x

√
λ

2
)− cos(λt) sin(x

√
λ

2
))

= e−x
√

λ
2 sin(λt− x

√
λ

2
),

which concludes the proof of the lemma.

We can now prove Theorem 1.

Proof of Theorem 1. By definition of z1 and z2 we have

ek1(0, t)− z1((2k − 1)
L√
ν
, t;λ) = z2((2k − 1)

L√
ν
, t;λ).

With a direct estimation, using that the sine is bounded by 1 in modulus, and
the definition (9) of the kernel function K(x, t), we obtain

|z2(x, t;λ)| =

∣∣∣∣∫ +∞

t

sin(λ(t− τ))K(x, τ)dτ

∣∣∣∣
≤

∫ +∞

t

K(x, τ)dτ ≤
∫ +∞

t

x√
πτ3

dτ =
x

2
√
πt
.

Hence for large t, the error ek1(0, t) is well approximated by z1((2k− 1) L√
ν
, t;λ),

and using the estimate in Lemma 1 then gives the desired result.

The next lemma gives an estimate for z2 for large frequencies λ.

Lemma 2. For large frequency parameter λ, the function z2(x, t;λ) satisfies

z2(x, t;λ) = −
∫ +∞

t

sin(λ(t− τ))K(x, τ)dτ =
1

λ
K(x, t) +O(

1

λ3
).
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Proof. Using integration by parts, we obtain∫ +∞

t

sin(λ(t− τ))K(x, τ)dτ = − 1

λ
K(x, t)− 1

λ

∫ +∞

t

cos(λ(t− τ))
∂K

∂t
(x, τ)dτ

= − 1

λ
K(x, t)− 1

λ2

∫ +∞

t

sin(λ(t− τ))
∂2K

∂t2
(x, τ)dτ

= − 1

λ
K(x, t) +

1

λ3
∂2K

∂t2
(x, t) +O(

1

λ5
),

which concludes the proof of the lemma.

We can now prove Theorem 2.

Proof of Theorem 2. The behavior for large λ is a direct application of Lemma
2. We now prove the result for large k. A change of variables gives for µ > 0∫ +∞

t

sin(λ(t− τ))K(x, τ)dτ =

∫ +∞

λ
µ t

sin(µ(
λ

µ
t− τ))x

√
λ

µ

e−
x2

4τ
λ
µ

τ3/2
dτ,

and thus

z2(x, t;λ) = z2(x

√
λ

µ
,
λ

µ
t;µ).

As a consequence, choosing µ = λx2, we obtain z2(x, t;λ) = z2(1, t
x2 ;λx2) and

max
t∈[0,+∞)

|z2(x, t;λ)| = max
t∈[0,+∞)

|z2(1,
t

x2
;λx2)| = max

t∈[0,+∞)
|z2(1, t;λx2)|.

Now using Lemma 2, we obtain for large x that z2(1, t;λx2) ∼ 1
λx2K(1, t). We

also have maxt∈[0,+∞)K(1, t) = K(1, 16 ) = 3
√
6√
π
e−

3
2 , and assuming that the

maximum and the limit can be interchanged, we get

‖z2((2k − 1)
L√
ν
, t;λ)‖L∞(0,+∞) ∼

3
√

6

λ
√
π((2k − 1) L√

ν
)2
e−

3
2 .

The last result in the theorem then follows by looking at the ratio between z2
evaluated at 2k + 1 and 2k − 1.

We now illustrate the results of Theorem 1 and Theorem 2 numerically. We
use for the thermal parameter ν = 1 and set the time horizon to T = 5. We
consider a finite spatial domain Ω := (0, 20), which we decompose into the two
subdomains Ω1 := (0, β) and Ω2 := (α, 20) with β = 10 and α = 10 − 0.02, so
that the overlap is L = 0.02. We use a standard second order finite difference
discretization in space, and Backward Euler in time, with space and time steps
∆x = ∆t = 20

20000 = 10−3. The initial guess is e02(β, t) = sin(λt), and we will
consider several values of λ. In Figure 4 we show the behavior of the error
ek1(α, t) as a function of the time t for several values of the iteration index k
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Figure 4: Error ek1(α, t) as a function of time t for iteration index k = 1, 20, 55, 100 when
using a pure sine initial guess for the error e02(β, t) = sin(50t). In the last panel we also added
K((2k − 1)L/2, t)/λ for comparison.
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and when λ = 50. For the first iterations, we see that for large t the error is a
sine contracted by ρL(λ), as shown in Theorem 1, while when k becomes large,
the convergence is guided by the function z2, as we see in the last two panels of
Figure 4. In the last panel, we also show that the error ek1(α, t) is very close to
the scaled kernel K((2k − 1)L/2, t)/λ for the large iteration number k = 100.

In Figure 5 we show the infinity norm of the error as a function of the iter-
ation index k for three values of the frequency λ. In Figure 5 (left) we evaluate
the error only on the time interval (T/2, T ), i.e. for large time t, and we see
that for a substantial number of iterations at the beginning of the Schwarz
waveform relaxation algorithm, the convergence is clearly guided by the Fourier
convergence factor ρL(λ), which leads to linear convergence, as in the case of
Schwarz applied to the screened Laplace problem. For later iterations however,
the bump we observed in Figure 4 (right) becomes dominant for the conver-
gence mechanism of the Schwarz waveform relaxation algorithm, and causes the
convergence to be dominated by the term z2. In Figure 5 (right) we show the
error computed on the entire time domain (0, T ). We see that again for the first
few iterations the convergence is linear, as predicted by the Fourier convergence
factor, but then a transition happens and the algorithm clearly converges like
predicted by the bump, represented by the kernel function K(x, t).

We next investigate a case where all the frequencies are present: in Figure 6
we show the evolution of the error as a function of the iterations when the initial
guess e02(β, t) = g(t) is random with values in (−1, 1). Here we chose T = 30 as
for Figure 1 (right) to better identify the various convergence regimes; the spatial
domain is (−30, 30), and we used the mesh size ∆x = ∆t = 0.005 and overlap
L = 5∆x. We see that the bump represented by the kernel function K(x, t)
clearly dominates the convergence for a substantial number of early iterations.
Then the algorithm feels the effect of the finite time interval and superlinear
convergence sets in, as it was proved in [3] using a heat kernel estimate. We
therefore have now a complete understanding of the various convergence phases
of Schwarz waveform relaxation applied to the heat equation, and the behavior is
quite different from the one suggested by a simple Fourier/Laplace type analysis.

4. Generalization to the advection-reaction-diffusion equation

Our analysis can be generalized to the advection-reaction-diffusion equation
with a, c and ν > 0 three real values,

Ladu :=
∂u

∂t
+ a

∂u

∂x
− ν ∂

2u

∂x2
+ cu = f in R× (0, T ),

u(·, 0) = u0 in R.
(15)

The Schwarz waveform relaxation algorithm (6) can be used, simply replacing
L by Lad.

As for the screened Laplace equation and the heat equation, we show in
Figure 7 the level sets of the solution of the advection reaction diffusion equation
(15) on R+ × (0, T ) when ν = 1, a = 2, c = 1 and the boundary condition is
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Figure 5: Error ‖ek1(α, ·)‖
L∞(T

2
,T )

(left) and ‖ek1(α, ·)‖L∞(0,T ) (right) versus iteration. From

top to bottom: λ = 5, λ = 50 and λ = 500.
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u(0, t) = sin(3πt), with zero initial condition. We see a similar pattern as for
the heat equation in Figure 3, but the advection reaction diffusion equation has
a direction now, namely the advection, in contrast to the heat equation, and
thus the useful symmetry argument does not seem to be directly applicable any
more.

To study this further, we introduce again the solutions for the errors after a
Laplace transform, and obtain for an initial error e02(L, t) := g(t)

êk1(0, s) = ĝ(s)e−
aL
2ν e−(2k−1)

Lδ
2ν ,

êk2(L, s) = ĝ(s)e−
kLδ
ν ,

(16)

where δ: =
√
a2 + 4ν(c+ s) = 2

√
ν
√
s+A, A: = a2+4νc

4ν .
Denoting by v the bounded solution of Ladv = 0 on (0,+∞) × (0,+∞)

with the initial condition v(·, 0) = 0 and the boundary condition v(0, ·) = g,

we have in Laplace space v̂(x, s) = ĝ(s)e
a−δ
2ν x, and the errors can be written as

êk1(0, s) = e−
a
ν kLv̂((2k− 1)L, s) and êk2(L, s) = e−

a
ν kLv̂(2kL, s), and therefore it

still suffices to study the solution v in order to understand the errors ekj in the
algorithm.

To obtain the back-transforms for the errors in (16), we will use the two
following lemmas:

Lemma 3. Let x > 0 and A be two real numbers. We then have

e−x
√
s+A =

x

2
√
π
F(e−At

e−
x2

4t

t3/2
). (17)

Proof. The proof uses the shifting formula of Laplace transforms, f̂(s + A) =
F(e−Atf(t)) and the definition of the Laplace transform (10).

Lemma 4. If ê(s) = ĝ(s)e−x
√
s+A with g(t) = sin(λt), then

e(t) =

∫ t

0

sin(λ(t− τ))H(τ ;x,A)dτ,

where now the kernel function is given by

H(τ ;x,A) := e−AτK(x, τ) =
x

2
√
π
e−Aτ

e−
x2

4τ

τ3/2
. (18)

Moreover we have∫ +∞

0

sin(λ(t− τ))H(τ ;x,A)dτ = |e−x
√
iλ+A| sin(λt− xB̃),

where
√
iλ+A = Ã+ iB̃, Ã, B̃ ∈ R.
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Proof. Using Lemma 3, we obtain

F(t→ H(t;x,A))(s) = e−x
√
s+A.

Now using similar arguments as in the proof of Theorem 1, we obtain∫ +∞

0

sin(λ(t− τ))H(τ ;x,A)dτ

= sin(λt)Re(F(H(τ ;x,A)(iλ))) + cos(λt)Im(F(H(τ ;x,A)(iλ)))

= sin(λt)Re(e−x
√
iλ+A) + cos(λt)Im(e−x

√
iλ+A)

= e−Ãx(sin(λt) cos(xB̃)− cos(λt) sin(xB̃))

= |e−x
√
iλ+A| sin(λt− xB̃),

and the proof is complete.

Theorem 3. Let T = +∞. If the Schwarz waveform relaxation algorithm (6)
for the advection reaction diffusion problem (15) is initialized with a pure sine
frequency error e02(L, t) = sin(λt), then we have

ek1(0, t) = |ρad(λ)|2k−1e− aL2ν sin(λt− (2k − 1)LG(a, c, ν, λ))

+e−
aL
2ν w2(t; (2k − 1) L√

ν
, a

2+4νc
4ν , λ),

(19)

where the Fourier convergence factor is given by

ρad(λ) = e−
L
2ν

√
a2+4νc+4iλν , (20)

and where G and w2 are defined by

G(a, c, ν, λ) =
1

2ν
√

2

√
−(a2 + 4νc) +

√
(a2 + 4νc)2 + 16ν2λ2),

and

w2(t;x,A, λ) = −
∫ +∞

t

sin(λ(t− τ))e−AτK(x, τ)dτ.

As a consequence for large time t we have

ek1(0, t) = |ρad(λ)|2k−1e− aL2ν sin(λt− (2k − 1)LG(a, c, ν, λ)) +O(
1

t3/2
).

Furthermore, for large k, we have

‖w2(·; (2k + 1) L√
ν
, a

2+4νc
4ν , λ)‖L∞(0,+∞)

‖w2(·; (2k − 1) L√
ν
, a

2+4νc
4ν , λ)‖L∞(0,+∞)

∼
H(tk+1; (2k + 1) L√

ν
, a

2+4νc
4ν )

H(tk; (2k − 1) L√
ν
, a

2+4νc
4ν )

,

where tk = ν
a2+4νc (−3 +

√
(a2+4νc)(2k−1)2L2

ν2 + 9).
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Proof. To transform back (16), we apply Lemma 4 with x = (2k − 1) L√
ν

and

A = a2+4νc
4ν and we obtain

ek1(0, t) = e−
aL
2ν

∫ +∞

0

sin(λ(t−τ))H(τ ;x,A)dτ−e− aL2ν
∫ +∞

t

sin(λ(t−τ))H(τ ;x,A)dτ.

We then get (19) again with Lemma 4 and considering the first integral with
Im(
√
iλ+A) =

√
νG(a, c, ν, λ).

To obtain the behavior of w2 for large k we use a first integration by parts
and get

w2(t;x,A, λ)

= −
∫ +∞

t

sin(λ(t− τ))e−AτK(x, τ)dτ

= −
∫ +∞

t

∂

∂τ

(
(− A

A2 + λ2
sin(λ(t− τ)) +

λ

A2 + λ2
cos(λ(t− τ)))e−Aτ

)
K(x, τ)dτ

=
λ

A2 + λ2
e−AtK(x, t)− A

A2 + λ2

∫ +∞

t

sin(λ(t− τ))e−Aτ
∂K

∂t
(x, τ)dτ

+
λ

A2 + λ2

∫ +∞

t

cos(λ(t− τ))e−Aτ
∂K

∂t
(x, τ)dτ.

A second integration by parts applied to the second integral gives

w2(t;x,A, λ) =
λ

A2 + λ2
e−AtK(x, t) +

Aλ

(A2 + λ2)2
e−At

∂K

∂t
(x, t)

− (
A

A2 + λ2
)2
∫ +∞

t

sin(λ(t− τ))e−Aτ
∂2K

∂t2
(x, τ)dτ

+
Aλ

(A2 + λ2)2

∫ +∞

t

cos(λ(t− τ))e−Aτ
∂2K

∂t2
(x, τ)dτ

+
λ

A2 + λ2

∫ +∞

t

cos(λ(t− τ))e−Aτ
∂K

∂t
(x, τ)dτ.

We use a final integration by parts for the last integral, and find after simplifying

w2(t;x,A, λ) =
λ

A2 + λ2
e−AtK(x, t) +

2Aλ

(A2 + λ2)2
e−At

∂K

∂t
(x, t)

− A2 − λ2

(A2 + λ2)2

∫ +∞

t

sin(λ(t− τ))e−Aτ
∂2K

∂t2
(x, τ)dτ

+
2Aλ

(A2 + λ2)2

∫ +∞

t

cos(λ(t− τ))e−Aτ
∂2K

∂t2
(x, τ)dτ.

We now use for a µ > 0 the change of variables w2(t;x,A, λ) = w2(λµ t;
√

λ
µx,A

µ
λ , µ),

and with µ = λx2 and we obtain

max
t∈[0,+∞)

|w2(t;x,A, λ)| = max
t∈[0,+∞)

|w2(
t

x2
; 1, Ax2, λx2)| = max

t∈[0,+∞)
|w2(t; 1, Ax2, λx2)|.
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Figure 8: Advection-reaction-diffusion equation: error ‖ek1(α, ·)‖L∞(0,T ) versus iteration.
From left to right: λ = 5, λ = 50 and λ = 500.

However from the previous computations, for large x we have

w2(t; 1, Ax2, λx2) ∼ λ

x2(A2 + λ2)
e−Ax

2tK(1, t).

Now, since maxt≥0 e
−Ax2tK(1, t) = e−AtxK(1, txx2 ) with tx = 1

4A (−3+
√

4Ax2 + 9),
and assuming that the maximum and limit can be interchanged, we conclude
that for large x

‖w2(·; 1, Ax2, λx2)‖L∞(0,+∞) ∼
λ

x2(A2 + λ2)
e−AtxK(1,

tx
x2

) =
λ

(A2 + λ2)
e−AtxK(x, tx),

which concludes the proof.

In Figure 8 we show the evolution of the error as a function of the iterations.
Here the spatial domains are Ω := (0, 20), Ω1 := (0, 10), Ω2 := (9.98, 20) and
T = 5, ν = 1, a = 2, c = 1, the spatial and time discretization parameters are
∆x = ∆t = 10−3 and the overlap is again L = 0.02. As for the heat equation,
the first iterations are following the Fourier convergence factor whereas for larger
iteration numbers the term in the kernel function H dictates the behavior of
the convergence.

5. Conclusion

Our work started by the observation that, even though classical Fourier
analysis leads to very similar convergence factors, Schwarz waveform relaxation
applied to evolution problems shows a rather different convergence behavior
compared to Schwarz applied to steady problems, and in fact the Fourier anal-
ysis result for Schwarz waveform relaxation never really predicts well the con-
vergence when applied to a heat equation. We then presented a new Fourier
kernel analysis for Schwarz waveform relaxation methods which can explain this
different convergence behavior, and shows that Fourier analysis in time is dif-
ferent. Our analysis is based on a very useful new symmetry argument, which
naturally leads to the iterated kernel estimates we needed, and we showed how
to extend these results to advection reaction diffusion problems.
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Our main motivation for this work is however to go a step further: the con-
vergence of classical Schwarz and Schwarz waveform relaxation methods can be
greatly enhanced by changing the Dirichlet transmission conditions to Robin
or Ventcell transmission conditions, leading to optimized variants of these algo-
rithms that converge often orders of magnitudes faster than when using classical
transmission conditions [22, 7]. The optimization in these algorithms is based
on the Fourier convergence factor, and while this is justified for large times t in
the Schwarz waveform relaxation method, it is not for short time t. The present
analysis here opens up a new way for the optimization of such transmission con-
ditions in the time dependent case, which turns out to be substantially harder
without our new insight [24], and is the focus of future work.
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