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Abstract. Optimized Schwarz methods are domain decomposition methods in which a large-
scale PDE problem is solved by subdividing it into smaller subdomain problems, solving the
subproblems in parallel, and iterating until one obtains a global solution that is consistent
across subdomain boundaries. Fast convergence can be obtained if Robin conditions are used
along subdomain boundaries, provided that the Robin parameters p are chosen correctly. In
the case of second order elliptic problems such as the Poisson equation, it is well known for
two-subdomain problems without overlap that the optimal choice is p = O(h−1/2) (where h

is the mesh size), with the resulting method having a convergence factor of ρ = 1− O(h1/2).
However, when cross points are present, i.e., when several subdomains meet at a single point,
this choice leads to a divergent method. In this article, we show for a model problem that
convergence can only occur if p = O(h−1) at the cross point; thus, a different scaling of the
Robin parameter is needed to ensure convergence. In addition, this choice of p allows us to
recover the 1−O(h1/2) convergence factor in the resulting method.

1. Introduction

When solving large-scale elliptic problems that arise from physical or engineering applications,
an attractive way to parallelize their solution is to use optimized Schwarz methods (OSM, [14]).
In such methods, one subdivides the physical domain into many subdomains, and then solves
the subdomain problems in parallel. One then iterates this process until one finds a global
solution that is consistent across subdomain boundaries. For such an algorithm to be well-
defined, one must impose boundary conditions along physical as well as artificial boundaries,
i.e., interfaces between subdomains which were not part of the boundary of the whole domain.
A judicious choice of artificial boundary conditions (or transmission conditions) can accelerate
the convergence of the overall algorithm substantially; see [22] for Laplace’s equation, [6] for
the Helmholtz equation, [16] for nonlinear elliptic problems, [15] for the time-dependent wave
equation, [3, 4] for problems with corners; see also [12] and references therein. In two dimensions
or higher, the optimal choice of interface conditions involves nonlocal operators [1, 25, 24], which
render the subdomain problems expensive to solve and hard to implement in practice. Various
easier-to-implement local approximations of the optimal operators have been developed for the
Laplace equation [10], the Helmholtz equation [2] and for the convection-diffusion equation, based
on Taylor expansions [1], absorbing boundary conditions [26, 17], approximate factorization [24]
and equioscillation properties [18, 20, 19]. In the case of non-overlapping decompositions with
Robin transmission conditions for (η−∆)u = f , η ≥ 0, [22] shows, using energy estimates, that
the continuous optimized Schwarz iteration converges for any Robin parameter p > 0; similar
arguments appear in [5] for linear second-order elliptic PDEs and in [7] for the harmonic Maxwell
equations.

Optimized Schwarz methods can also be formulated algebraically in the discrete setting [29,
27], with properties similar to the continuous case when the mesh is fine enough and no cross
points are present, i.e., no grid points are adjacent to three or more subdomains. However,
the correct formulation of OSMs in the presence of cross points is a delicate problem, since it
is difficult to discretize the PDE and boundary conditions while maintaining continuity of the
solution [11]. In [23], Loisel presents a general formulation for OSM and the closely related
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2-Lagrange multiplier method (2LM) that handles cross points systematically. In addition, the
author shows that for a linear self-adjoint coercive 2nd order elliptic PDE, if the Robin parameter
scales like p = O(h−1/2), then the condition number of the 2LM-preconditioned system also
scales like O(h−1/2), which is asymptotically optimal. Even so, the 2LM-preconditioned matrix
contains eigenvalues outside the unit disc centered at 1, meaning that the method would diverge
unless it is used with a Krylov method. This is in apparent contradiction with the convergence
results in [22] and [5], where cross points do not play a role in the convergence of the continuous
method. In addition, this divergence prevents OSMs from being used in certain contexts, e.g.,
as smoothers within a multigrid/multilevel algorithm.

The goal of the current paper is to further understand the spectral properties of OSM/2LM-
preconditioned matrices. In particular, we show that when p = O(h−1/2) and when cross points
are present, the spectrum of the preconditioned system contains large eigenvalues that lead to
divergence when the method is used as a stationary iteration; a similar behaviour has been
observed in Additive Schwarz with overlap, where the overlap causes stagnation or divergence of
the iterative method [9, 13]. However, our analysis shows that if we modify the Robin parameter

at the corner to scale like O(1/h), then a convergence factor of 1 − O(
√
h) can be restored in

the iterative method.
Our paper is organized as follows. In Section 2, we describe the continuous formulation of the

optimized Schwarz method, from which we derive the discrete version, which is intimately related
to the 2LM method. We also describe symmetry assumptions that will be used for analysis. We
then present in Section 3 a fully discrete analysis of the spectral radius of the iteration and show
that OSM diverges unless the parameter at the corner scales like O(1/h). In Section 4, we give
the asymptotic behavior of the Robin parameters in order for OSM to converge with a factor
of 1 − O(

√
h). We finally present in Section 5 numerical results confirming the analysis. In

addition, we show how choosing a different scaling for the cross point parameters can accelerate
the convergence of Krylov methods, especially for three-dimensional problems.

2. Continuous and Discrete Formulations of OSM

2.1. Continuous Formulation. Suppose we want to solve for d = 2 or 3

(1) Lu = f on Ω ⊂ R
d, u = g on ∂Ω,

with an optimized Schwarz method, where L = η −∆, η ≥ 0 is the positive definite Helmholtz
operator. (Our results also hold, after trivial modifications, for more general coercive second-
order elliptic operators.) Assume we have a conformal non-overlapping decomposition {Ωj}Nj=1

i.e., for any i, j, the intersection of the closures of Ωi and Ωj , if non-empty, must be either
a common vertex or a common edge. When this common edge is non-trivial, we denote its
interior (relative to ∂Ωi) by Γij , so that the end points of the edge are excluded from Γij . Then
the optimized Schwarz method with Robin transmission conditions is defined as follows: for
k = 1, 2, . . ., solve for i = 1, . . . , N ,

(2)

Luki = f on Ωi, uki = g on ∂Ω ∩ ∂Ωi,

∂uki
∂ni

+ piju
k
i =

∂uk−1
j

∂ni
+ piju

k−1
j on Γij for all Γij 6= ∅.

The Robin parameter pij in (2) is assumed to be strictly positive, but is allowed to vary along
Γij . We further assume that pij = pji, i.e., the same Robin parameter is used for communication
in both directions. Lions showed in [22], using an energy estimate argument, that for any choice
of pij > 0, (2) converges to the unique solution of (1) in L2(Ωi) and weakly in L2(∂Ωi). However,
as noted in [11], the discretization of (2) is delicate when cross points are present, since one must
weakly impose two different sets of Robin conditions for each piece of the interface at the cross
point. A similar difficulty has been observed in [28] in the optimized Schwarz preconditioner in
the context of solving the magnetohydrodynamics equations.
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2.2. Discrete Formulation. We now consider the discrete formulation of the optimized Schwarz
method when cross points are present that is a special case of the 2LM method described in [23].
Suppose we have a finite element mesh for Ω such that each finite element lies within exactly
one subdomain Ωi, i.e., each interface Γij must consist of a union of element boundaries. Let Ri

be the restriction operator onto the set of degrees of freedom in Ωi, and R
T
i is the corresponding

extension operator from Ωi into the set of all degrees of freedom in Ω. Then a finite-element
discretization of (1) leads to a linear system of the form

Au = f ,

where A =
∑n

j=1 R
T
j AjRj is the global stiffness matrix and Ai =

∑

e⊂Ωi
RT

e AeRe is the subdo-
main stiffness matrix for Ωi, with Ae being the element stiffness matrix for element e, Re the
restriction operator onto the element e, and the sum running over all elements e that lie within
Ωi. Note that Ai does not yet contain Robin transmission conditions. To incorporate the inter-
face conditions, we need to consider Ãi = Ai + hLi, where Li contains the Robin contributions
along the interface (and is thus zero at internal nodes). The discrete optimized Schwarz method
is then defined as follows: for k = 1, 2, . . ., solve

(3) Ãiu
k
i = fi +

∑

j 6=i

Biju
k−1
j , i = 1, . . . , n,

where fi = Rif . The Bij , which extract data from neighboring subdomains, can be calculated
as follows. At convergence, each subdomain solution ui must satisfy ui = Riu, where u is the
global solution. So Au = f implies

Rif = Ri

n∑

j=1

RT
j AiRju

= RiR
T
i

︸ ︷︷ ︸

=I

AiRiu+
∑

j 6=i

RiR
T
j AjRiu

= (Ai + hLi)Riu− hLiRiu+
∑

j 6=i

RiR
T
j AjRju

= Ãiui +
∑

j 6=i

(RiR
T
j Aj − hLiRiR̃

T
j )uj ,

where R̃j is chosen to be identical to Rj except at cross points, where it has a weight of 1/(d−1),
with d being the number of subdomains meeting at that cross point. This ensures the weights
sum to 1 at any interface or cross point, so that

∑

j 6=i

LiRiR̃
T
j Rj = LiRi for all i..

This gives the definition

(4) Bij := −RiR
T
j Aj + hLiRiR̃

T
j .

We further assume that Li is a diagonal matrix with support along artificial interfaces only; in
addition to simplifying our analysis below, this choice arises naturally as part of the discrete
integration by parts formula, cf. [11].

2.3. Equivalence with the 2LM method. We now show the equivalence of (3) with the 2LM
method introduced by Loisel [23]. Suppose each subdomain stiffness matrix Ai is partitioned
into internal and interface nodes. Then the subdomain systems (3) can be written as

(5)

[
AII,i AIΓ,i

AΓI,i AΓΓ,i + hL̂i

](
ukI,i
ukΓ,i

)

=

(
fI,i

fe
Γ,i + λk−1

i

)

,
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where fe
Γ,i is the unassembled right-hand side corresponding to integration over Ωi only; to

obtain the total right-hand side, we need to sum up the contributions from all the neighbouring
subdomains. (In other words, the contributions from other subdomains have been absorbed into

the unknown λk−1
i .) When the interior variables are eliminated, we obtain

(6) (Si + hL̂i)u
k
Γ,i = gi + λk−1

i ,

where Si = AΓΓ,i −AΓI,iA
−1
II,iAIΓ,i is the Schur complement and gi = fe

Γ,i−AΓI,iA
−1
II,ifI,i is the

condensed right-hand side. The 2LM method requires solving a system of the form

A2LMλ = c

for the unknown Robin traces λ = [λT1 , . . . , λ
T
n ]

T , where

(7) A2LM = h(LM −GL)(S + hL)−1 +G, c = (G−A2LM)g.

Here, g = [gT1 , . . . , g
T
n ]

T , L = diag(L̂1, . . . , L̂n), S = diag(S1, . . . , Sn); M is a matrix with ones
on the diagonal and Mij = − 1

di−1 whenever i is a point adjacent to di subdomains and j 6= i
corresponds to the same physical point as i, and G has the same non-zero pattern as M , except
all entries are +1. We claim that the discrete formulation (3) is equivalent to the stationary
iteration

(8) λk = (I −A2LM)λk−1 + c,

which is none other than the Richardson iteration applied to the 2LM system. Indeed, using the
definition of A2LM in (7), we can write

I −A2LM = [(I −G)S + hL(I −M)](S + hL)−1,

from which we can use the definition of S and (6) to infer that

(I −A2LM)(g + λk−1) = [(I −G)S + hL(I −M)]ukΓ.

The second equation in (7) then implies

[(I −G)S + hL(I −M)]ukΓ = (I −G)g + c+ (I −A2LM)λk−1.

But I −M is a matrix with zeros on the diagonal and 1/(di − 1) at the (i, j) position whenever
j is at the same physical point as i. So the term hL(I−M)ukΓ, when restricted to Γi, is equal to

hL̂iRΓi

∑

j 6=i R̃
T
j u

k
j , where RΓi is the restriction onto the set of interface points in Ωi. Similarly,

I − G has zeros on the diagonal and −1 at the same positions where I −M is non-zero. This
implies that the restriction of (I − G)(SukΓ − g) onto Γi is −RΓi

∑

j 6=i(R
T
j Aju

k
j − RT

Γj
fe
Γ,j).

Combining the two terms, we get

[(I −A2LM)λk−1]i + ci = h
∑

j 6=i

L̂iRΓiR̃
T
j u

k
j −

∑

j 6=i

RΓi(R
T
j Aju

k
j −RT

Γj
fe
Γ,j)

= RΓiR
T
i

∑

j 6=i

(hLiRiR̃
T
j −RiR

T
j Aj)u

k
j +RΓi

∑

j 6=i

RT
Γj
fe
Γ,j

= RΓi

(

RT
i

∑

j 6=i

Biju
k
j +

∑

j 6=i

RT
Γj
fe
Γ,j

)

(by (4))

= RΓi

(

RT
i Ãiu

k+1
i −RT

i fi +
∑

j 6=i

RT
Γj
fe
Γ,j

)

(by (3))

= RΓiR
T
i Ãiu

k+1
i − fe

Γ,i = λki ,

where we have used the second row of (5) together with the fact that RΓiR
T
i fi = RΓi

∑

j R
T
Γj
fe
Γ,j.

Thus, we have shown that the subdomain iteration (3) produces the same iterates as the Richard-
son iteration (8), (5) as long as the initial guesses are compatible, e.g. when u0i = 0 and



BEST PARAMETERS FOR OPTIMIZED SCHWARZ AT CROSS POINTS 5

(a) (b) (c)

Figure 1. (a), (b): two decompositions of the unit square into four subdomains
that satisfy the symmetry conditions; (c) a generic wedge with its interior (I),
left edge (L), right edge (R) and center (C) nodes identified.

λ0i = RΓi

∑

j 6=iR
T
Γj
fe
Γ,j. Thus, even though the analysis in the remainder of this paper is on the

subdomain iteration (3), the results also apply to the 2LM method.

Remark. No definition made in the above subsection will be reused in the remainder of this
paper. In fact, certain letters (e.g., M , G, L, and g) will be redefined to denote other quantities.

2.4. Model Problem. For analysis purposes, let us consider the problem of solving (1) in two
dimensions on a regular n-gon Ω ⊂ R

2 using the optimized Schwarz method (3). We decompose
the domain into n identical wedges Ω1, . . . ,Ωn, and each Ωi is discretized identically using a
finite element method on a triangular mesh, see Figure 1(a), (b) for two possibilities. Note that
there is exactly one cross point of degree n in the center of the polygon. Since the wedges are
identical, we can assume that there exists a local ordering of the nodes such that their stiffness
matrices are also identical, i.e.

A1 = · · · = An =: A.

In particular, we use the ordering below for the rows and columns of A:

(1) interior nodes,
(2) nodes on the left boundary (excluding the center),
(3) nodes on the right boundary (excluding the center),
(4) the center node.

This gives the following block representation for A:

(9) A =







AII AIL AIR AIC

ALI ALL ALR ALC

ARI ARL ARR ARC

ACI ACL ACR ACC






,

where the subscripts I, L, R and C denote the interior, left edge, right edge and center nodes
respectively, cf. Figure 1(c). Note that A is symmetric positive definite, since ∂Ω ∩ ∂Ωi 6= ∅ for
each i. If we eliminate the internal nodes, we obtain the Schur complement matrix S0, which is
also symmetric positive definite. In block form, we have

(10) S0 =





SLL SLR SLC

SRL SRR SRC

SCL SCR SCC



 ,
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where SLL = ALL − ALIA
−1
II AIL, etc. By symmetry, we assume that the left and right edges

are identical in the sense that

(11) TS0 = S0T, where T :=





0 I 0
I 0 0
0 0 1



 .

Finally, because of rotational symmetry, we know that the operator RiR
T
j A − hLRiR̃

T
j is

constant whenever j− i ≡ ℓ mod n for a fixed ℓ. This means we can write the method in terms
of the following augmented system:

(12)











Ã

Ã 0
. . .

0
. . .

Ã





















uk+1
1

uk+1
2
...
...

uk+1
n











=












0 B1 B2 · · · Bn−1

Bn−1 0 B1
. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . . B1

B1 B2 · · · Bn−1 0






















uk1
uk2
...
...
ukn











+











f1
f2
...
...
fn











,

where Bi := B1,i in the definition of (4), and Ã = A+ hL with

L =












0
. . . 0 0

0
0 D
0 D

pC












.

Here D > 0 is a diagonal matrix and pC > 0, both representing Robin transmission conditions,
which are assumed to be the same for all subdomains and for both left and right edges.

3. Spectral Analysis

To analyze the asymptotic convergence rate of the method, we need to calculate the spectral
radius of

(13) N :=












0 B1 B2 · · · Bn−1

Bn−1 0 B1
. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . . B1

B1 B2 · · · Bn−1 0






















Ã

Ã 0
. . .

0
. . .

Ã











−1

,

which has the same eigenvalues as the iteration matrix in (12). Since N is a block circulant
matrix, it can be block diagonalized as follows. Let ω be any n-th root of unity, i.e., ωn = 1.
Then we get












0 B1Ã
−1 B2Ã

−1 · · · Bn−1Ã
−1

Bn−1Ã
−1 0 B1Ã

−1 . . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . . B1Ã
−1

B1Ã
−1 B2Ã

−1 · · · Bn−1Ã
−1 0





















I
ωI
ω2I
...

ωn−1I










=

n−1∑

i=1

ωiBiÃ
−1










I
ωI
ω2I
...

ωn−1I










.
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Thus, the spectral radius of N is the largest of the spectral radii of the matrices

Ck :=

n−1∑

i=1

ωikBiÃ
−1, k = 0, 1, . . . , n− 1,

where we assume ω is a primitive n-th root of unity.

3.1. Spectral Radius of Ck, k 6= 0. Let us first consider the case where k 6= 0, so that Ck is
complex. Each of the BiÃ

−1 is of the form

BiÃ
−1 = (hLR1R̃

T
i+1 −R1R

T
i+1A)Ã

−1

= (hLR1R̃
T
i+1 + hR1R

T
i+1L−R1R

T
i+1Ã)Ã

−1

= h(LR1R̃
T
i+1 +R1R

T
i+1L)Ã

−1 −R1R
T
i+1.

This means

Ck = h

[

L
(n−1∑

i=1

ωikR1R̃
T
i+1

)

+
(n−1∑

i=1

ωikR1R
T
i+1

)

L

]

Ã−1 −
n−1∑

i=1

ωikR1R
T
i+1.

Using the same nodal ordering described in Section 2.4, we can then write R1R
T
j in block matrix

form for each j:

R1R
T
2 =












0
. . . 0 0

0
0 I
0 0

1












, R1R
T
n = (R1R

T
2 )

T =












0
. . . 0 0

0
0 0
0 I

1












and

R1R
T
j =












0
. . . 0 0

0
0 0
0 0

1












for 3 ≤ j ≤ n− 1.

Similarly, R1R̃
T
j have exactly the same structure, except the 1 in the bottom right-hand corner

is replaced by 1/(n− 1). Since ωk 6= 1 for k 6= 0 (mod n), we see that

n−1
∑

i=1

ω
ik
R1R

T
i+1 =



















0

. . . 0 0
0

0 ωkI

0 ω−kI

−1



















,

n−1
∑

i=1

ω
ik
R1R̃

T
i+1 =





















0

. . . 0 0
0

0 ωkI

0 ω−kI

−

1

n−1





















,
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where we have used the fact that ωk(n−1) = ω−k and 1 + ωk + ω2k + · · ·+ ω(n−1)k = 0. We can
now rewrite Ck as follows:

Ck = h





































0

. . . 0 0
0

0 D

0 D

pC







































0

. . . 0 0
0

0 ωkI

0 ω−kI

−

1

n−1





















+



















0

. . . 0 0
0

0 ωkI

0 ω−kI

−1





































0
. . . 0 0

0

0 D

0 D

pC





































Ã
−1

−



















0

. . . 0 0
0

0 ωkI

0 ω−kI

−1



















.

This allows us to conclude that

Ck = −



















0
. . . 0 0

0

0 ωkI

0 ω−kI

−1

























































0

. . . 0 0
0

0 I

0 I

1



















− h





















0
. . . 0 0

0

0 2D

0 2D
npC

n− 1





















Ã
−1





















.

If S̃ is the Schur complement of Ã after eliminating the interior nodes, we can show that

(14) ρ(Ck) = ρ










0 ωkI
ω−kI 0

−1








I − h






2D
2D

npC
n− 1




 S̃

−1









 .

The following lemma gives an upper bound for ρ(Ck) when k 6= 0.

Lemma 1. Suppose D > 0, pC > 0 and S0 is symmetric positive definite. Then for k =
1, . . . , n− 1, we have ρ(Ck) ≤ ρ(W ) < 1, where

(15) W = I − h






2D
2D

npC
n− 1




 S̃−1.

Proof. The matrix on the right-hand side of (14) has the same eigenvalues as





0 ωkI
ω−kI 0

−1










I − h






2D
2D

npC
n− 1






1/2

S̃−1






2D
2D

npC
n− 1






1/2





.

Now the spectral radius is bounded above by the 2-norm. The first matrix is unitary and hence
has norm 1, whereas the second matrix is real and symmetric, so its 2-norm is equal to its
spectral radius. Thus, we have

ρ(Ck) ≤ ρ




I − h






2D
2D

npC
n− 1




 S̃

−1




 = ρ(W ).
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Let S0 denote the Schur complement of A (without the Robin boundary contributions, as defined
in (10)) after the interior nodes have been eliminated. Then we can write

S̃ = S0 + h diag(D,D, pC).

It is now possible to rewrite W as

W =I − h diag(2D, 2D,npC/(n− 1))(S0 + h diag(D,D, pC))
−1

=(S0 − h diag(D,D, pc/(n− 1)))(S0 + h diag(D,D, pC))
−1

=
[

(S0 + h diag(0, 0,
npC

2(n− 1)
))

︸ ︷︷ ︸

S

−h diag(D,D, (n− 2)pC
2(n− 1)

)
]

×
[

(S0 + h diag(0, 0,
npC

2(n− 1)
))

︸ ︷︷ ︸

S

+h diag(D,D,
(n− 2)pC
2(n− 1)

)
]−1

=(I − Z)(I + Z)−1,

where
(16)

Z = h







D
D

(n− 2)pC
2(n− 1)






S−1 = h







D
D

(n− 2)pC
2(n− 1)












S0 +







0
0

nhpC
2(n− 1)













−1

.

Since D > 0, pC > 0 and S0 is symmetric positive definite, Z is a similarity transformation away
from a symmetric positive definite matrix, so it only has positive eigenvalues. Thus, if λ1, . . . , λr
are the eigenvalues of Z, then the eigenvalues of W have the form

µj =
1− λj
1 + λj

,

which have absolute value less than 1, since λj > 0. Hence ρ(W ) < 1, as required. �

3.2. Spectral radius of C0. The situation is completely different when k = 0. Here we have

n−1∑

i=1

R1R
T
i+1 =












0
. . . 0 0

0
0 I
0 I

n− 1












,

n−1∑

i=1

R1R̃
T
i+1 =












0
. . . 0 0

0
0 I
0 I

1












,

which implies

ρ(C0) = ρ









0 I 0
I 0 0
0 0 1













I
I

n− 1



− h





2D
2D

npC



 S̃−1







 = ρ(TM),

with T from (11) and

(17) M =





I
I

n− 1



− h





2D
2D

npC



 S̃−1.

Lemma 2. Let D > 0 be a diagonal matrix, pC > 0 and S0 symmetric positive definite. Then
ρ(C0) = ρ(M).
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Proof. First, we observe that T and M commute since T S̃ = S̃T , which follows from the fact
that TS0 = S0T . Thus, it is possible to diagonalize T and M simultaneously with the same
eigenbasis, i.e.

T = XΛTX
−1, M = XΛMX

−1,

so that

TM = X(ΛTΛM )X−1,

i.e., the eigenvalues of the product are the products of the eigenvalues. But the eigenvalues of T
are ±1; thus, we have

|λ(C0)| = |λ(TM)| = |λ(M)|,
which implies ρ(C0) = ρ(M). �

We now mimic the case k 6= 0 and express M as (I −G)(I +G)−1 for some G:

M = diag(I, I, n− 1)− h diag(2D, 2D,npC)(S0 + h diag(D,D, pC))
−1

= (diag(I, I, n− 1)(S0 + h diag(D,D, pC))− h diag(2D, 2D,npC))(S0 + h diag(D,D, pC))
−1

= (diag(I, I, n− 1)S0 − h diag(D,D, pC))(S0 + h diag(D,D, pC))
−1

=
[

diag(I, I,
n

2
)S0 − (h diag(D,D, pC)− diag(0, 0,

n− 2

2
)S0)

]

×
[

diag(I, I,
n

2
)S0 + (h diag(D,D, pC)− diag(0, 0,

n− 2

2
)S0)

]−1

= (I −G)(I +G)−1

where

G = h





D
D

pC



S−1
0





I
I

2
n



−





0
0

1− 2
n



 ,

which has the same eigenvalues as

(18) G̃ = h





D
D

2pC/n



S−1
0 −





0
0

1− 2
n



 .

Again we want to find out what conditions D and pC should satisfy in order for G̃ to have
only positive eigenvalues. Since S−1

0 is difficult to compute, we will instead look at G̃−1, which
we compute using the Sherman–Morrison–Woodbury formula:

(X + uvT )−1 = (I − 1

1 + vTX−1u
X−1uvT )X−1,

where we let

X = h diag(D,D, 2pC/n)S
−1
0 , u = −n− 2

n
e, v = e,

with eT = (0, . . . , 0, 1). Since X−1 = h−1S0 diag(D
−1, D−1, n/2pC), we have

vTX−1u = −n− 2

nh
eTS0 diag(D

−1, D−1, n/2pC)e = − (n− 2)eTS0e

2hpC
.

So

I − 1

1 + vTX−1u
X−1uvT = I − 2hpC

2hpC − (n− 2)eTS0e
h−1S0 diag(D

−1, D−1, n/2pC)(−
n− 2

n
e)eT

= I +
n− 2

2hpC − (n− 2)eTS0e
S0ee

T .
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This means

G̃−1 = (X + uvT )−1 = (I − 1

1 + vTX−1u
X−1uvT )X−1

=
(

S0 +
n− 2

2hpC − (n− 2)eTS0e
S0ee

TS0

)





(hD)−1

(hD)−1

n/(2hpC)



 .(19)

We are now ready to show our first main result.

Theorem 3. Let S0 be symmetric positive definite, D > 0 and pC > 0. Then the optimized
Schwarz method (12) converges if and only if the corner parameter pC satisfies

(20) pC >
(n− 2)eTS0e

2h
.

Proof. SinceD > 0 and pC > 0 by assumption, Lemma 1 shows that ρ(Ck) < 1 for k = 1, . . . n−1,
so the method converges if and only if ρ(C0) < 1. We start by showing that ρ(C0) = ρ(M) < 1 if

and only if G̃ (or equivalently G̃−1) has only positive eigenvalues. Indeed, since the eigenvalues

λj of G̃ are related to those of M (denoted by µj) by

µj =
1− λj
1 + λj

,

we see that |µj | < 1 ⇐⇒ λj > 0.

We now show that G̃ has positive eigenvalues if and only if (20) holds. We first observe that

G̃−1 has the same eigenvalues as the symmetric matrix








(hD)−
1

2

(hD)−
1

2

(

n
2hpC

) 1

2









(

S0+
n− 2

2hpC − (n− 2)eTS0e
S0ee

T
S0

)









(hD)−
1

2

(hD)−
1

2

(

n
2hpC

) 1

2









,

so it has positive eigenvalues if and only if the middle matrix,

K = S0 +
n− 2

2hpC − (n− 2)eTS0e
S0ee

TS0,

is positive definite. If (20) holds, then the denominator in the scalar factor multiplying S0ee
TS0

is positive, which implies K is positive definite. On the other hand, if K is positive definite,
then eTKe > 0, which implies

eTS0e+
n− 2

2hpC − (n− 2)eTS0e
(eTS0e)

2 > 0

or
2hpCe

TS0e

2hpC − (n− 2)eTS0e
> 0,

from which we deduce 2hpC − (n − 2)eTS0e > 0, using the fact that eTS0e > 0 (since S0 is
positive definite). �

In other words, the optimal scaling for pC is necessarily different from the straight interface
case, where p = O(h−1/2). This result has the following intuitive interpretation. By elimi-
nating the interior unknowns from (12), we obtain an equivalent iteration that is essentially a
block-Jacobi method applied to the substructured problem; for such methods, one only expects
convergence when the augmented system is diagonally dominant. At the cross point, the im-

plicit part S̃ has weight
eTS0e

n
+ hpC,whereas the explicit parts (Bij with most of the zero rows
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removed) have a combined weight of
(n− 1)eTS0e

n
− hpC ; thus, the augmented matrix would

not be diagonally dominant unless pC is large enough. For diagonal dominance, we need

eTS0e

n
+ hpC >

(n− 1)eTS0e

n
− hpC =⇒ pC >

(n− 2)eTS0e

2h
.

Remark. If we consider a three-dimensional problem Ω ⊂ R
3 decomposed into many subdomains,

then there will be two types of cross points, corresponding to points on edges and corners
respectively. For such problems, the preceding analysis is no longer directly applicable, since
the subdomains are not all in the same plane. However, we can still expect the generalization
of C0 =

∑

iBiÃ
−1 to play a crucial role in determining the spectral radius of the iteration

matrix. In particular, we expect that one should choose different parameters for edge and corner
points, and both parameters should be large enough to make the augmented system diagonally
dominant. As we will see from the numerical experiments in Section 5.3, this choice will be
sufficient to make the stationary iteration converge, and will also accelerate the convergence of
the associated Krylov method.

4. Asymptotic Behavior of Optimal Robin Parameters

4.1. Optimality conditions. While Theorem 3 gives us necessary and sufficient conditions for
convergence, it does not tell us how to choose D and pC optimally and what convergence rate
to expect. For optimal asymptotic convergence, we must minimize the spectral radius of N as
defined in (13), or equivalently

ρ(N) = max
0≤k≤N−1

ρ(Ck).

Since C0 is the one that could potentially cause the method to diverge, we will start by choosing
D and pC to minimize ρ(C0), which is equivalent to solving the min-max problem

(21) min
D>0,pC>0

max
i

∣
∣
∣
1− λi
1 + λi

∣
∣
∣,

where λi > 0 are the eigenvalues of G̃ defined in (18). This is in general a difficult problem,
since there are as many parameters to choose as there are points along one edge of the interface.
As a simplification, we will make the (possibly suboptimal) choice to use the same parameter
p = f(h) for all points on the regular interface, i.e., we will assume that D = f(h) · I. This
is not an unreasonable choice, since for a straight edge with no cross points, it can be shown
that the optimal parameter is constant along the interface [21]. Note however that we reserve
the right to choose a different parameter pC 6= f(h) at the cross point. We will show that there
exists a choice of f(h) and pC = pC(h) that gives ρ(C0) = 1− ch1/2 +O(h), a contraction factor
that matches the two-subdomain case. We will then show that for this choice of f(h) and pC ,
we also have ρ(Ck) = 1 − c

2h
1/2 +O(h) for k 6= 0. Thus, not only does the method converge at

the same asymptotic rate as the two-subdomain case, but we do not lose more than a constant
by minimizing ρ(C0) instead of over all the ρ(Ck). Thus, our results show that it is possible
to obtain a method that converges with ρ = 1 − O(h1/2) simply by using a different Robin
parameter at the cross point, leaving the parameters on the other interface points unchanged.

For the remainder of this section, we will use the following partition of S0 and S−1
0 into

conforming blocks:

(22) S0 =

[
SEE SEC

SCE SCC

]

, S−1
0 =

[
YEE YEC

YCE YCC

]

.

The labels E and C correspond to degrees of freedom for the edges and the cross point re-
spectively, so that SEE and YEE is symmetric positive definite, SCE = ST

EC , YCE = Y T
EC , and

SCC , YCC > 0 are scalar values.



BEST PARAMETERS FOR OPTIMIZED SCHWARZ AT CROSS POINTS 13
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Figure 2. A plot of L(λ) (the straight line) and R(λ) (the function containing
vertical asymptotes at θ1..6 = 1, 2, . . . , 6), for γ = 1.5, hYCC = 3. The point
( 2n − 1,−hYCC) is indicated by the solid square, and the solutions to (29) occur
at the intersections marked by circles.

Lemma 4. Let D = f · I, f = f(h) > 0 in the definition of G̃ in (18). Let λmax and λmin,

which are functions of f and pC, denote the largest and smallest eigenvalues of G̃. If f∗ and p∗C
are solutions to the min-max problem (21) and λ∗max = λmax(f

∗, p∗C), λ
∗
min = λmin(f

∗, p∗C) are
the optimal values, then the following two properties must hold:

(i) λ∗minλ
∗
max = 1 (equioscillation),

(ii) (f∗, p∗C) is a minimizer of κ(f, pC) =
λmax(f, pC)

λmin(f, pC)
(condition number minimization).

If both conditions are satisfied, then ρ(C0) = 1−O(κ−1/2).

Proof. To show the equioscillation property, we will follow the classical argument in Wilkinson
[31, p.94] to show that for any fixed pC , the λi are continuous, strictly increasing functions of f ,
and that there exist fmin, fmax > 0 such that

λmin(fmin, pC) · λmax(fmin, pC) < 1,(23)

λmax(fmax, pC) · λmax(fmax, pC) > 1.(24)

Then the equioscillation result follows from the generic argument below: suppose for some f we
have

(25)
1− λmin

1 + λmin
> −1− λmax

1 + λmax
,

so that ρ =
1− λmin

1 + λmin
. Since λmin and λmax are strictly increasing functions of f , by choosing an

f̃ slightly larger than f , we can obtain λ̃min > λmin, λ̃max > λmax so that

−1− λ̃max

1 + λ̃max

<
1− λ̃min

1 + λ̃min

<
1− λmin

1 + λmin
.
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Hence ρ̃ < ρ, which means f cannot be optimal. A similar argument shows non-optimality when
the inequality sign is reversed in (25), so a necessary condition for optimality is

1− λmin

1 + λmin
= −1− λmax

1 + λmax
,

or, after some manipulation,

(26) λminλmax = 1,

which, in light of (23), (24) and a continuity argument, must be satisfied for some fmin < f <
fmax. We now show that the λi are strictly increasing functions of f . Suppose S−1

0 has the block

form (22). Then G̃ has the same eigenvalues as the symmetric matrix

(27) Ĝ = h

[
f · YEE

√
fγ · YEC√

fγ · YCE γYCC

]

−
[
0 0
0 1− 2

n

]

,

where γ = 2pC/n. Now let YEE have the spectral decomposition YEE = UΘUT , where Θ =

diag(θ1, . . . , θm) and UTU = I. Applying the orthogonal transformation Û = diag(U, 1) to Ĝ
gives

ÛT ĜÛ = h

[
fΘ

√
fγ · UTYEC√

fγ · YCEU γYCC

]

−
[
0 0
0 1− 2

n

]

.

To analyze the eigenvalues of Ĝ, we form the characteristic equation of ÛT ĜÛ :

(28) 0 = (λ − hγYCC + (1− 2

n
))

m∏

i=1

(λ− hfθi)−
m∑

i=1

h2fγb2i
∏

j 6=i

(λ− hfθj),

where the bi are the components of UTYEC . To locate the ith eigenvalue λi, we need to consider
two cases. If bi = 0, then the corresponding eigenvalue is

λi = hfθi.

On the other hand, if bi 6= 0, then we can divide (28) by γ
∏m

i=1(λ − hfθi) and rearrange to
obtain the secular equation

(29)
λ+ 1− 2/n

γ
− hYCC =

m∑

i=1

h2fb2i
λ− hfθi

,

or

L(λ) = R(λ).

Note that L(λ) is a straight line through the point ( 2n − 1,−hYCC) with slope 1/γ, and R(λ)
has poles at θ1, . . . , θm. Furthermore, L(λ) is independent of f and R(λ) of γ. In Figure 2, we
show the roots λi of (29) as the intersections between L(λ) and R(λ).

Regardless of whether bi is zero, each λi (and in particular λ1 and λn) is a strictly increasing
function of f . It remains to argue that (23) and (24) hold for some fmin and fmax. For fmin,
it suffices to choose f small enough so that either λmin(f, γ) = 0 (when b1 6= 0), or λmax < 1
(when bi = 0, since λ1 = fθ1 > 0 in this case). For fmax, we can choose f large enough so that
λmin ≥ 1/2 and λmax ≥ fθm > 2 (see Figure 2).

Now for the condition number criterion, we see that when (26) holds, we have

ρ(C0) =
λmax − 1

λmax + 1
=
λ
1/2
maxλ

1/2
max − λ

1/2
maxλ

1/2
min

λ
1/2
maxλ

1/2
max + λ

1/2
maxλ

1/2
min

=
κ1/2 − 1

κ1/2 + 1
= 1−O(κ−1/2),

so ρ(C0) is minimized when κ = κ(f, pC) is minimized. �
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4.2. Spectral estimates for G̃. Lemma 4 gives us two properties that must be satisfied by
λmax(f, pC) and λmin(f, pC) when the parameters f and pC are chosen optimally; we now use
these two criteria to determine the asymptotic behavior of f and pC as h → 0. This requires
us to estimate λmin and λmax, the extremal eigenvalues of G̃, which are identical to those of
its symmetrized counterpart Ĝ, as defined in (27). Since Ĝ is symmetric positive definite for

pC > (n−2)eTS0e
2h , we have λmax = ‖Ĝ‖2; similarly, we have 1/λmin = ‖Ĝ−1‖2. In other words,

we need to estimate the 2-norms of Ĝ and its inverse. Inspecting (18), we see that the various
subblocks of S−1

0 are multiplied by different parameters (f and 2pC/n), which means we will
need estimates for individual subblocks. Thus, our approach is to first estimate the norms of
the different subblocks of S0 and S−1

0 , and then estimate the norms of Ĝ and Ĝ−1 based on the
subblock estimates. The latter task will require the following lemma.

Lemma 5. Let M =

[
M11 M12

M21 M22

]

be a symmetric positive definite matrix. Then

max{‖M11‖2, ‖M22‖2} ≤ ‖M‖2 ≤ 2(‖M11‖2 + ‖M22‖2).
Proof. For the lower bound, suppose x is a vector of unit length such that ‖M11x‖2 = ‖M11‖2.
Then by setting X = (xT , 0)T , we have

‖MX‖2 =
√

‖M11x‖22 + ‖M21x‖22 ≥ ‖M11x‖2 = ‖M11‖2,

so that ‖M‖2 ≥ ‖M11‖2. Using the same argument on M22 completes the proof for the lower
bound. For the upper bound, let (xT , yT )T be the unit eigenvector of M such that

M

(
x
y

)

= ‖M‖2
(
x
y

)

.

In this case, we have

‖M‖2 =
(
xT yT

)
M

(
x
y

)

≤
(
xT yT

)
M

(
x
y

)

+
(
xT −yT

)
M

(
x
−y

)

= 2(xTM11x+ yTM22y) ≤ 2(‖M11‖2 + ‖M22‖2),
since x and y each have norm less than or equal to 1. �

Thus, to estimate ‖Ĝ‖2 and ‖Ĝ−1‖2 in terms of f and γ, we only need to estimate the norms

of the principal subblocks of Ĝ and Ĝ−1 and apply Lemma 5. From Theorem 3, we know we

must have pC > (n−2)YCC

2h for convergence, so let us write

pC =
(n− 2)SCC

2h
(1 + g(h))

for some g(h) > 0. Then from (22), (27) and (19), we can calculate
(30)

Ĝ =

[
hfYEE ∗

∗ n− 2

n

(
SCCYCC(1 + g)− 1

)

]

, Ĝ−1 =






SEE

hf
+
SECS

T
EC

hfgSCC
∗

∗ n

g(n− 2)




 .

It remains to estimate the norms of SEE , SEC , SCC , YEE and YCC , as defined in (22). To do
so, we must resort to well-known finite element Sobolev estimates and trace inequalities, which
can be found in [30] and are valid for the problem L = η − ∆. In particular, we will use the
following results:
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Lemma 6. [30, Lemma B.5] Let φ be a nodal basis function associated with a node of an element
K in the triangulation of Ω ⊂ R

n. Then there exist constants independent of hK , the diameter
of K, such that

c1h
n
K ≤ ‖φ‖2L2(K) ≤ C1h

n
K , c2h

n−1
K ≤ |φ|2H1/2(K) ≤ C2h

n−1
K .

Lemma 7. [30, Lemma 4.10] Let uΓ be a finite element trace along the interface Γ of a subdomain
Ωi, and let S be the Schur complement of the subdomain stiffness matrix with respect to the
interface. Then there exists constants c and C such that

c|uΓ|2H1/2(Γ) ≤ uTSu ≤ C|uΓ|2H1/2(Γ),

where u is the vector of degrees of freedom corresponding to the finite element trace uΓ.

We are now ready to provide estimates of the individual subblocks of the Schur complement
S0 and those of its inverse.

Lemma 8. For a piecewise linear finite element discretization on a shape-regular, quasi-uniform
triangulation, the following estimates hold for the block decomposition (22) of S0 as h→ 0:

‖SEE‖2 = Θ(1), SCC = Θ(1), ‖SEC‖2 = O(1),

where we write ϕ(h) = Θ(ψ(h)) whenever there exist constants c1 and c2 independent of h such
that c1ψ(h) ≤ |ϕ(h)| ≤ c2ψ(h). In addition, we have

‖YEE‖2 = O(h−1), YCC = O(| log h|).
Proof. For the first three estimates, let u be a vector corresponding to uΓ, a finite element trace
along the interface. Then by Lemmas 6 and 7, there exist constants C1 and C2 independent of
h such that

uTS0u ≤ C1|uΓ|2H1/2(Γ) ≤
C1C2

h
‖uΓ‖2L2(Γ).

However, there also exists C3 independent of h such that

uTu ≥ C3

h
‖uΓ‖2L2(Γ),

yielding

uTS0u

uTu
≤ C1C2

C3
.

By choosing u to span various subblocks of S0, we obtain

(31) ‖S0‖2 = O(1), ‖SEE‖2 = O(1), SCC = O(1).

To obtain lower bounds for ‖SEE‖2 and SCC , let φ be a nodal basis function associated with
a node on Γ, and let ϕ be the corresponding vector representation. Then by Lemma 7 and by
letting n = 1 in Lemma 6 (interfaces are one-dimensional), we get

(32) ϕTS0ϕ ≥ |φ|2H1/2(Γ) ≥ C,

where C is a constant independent of h. But the 2-norm of a matrix must be larger than any
one of its entries, since the (i, j)th entry mij of M satisfies |mij | = |eTi Mej | ≤ ‖M‖2, where ei
and ej are unit basis vectors. Thus, (31) and (32) together show that

‖S0‖2 = Θ(1), ‖SEE‖2 = Θ(1), SCC = Θ(1).

Finally, we have

‖SEC‖2 = max
u,v 6=0

|uTSECv|
‖u‖2‖v‖2

= max
u,v 6=0

|(0, uT )S0(v
T , 0)T |

‖u‖2‖v‖2
≤ ‖S0‖2 = O(1).
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For estimates on ‖YEE‖2 and YCC , we know by [30, Lemma 4.11] that the condition number of
the Schur complement S0 is bounded by

κ2(S0) ≤
c

h
,

for some constant c which, together with the fact that ‖S0‖2 = Θ(1), gives ‖S−1
0 ‖2 = O(h−1).

To further obtain estimates for the subblocks, consider the vector u defined by

u = S−1
0 e ⇐⇒ S0u = e,

where e = (0, . . . , 0, 1)T . In addition, let U : Ωi → R be the finite element extension obtained
by harmonically extending u into Ωi with respect to η −∆. Then [30, Lemma 4.15] states that

‖U − α‖2L∞(Ωi)
≤ C(1 + log(H/h))|u|2H1(Ωi)

,

where α is any convex combination of values of U(x) on Ωi, H is the diameter of the subdomain
Ωi and C is a constant independent of H and h. Thus, by letting α → 0, we conclude that

YCC = eTu ≤ ‖U‖L∞(Ωi) ≤ C(1 + | log h|)1/2|U |H1(Ωi),

where C is a constant independent of h. On the other hand, we have

eTu = uTS0u =

∫

Ωi

|∇U |2 + η|U |2 dx ≥ |U |2H1(Ωi)
.

Thus,

|U |2H1(Ωi)
≤ C(1 + | log h|)1/2|U |H1(Ωi),

which implies

|U |H1(Ωi) ≤ C(1 + | log h|)1/2,
which in turn gives

YCC ≤ C2(1 + | log h|) = O(| log h|).
Finally, by Lemma 5, we have

max{‖YEE‖2, YCC} ≤ ‖S−1
0 ‖2 ≤ 2(‖YEE‖2 + YCC).

But since ‖S−1
0 ‖2 = O(h−1) and YCC = O(| log h|), we must have ‖YEE‖2 = O(h−1), as claimed.

�

Using the estimates in Lemma 8, we can put the different subblocks of Ĝ and Ĝ−1 in (30)

together using Lemma 5 to obtain the following estimates for λmax(Ĝ) and λmin(Ĝ):

Lemma 9. The following estimates hold for h→ 0:

λmax = ‖Ĝ‖2 = O(f) +O((1 + g)| log h|), λ−1
min = ‖Ĝ−1‖2 = O((1 + g)/fgh) +O(1/g).

4.3. Optimal choice of f(h) and g(h). Since the expressions for λmax and λmin involve terms
that scale differently in f and in g, we see that the relative sizes of f and g will lead to different
cases in the analysis. It will be convenient to distinguish the cases based on the size of f/(1+g).
We distinguish three cases:

(i) f/(1 + g) is asymptotically smaller than | log h|.
(ii) f/(1 + g) is between | log h| and 1/h.
(iii) f/(1 + g) is larger than 1/h.

In order to formalize the notion of smaller, between and larger, we will use the little-o notation:
for two positive functions f1 and f2, we write f1 = o(f2) if limh→0 f1/f2 = 0; this formalizes
the notion of f1 being “smaller” than f2. If we exclude borderline cases where f1/f2 oscillates
between two asymptotics, i.e., cases where 0 = lim inf f1/f2 6= lim sup f1/f2 = C, then the
opposite statement is “f1/f2 is bounded away from zero”, i.e., f1 ≥ Cf2 for some constant C.
Thus, the above three cases translate to
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(i) f = o((1 + g)| log h|),
(ii) f ≥ c1(1 + g)| log h|, f = o((1 + g)/h),
(iii) f ≥ c2(1 + g)/h.

Since we expect f and g to be monotonic functions of h, we will not consider the borderline
cases; the three cases above cover all the remaining possibilities.

Case (i): f = o((1 + g)| log h|). Then λmax = O((1 + g)| log h|). In addition, since

1 + g

fgh
=

(1 + g)| log h|
f

· 1

gh| logh| ≫
1

g
,

we have λ−1
min = O((1 + g)/fgh). Now, the first optimality condition says λmaxλmin = 1; thus,

we get

(1 + g)| log h| ∼= 1 + g

fgh
=⇒ f = O

( 1

gh| log h|
)

.

But by assumption, f = o((1 + g)| log h|), which implies

(1 + g)| log h|
f

≫ 1 =⇒ g(1 + g)h| log h|2 ≫ 1 =⇒ g ≫ 1

h
1

2 | log h|
.

This gives

κ =
λmax

λmin
= O((1 + g)2| log h|2) ≫ O(h−1).

Case (ii): f ≥ c1(1+g)| log h|, f = o((1+g)/h). Then λmax = O(f) and λ−1
min = O((1+g)/fgh).

The first optimality condition gives f2 = O((1 + g)/gh), which implies

(1 + g)2| log h|2 ≤ O((1 + g)/gh) =⇒ g(1 + g)h| log h|2 ≤ O(1) =⇒ g ≤ O
( 1√

h| log h|
)

.

Thus, if g = o(1), then κ = O((1+g)/gh) ≫ 1/h, whereas if g ≥ const., we would get κ = O(1/h)

provided g ≤ O(h−
1

2 /| logh|).

Case (iii): f ≥ c2(1 + g)/h. Then λmax = O(f), λ−1
min = O(1/g), so that f = O(1/g). This

implies
1

g
≥ O((1 + g)/h) =⇒ g(1 + g) = O(h) =⇒ g = O(h).

Hence κ = O(f/g) = O(h−2), which is worse than the first two cases.

Thus, to minimize ρ(C0), we must choose f = O(h−1/2) and g ≤ O(h−1/2/| log h|), which yields

ρ(C0) = 1 − O(
√
h) by Lemma 4. We now show that for this choice of f and g, we also have

ρ(Ck) = 1 −O(
√
h) for 1 ≤ k ≤ n− 1, so that the method (12) itself converges with a factor of

1−O(
√
h), just like the two-subdomain case.

Lemma 10. Let f = c1/
√
h and pC =

(n− 2)SCC

2h
(1 + g(h)) with c1 ≤ g(h) ≤ c2/h

1/2| log h|,
so that ρ(C0) ≤ 1− c3

√
h+O(h). Then for k = 1, . . . , n− 1, we have

ρ(Ck) ≤ 1− c3
2

√
h+O(h).

Proof. By Lemma 1, we have ρ(Ck) ≤ ρ(W ), whereW is defined in (15). Let µj be an eigenvalue

of W . Then we have µj =
1− λj
1 + λj

, where λj is the corresponding eigenvalue of Z defined in (16),
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or equivalently, that of its symmetrized version

Ẑ =





hD
hD

τ





1/2 

S0 +





0
0

σ









−1 



hD
hD

τ





1/2

,

where

σ =
nhpC

2(n− 1)
, τ =

(n− 2)hpC
2(n− 1)

.

A calculation similar to the one in section 4.2 shows that

Ẑ =






hf(YEE − σ

1 + σYCC
YECY

T
EC) ∗

∗ τYCC

1 + σYCC




 , Ẑ−1 =






1

hf
SEE ∗

∗ SCC + σ

τ




 .

Note that
σ

τ
=

n

n− 2
is a constant and that

τ =
(n− 2)hpC
2(n− 1)

=
(n− 2)2SCC

4(n− 1)
(1 + g) ≥ const.,

since g ≥ 0 and SCC = Θ(1). Thus, the (2,2) blocks of both Ẑ and Ẑ−1 read

Ẑ22 =
τYCC

1 + σYCC
≤ τYCC

σYCC
= O(1), [Ẑ−1]22 =

SCC + σ

τ
=
SCC

τ
+
σ

τ
= O(1).

On the other hand, the norms of the (1,1) blocks satisfy

‖Ẑ11‖2 = hf
∥
∥
∥YEE − σ

1 + σYCC
YECY

T
EC

∥
∥
∥
2
≤ hf‖YEE‖2 = ‖Ĝ11‖2,

‖[Ẑ−1]11‖2 =
∥
∥
∥
SEE

hf

∥
∥
∥
2
≤

∥
∥
∥
SEE

hf
+
SECS

T
EC

hfgSCC

∥
∥
∥
2
= ‖[Ĝ−1]11‖2.

Using Lemma 5 to combine the two blocks, we get

‖Ẑ‖2 ≤ 2(‖Ẑ11‖2 + Ẑ22) ≤ 2‖Ĝ‖2 +O(1),

‖Ẑ−1‖2 ≤ 2(‖[Ẑ−1]11‖2 + [Ẑ−1]22) ≤ 2‖Ĝ−1‖2 +O(1).

Thus,

ρ(W ) = max
{1− λmin(Ẑ)

1 + λmin(Ẑ)
,
λmax(Ẑ)− 1

λmax(Ẑ) + 1

}

= max
{‖Ẑ−1‖2 − 1

‖Ẑ−1‖2 + 1
,
‖Ẑ‖2 − 1

‖Ẑ‖2 + 1

}

.

Since the function x 7→ x− 1

x+ 1
is increasing for x > 1, we deduce that

ρ(W ) ≤ max
{2‖Ĝ−1‖2 − 1

2‖Ĝ−1‖2 + 1
+O(‖Ĝ−1‖−2

2 ),
2‖Ĝ‖2 − 1

2‖Ĝ‖2 + 1
+O(‖Ĝ‖−2

2 )
}

= 1− κ−1/2(Ĝ) +O(κ−1(Ĝ)) = 1− c3
2

√
h+O(h).

�

Combining the above lemmas, we have finally proved the second main result of this paper.

Theorem 11. Suppose the optimized Robin parameter is chosen to be constant for the edges,
i.e., we have D = f(h) · I. Then the optimal parameters f and pC satisfy

f = O(h−
1

2 ), c1h
−1 ≤ pC ≤ c2

h3/2| log h| , c1 >
(n− 2)SCC

2
,

and the method (12) converges at a rate of ρ = 1−O(
√
h).
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Figure 3. Spectrum of the iteration matrix for the four-subdomain problem
with h = 1/16, f(h) = 1.65/

√
h and (a) g(h) = f(h), (b) g(h) = 0.7/h.
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Figure 4. Contraction factor ρ(C0) for L = −∆ for four subdomains, using
different scalings for f(h) and g(h). (a) g(h) = 0.7/h fixed, varying f(h), (b)

fixed f(h) = 1.65/
√
h, varying g(h).

5. Numerical experiments

5.1. Four subdomains. For the first set of experiments, we consider the problem of solving
−∆u = f on the unit square when it is subdivided into four subdomains, as shown in Figure
1(a). When P 1 finite elements are used, the four subdomains have identical stiffness matrices,
and there is a single cross point at the center of the domain. We first verify the analysis of
section 4.3 by choosing different scalings for f(h) and g(h). In Figure 4(a), we show the spectral
radius of C0 when we fix g(h) to be equal to 0.7/h and vary the scaling of f(h) from O(1) to

O(1/h). We see that the best contraction rate is achieved when f(h) = O(1/
√
h), as predicted

by the analysis; in this case, ρ(C0) scales like 1 − O(
√
h). In the two other cases, it appears to

scale like 1−O(h). This happens when f(h) = O(1), i.e., when we are in case (i) of the analysis;
here, the condition number κ behaves as

κ = O((1 + g)2| log h|2) = O(| log h|2/h2),
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Figure 5. (a) Convergence of Dirichlet vs. Robin transmission conditions for
h = 1/128, (b) Contraction factor (1− ρ) vs. grid parameter (h).

so that ρ(C0) ≈ 1 − κ−1/2 = 1 − O(h/| log h|). This is slightly worse than 1 − O(h), but
hardly discernable from the plot. When f(h) = O(1/h), we are in case (ii), which tells us that
κ = O(f2) = O(1/h2); thus, we have ρ(C0) = 1−O(h), which is confirmed by the plot.

Next, in Figure 4(b), we fix f = 1.65/
√
h (i.e., the optimal scaling), and vary g(h) from O(h)

to O(1/h). When g = O(1/h), this puts us in case (i) of the analysis, where we have

κ = O((1 + g)2| log h|2) =⇒ ρ(C0) = 1−O(h/| log h|).
The other choices correspond to case (ii): when g = O(h) (i.e., when g is too small), we get
κ = O((1 + g)/gh) = O(1/h2), which matches the 1−O(h) behavior shown in Figure 4(b). On

the other hand, when g is between O(1) and O(h−1/2/| logh|), we get the expected 1 − O(
√
h)

scaling for ρ(C0); in fact, the curves for g = O(1) and g = O(h−1/3) have the same slope and
differ by at most a (rather small) constant. This is why we are unable to deduce the precise
optimal scaling for g(h) using asymptotic analysis alone.

To illustrate Theorem 11, we run the optimized Schwarz method with the optimized parame-
ters f(h) = 1.65/

√
h, g(h) = 0.7/h and compare its convergence rate with the classical Schwarz

method (with Dirichlet transmission conditions). Since classical Schwarz does not converge
without overlap, we have used one layer of overlap to generate the classical Schwarz curve (even
though the optimized Schwarz method still uses non-overlapping subdomains). The results in
Figure 5 clearly show that convergence is faster when optimized Robin conditions are used, and
the contraction factor behaves as expected under refinement, i.e., 1 − O(h) for Dirichlet and

1 − O(
√
h) for Robin transmission conditions. We also see from the spectral plots in Figure 3

that if we had used the same parameter for the cross point as for the regular interface, we would
get exactly one eigenvalue outside the unit circle (near -1.7 for h = 1/16), which means the
iteration diverges. This behavior will persist for more general decompositions with cross points,
see the next section.

5.2. Multiple subdomains and cross points. To show that our choice of parameters also
leads to convergent algorithms for more general decompositions, let us consider the problem
of defrosting a frozen chicken in room temperature water shown in Figure 6. The rectangular
domain is divided into 12 subdomains, with the chicken occupying four subdomains and the
water occupying the remaining eight. This leads to a total of 10 cross points of degree 3 or 4.
We then refine this grid several times by splitting each triangular element into four smaller ones.
The number of elements and degrees of freedom for each refinement level is shown in Table 1.
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Figure 6. (a) Initial grid and decomposition into subdomains for the chicken
defrosting problem. (b) Temperature for the chicken and the surrounding water
after 10 minutes. The computational grid is obtained by refining the initial grid
once.
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Figure 7. (a) Convergence of the optimized Schwarz method for different re-
finement levels for the chicken defrosting problem, (b) Contraction factor as a
function of the number of refinements.

On each of these grids, we solve the heat equation using backward Euler in time

uk+1 − uk

δt
= D ·∆uk+1,

where δt is the time step (always equal to 1 minute for any grid size) and D is the thermal
diffusivity, which is 1.2 × 10−6m2/s for the chicken and 1.4 × 10−7m2/s for the surrounding

Table 1. Number of elements and degrees of freedom for each refinement level.

Level # elements # dofs
0 252 142
1 1008 535
2 4032 2077
3 16128 8185
4 64512 32497
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Table 2. Comparison between the relative residuals of the classical and opti-
mized Schwarz methods for the chicken problem. The cross point fix is used for
optimized Schwarz to ensure convegence. “Conv.” indicates that the relative
residual is below 10−8.

Level 0 Level 1 Level 2 Level 3 Level 4
Its. Opt. Clas. Opt. Clas. Opt. Clas. Opt. Clas. Opt. Clas.

5 4.77e-2 2.75e-2 2.45e-2 1.60e-1 9.87e-2 4.48e-1 2.03e-1 6.64e-1 3.04e-1 7.65e-1
10 1.02e-3 4.15e-4 2.13e-3 1.62e-2 1.55e-2 1.57e-1 5.18e-2 4.09e-1 1.10e-1 6.04e-1
15 8.03e-5 4.62e-6 2.62e-4 1.44e-3 3.15e-3 5.44e-2 1.58e-2 2.48e-1 4.49e-2 4.71e-1
20 4.49e-6 1.04e-7 3.64e-5 1.38e-4 7.31e-4 1.93e-2 5.19e-3 1.57e-1 1.94e-2 3.73e-1
25 3.53e-7 conv. 5.01e-6 1.20e-5 1.77e-4 6.58e-3 1.82e-3 9.55e-2 8.71e-3 2.91e-1
30 2.72e-8 6.90e-7 1.13e-6 4.36e-5 2.32e-3 6.58e-4 6.12e-2 4.04e-3 2.35e-1
35 conv. 9.49e-8 9.86e-8 1.10e-5 7.82e-4 2.44e-4 3.69e-2 1.91e-3 1.84e-1
40 1.31e-8 conv. 2.80e-6 2.74e-4 9.16e-5 2.35e-2 9.23e-4 1.49e-1
45 conv. 7.15e-7 9.20e-5 3.51e-5 1.41e-2 4.52e-4 1.17e-1
50 1.82e-7 3.21e-5 1.35e-5 8.96e-3 2.23e-4 9.51e-2
55 4.64e-8 1.08e-5 5.20e-6 5.36e-3 1.11e-4 7.45e-2
60 1.18e-8 3.75e-6 2.03e-6 3.39e-3 5.57e-5 6.04e-2
65 conv. 1.25e-6 7.92e-7 2.02e-3 2.81e-5 4.72e-2
70 4.36e-7 3.09e-7 1.28e-3 1.42e-5 3.82e-2
75 1.46e-7 1.21e-7 7.59e-4 7.25e-6 2.99e-2
80 5.06e-8 4.72e-8 4.79e-4 3.70e-6 2.41e-2

water. At each time step, we need to solve a linear system of the form (η−∆h)u
k+1 = uk, where

η = 1
Dδt . We know from [12] that for the homogeneous Poisson equation, the optimal Robin

parameter for the two subdomain case is given by

(33) p∗ = ((k2min + η)(k2max + η))1/4,

where kmin and kmax are the minimum and maximum frequencies that can be resolved by the
spatial grid. For the sake of easy implementation, we have used (33) as a guideline for choosing
our parameter p∗ away from cross points, even though better choices are available for problems
with jumps in the coefficients [8]. We calculate the optimal parameter p∗ for different levels of
refinement from the coarse mesh using (33); since kmin = C and kmax = C′/h for some constants

C and C′, we have p∗ = O(1/
√
h) for η fixed and h small enough. For cross points, the remark

after Theorem 3 tells us that we need to choose p so that the implicit part dominates; furthermore,
by Theorem 11, we can choose the Robin parameter to scale like C/h, i.e., the additional weight
is h · p = C, a constant. Thus, for this experiment, we have chosen p so that the diagonal
element of Ãi corresponding to the cross point is at least 3/4 of the corresponding element in
the global stiffness matrix. The results shown in Figure 7 and Table 2 confirm that this indeed
gives a convergent method for any refinement level, and the contraction factor indeed scales like
1 − O(

√
h), as expected; thus, optimized Schwarz outperforms classical Schwarz, especially for

higher refinement levels. We conclude that even though the analysis required fairly stringent
symmetry conditions, we see that the same conclusions hold in much more general settings.

We now examine what would happen if we had used the same Robin parameter everywhere
(including cross points). Figure 8(a) and Table 3 show that the method indeed diverges; more-
over, the method diverges at the same rate for all refinement levels. In Figure 8(b), we plot
the solution after 10 iterations. We see that the solution diverges most quickly at cross points,
and that cross points of degree 4 cause faster divergence than cross points of lower degree. All
this indicates that the culprit for divergence is indeed the presence of large eigenvalues in the
iteration matrix N associated with cross points.

We finally consider what happens when optimized Schwarz is used as a preconditioner within
a Krylov subspace method. Figure 9 and Table 4 show the convergence of GMRES both with
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Table 3. Relative error of optimized Schwarz without the cross point fix.

Its. Level 0 Level 1 Level 2

5 7.14e+01 5.46e+01 6.82e+01
10 1.73e+04 1.33e+04 1.66e+04
15 4.21e+06 3.22e+06 4.03e+06
20 1.02e+09 7.83e+08 9.78e+08
25 2.49e+11 1.90e+11 2.38e+11
30 6.04e+13 4.62e+13 5.78e+13
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Figure 8. Divergence of the optimized Schwarz method without the cross point
fix. The map shows the solution after 10 iterations. The colors are shown in
logarithmic scale; darker colors indicate larger values.

Table 4. Comparison between optimized Schwarz preconditioned GMRES for
the chicken problem, with and without the cross point fix.

Level 0 Level 1 Level 2 Level 3 Level 4
Its. with fix no fix with fix no fix with fix no fix with fix no fix with fix no fix

5 6.05e-3 9.32e-3 3.96e-3 7.51e-3 1.01e-2 9.60e-3 1.59e-2 1.45e-2 1.94e-2 1.91e-2
10 3.28e-5 7.07e-5 5.04e-5 6.62e-5 1.63e-4 1.72e-4 3.18e-4 3.14e-4 6.17e-4 6.80e-4
15 1.22e-7 6.09e-7 7.49e-7 8.96e-7 5.96e-6 6.50e-6 2.18e-5 1.91e-5 6.39e-5 7.05e-5
20 conv. conv. 6.00e-9 9.95e-9 1.15e-7 1.44e-7 1.67e-6 1.34e-6 6.87e-6 7.31e-6
25 conv. 6.83e-9 6.83e-9 7.71e-9 7.97e-8 6.40e-8 7.21e-7 7.03e-7
30 conv. conv. conv. conv. conv. 7.93e-8 6.26e-8

and without the cross point fix. Both versions benefit from Krylov acceleration to the same
degree, and the similarity of the two plots shows that the cross point fix simply moves the large
eigenvalues back into the unit circle, without adversely affecting the rest of the spectrum. One
also sees that for 2D problems, the cross point fix is only important for the stationary case; it
is not necessary when GMRES is used, since the Krylov method takes care of these outlying
eigenvalues automatically. As we will see in the next section, this is not the case for 3D problems,
where there will be cross points corresponding to edges, and their corresponding eigenvalues will
form non-trivial clusters in the spectrum.

5.3. 3D Example. We now consider a three-dimensional example in which the cube [−1, 1]3 ⊂
R

3 is decomposed into 8 smaller cubes meeting at a single cross point at the origin. As mentioned
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Figure 9. (a) Convergence of GMRES with the optimized Schwarz precondi-
tioner for the chicken problem: (a) with the cross point fix, (b) without the
cross point fix.

Figure 10. A decomposition of a cube into 8 equal subdomains.

in the remark at the end of section 3, we expect to choose different Robin parameters for the
faces, edges and corners. For faces, we choose the usual scaling p = 1/

√
h, whereas for edges

and faces, we use the same heuristic as the chicken problem, meaning we will choose p = O(1/h)

in such a way that the diagonal element of Ãi corresponding to the cross point is at least 3/4
of the corresponding element in the global stiffness matrix. Since the diagonal element in the
standard 7-point discretization is 6 for the interior, 3 for the faces, 3/2 for the edges and 3/4
for the corner, it suffices to choose p = 3/h for edges and p = 4/h for the corner. We plot the
spectrum of the iteration matrix for h = 1/6 in Figure 11(b). As a comparison, we also plot

the spectrum we would have obtained if we had used p = 1/
√
h for the edges and the corner.

We see that if we had used p = 1/
√
h everywhere, we would obtain three clusters of eigenvalues

corresponding to the faces (inside the unit circle), the edges (the cluster around −2) and the
single corner at -4. The presence of the cluster around -2 is especially problematic for GMRES,
since it must now spend several iterations removing these components. As we see in Figure 12
and Table 5, GMRES is indeed slowed down by this cluster; it takes about 10 more iterations
than the version with the cross point fix to achieve the same relative residual, especially for finer
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Figure 11. Spectrum of the Optimized Schwarz iteration matrix for a 2×2×2
decomposition of the cube. Top: p =

√
h for all interface points, including cross

points. Bottom: p =
√
h for the regular interface and p = O(1/h) for cross

points.

Table 5. Comparison between GMRES with the optimized Schwarz precondi-
tioner for the 3D problem: (a) with the cross point fix, (b) without the cross
point fix.

h = 1/8 h = 1/16 h = 1/32
Its. with fix no fix with fix no fix with fix no fix
5 3.96e-002 3.71e-002 3.46e-002 6.14e-002 2.62e-002 3.35e-002
10 4.63e-005 2.44e-004 4.84e-005 1.21e-004 1.70e-004 1.82e-004
15 2.92e-006 2.98e-005 2.30e-006 1.69e-005 1.06e-006 5.80e-006
20 1.98e-007 4.43e-006 2.36e-007 2.84e-006 1.69e-007 1.18e-006
25 1.32e-008 5.39e-007 2.19e-008 5.44e-007 2.45e-008 3.02e-007
30 conv. 5.48e-008 conv. 9.17e-008 conv. 8.68e-008
35 conv. 1.75e-008 2.13e-008

grids. This example shows the cross point fix is not only of theoretical interest, but can really
accelerate convergence of Krylov methods at no extra cost, especially for 3D problem.
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