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1 Introduction

Solving an evolution problem in parallel is naturally undertaken by trying
to parallelize the algorithm in space, and then still follow a time stepping
method from the initial time t = 0 to the final time t = T . This is especially
easy to do when an explicit time stepping method is used, because in that
case the time step for each component is only based on past, known data, and
the time stepping can be performed in an embarrassingly parallel way. If one
uses implicit time stepping however, one obtains a large system of coupled
equations, and thus the linear or non-linear solver needs to be parallelized,
e.g. using a domain decomposition method.

Over the last decades, people have however also tried to parallelize algo-
rithms in the time direction. One example is Womble’s algorithm [22], where
the systems arising from an implicit time discretization are solved using an
iterative method, and the iteration of the next time level is started, before
the iteration on the current time level has converged. It is then possible to it-
erate several time levels simultaneously, but the possible gain using a parallel
computer is only small, see for example [3].

A different approach to obtain small scale parallelism in time is to use
predictor-corrector methods, where the prediction step and the correction
step can be performed by two (or several) processors in parallel, if organized
properly. An entire class of such methods has been proposed in [19], and good
small scale parallelism can be achieved.
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A third, very different approach are the waveform relaxation algorithms,
invented in [15], which are based on a decomposition of the system to be
solved into subsystems. An iteration is then used, which solves time depen-
dent problems in each subsystem and communicates information at interfaces
to neighboring subsystems to converge to the overall solution in space-time
[13, 12]. Substantial progress has been made on such methods for evolution
PDEs, see for example [6, 5, 14], and references therein. If a multi-grid decom-
position is used, instead of a domain decomposition, one obtains the so called
parabolic multi-grid methods [11], which are also called multi-grid waveform
relaxation methods. For further results, see [17, 21].

Finally, the last class of methods, which focuses entirely on the paral-
lelization in the time direction, are based on shooting methods in time. A
first historical step in this direction is [20], and for an early analysis see [2].
The newest algorithm in this class is the parareal algorithm, invented in [16].
For a complete historical overview of such methods, further references, and
a precise convergence estimate of the parareal algorithm see [9, 4].

We propose here a space time parallel algorithm for solving evolution par-
tial differential equations, and use as a model problem

∂tu = ∂xxu in Ω = (0, 1)× (0, T ),
B−u(0, t) = g0(t) t ∈ (0, T ),
B+u(1, t) = g1(t) t ∈ (0, T ),

u(x, 0) = u0(x) x ∈ Ω.

(1)

Here B± represent some boundary operators, like the identity for a Dirichlet
condition, or a normal derivative for a Neumann condition. The algorithm
is based on a decomposition of the space-time domain into space-time sub-
domains, as indicated in Figure 1. In order to solve an evolution problem
by only solving problems in small space-time domains, one has to iteratively
calculate more and more accurate initial and boundary conditions for each
space-time subdomain. The parareal Schwarz waveform relaxation algorithm
does this by using a parareal approximation for the initial condition, and a
Schwarz waveform relaxation algorithm for the boundary conditions. For a
different variant of combining a spatial and a time decomposition, see [18].
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Fig. 1 Space time decomposition for the parareal Schwarz waveform relaxation algorithm
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2 Parareal Schwarz Waveform Relaxation Algorithms

The parareal algorithm for the model problem (1) is based on a decomposition
of the time interval (0, T ) into subintervals, given by 0 = T0 < T1 < T2 <

. . . < TN = T , and the algorithm is defined using two propagation operators:
a coarse operator G(t2, t1, u1, g0, g1) which provides a rough approximation
of the solution u(x, t2) of (1) with a given initial condition u(x, t1) = u1(x)
and boundary conditions g0 and g1, and a fine operator F (t2, t1, u1, g0, g1),
which gives a more accurate approximation of the same solution with initial
condition u(x, t1) = u1(x) and boundary conditions g0 and g1. Starting with
a first approximation U0

n at the time points T0, T1, T2, . . . , TN−1, the parareal
algorithm performs for k = 0, 1, 2, . . . the correction iteration

Uk+1

n+1 = F (tn+1, tn, U
k
n , g0, g1)+G(tn+1, tn, U

k+1
n , g0, g1)−G(tn+1, tn, U

k
n , g0, g1),

(2)
which is nothing else than a multiple shooting method with an approximate
Jacobian in the Newton step, see for example [9], which also contains a precise
convergence estimate for the case of the heat equation, or [4] for a similar
precise convergence estimate for the case of nonlinear problems.

In contrast to the parareal algorithm, a Schwarz waveform relaxation
method for the model problem (1) is based on a spatial decomposition only,
in the most general case into overlapping subdomains Ω = ∪I

i=1(x
−

i , x
+

i ), as
shown in Figure 1. Here the boundaries x±

i of the overlapping subdomains
are constructed from a non-overlapping decomposition given by the decom-
position 0 =: x0 < x1 < . . . < xI := 1, by adding and subtracting half the
overlap, x−

i := xi−1 −
L
2
, x+

i := xi +
L
2
, except for the first and last point,

x−

1 = x0 and x+

N = xN . Given an initial guess at the interfaces, say B±

i u
0
i ,

the Schwarz waveform relaxation algorithm solves iteratively for k = 1, 2, . . .
the subdomain problems

∂tu
k
i = ∂xxu

k
i in Ωi × (0, T ),

uk
i (x, 0) = u0 in Ωi,

B−

i u
k
i (x

−

i , t) = B−

i u
k−1

i−1
(x−

i , t) t ∈ (0, T ),

B+

i u
k
i (x

+

i , t) = B+

i u
k−1

i+1
(x+

i , t) t ∈ (0, T ).

(3)

Here again, the operators B±

i are transmission operators: in the case of the
identity, we have the classical Schwarz waveform relaxation algorithm; for
Robin or higher order transmission conditions, one would obtain an optimized
Schwarz waveform relaxation algorithm, if the parameters in the transmission
conditions are chosen to optimize the convergence of the algorithm, see [5, 1].

Parareal Schwarz waveform relaxation algorithms combine the two tech-
niques for a general space-time decomposition given in Figure 1. We pro-
pose among the many possibilities the following one: given initial condi-
tions uk

0,i,n(x) and boundary conditions B−

i u
k
i−1,n(t) and B+

i u
k
i+1,n(t) for

i = 1, 2, . . . , I and n = 1, 2, . . . , N we compute
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Fig. 2 Illustration how the parareal Schwarz waveform relaxation algorithm removes the
error over several iterations: each plot pair shows on the left the approximation and on
the right the error (i.e. the difference between the monodomain solution and the current
iterate) for k = 1, 5, 10, 20

1. all accurate approximations uk+1

i,n (x, t) := Fi,n(u
k
0,i,n,B

−

i u
k
i−1,n,B

+

i u
k
i+1,n)

in parallel using the more accurate evolution operator.
2. for n = 0, 1, . . ., new initial conditions using a parareal integration step

both in space and time,

uk+1

0,i,n+1
= uk+1

i,n (·, Tn+1) +Gi,n(u
k+1

0,i,n,B
−

i u
k+1

i−1,n,B
+

i u
k+1

i+1,n)

−Gi,n(u
k
0,i,n,B

−

i u
k
i−1,n,B

+

i u
k
i+1,n).

An example on how this algorithm converges is given in Figure 2.
We present now a first convergence result for the parareal Schwarz wave-

form relaxation algorithm:

Theorem 1 (Superlinear Convergence). Let Fi,n be the exact solution,

Gi,n be a backward Euler approximation in time, and the exact solution in

space, and assume a decomposition of the spatial domain into two overlap-

ping subdomains. If the algorithms uses Dirichlet transmission conditions,
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i.e. B±

i = I, the identity, then it converges superlinearly to the solution of

the underlying problem.

The proof of this theorem is too long and technical for this short paper, and
will appear in [7]. We present however a detailed numerical study of how the
algorithm depends on the various parameters in the following section.

3 Numerical Results

In all our experiments, except otherwise mentioned, we use the domain
Ω = (0, 6) and the time interval (0, T ) with T = 3, and discretize the
heat equation with a centered finite difference discretization in space with
∆x = 1

10
, and a backward Euler discretization in time, with ∆t = 3

100
, and

we use a decomposition into 6 equal spatial subdomains with overlap 2∆x.
We start with the dependence on the number of time subintervals. In Fig-

ure 3 on the left, we show the convergence of the algorithm when 1 (classical
Schwarz waveform relaxation), 2, 4 and 10 time subintervals are used. This
shows that the algorithm is quite insensitive to the number of time subinter-
vals used. We also observe the typical superlinear convergence behavior of all
waveform relaxation algorithms, see for example [8].

We next investigate how the convergence depends on the total time in-
terval length T . For this, leaving all other parameters the same, we choose
T ∈ {0.1, 0.2, 0.4, 0.8, 1.6, 3.2}, ∆t = T

100
, and 10 time subintervals for each

simulation. The results are shown in Figure 3 on the right. We clearly see
that convergence is much faster on short time intervals, compared to long
time intervals.

In order to test the dependence on the number of spatial subdomains, we
use again all parameters as before, but now decompose the domain into 2,
3, 6 and 12 spatial subdomains, and again 10 time subintervals. We see in
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Fig. 3 Dependence of the parareal Schwarz waveform relaxation algorithm on the number
of time subintervals on the left, and the total time window length on the right



6 Martin J. Gander, Yao-Lin Jiang, Rong-Jian Li

0 10 20 30 40 50 60 70 80 90
10

−4

10
−3

10
−2

10
−1

10
0

 

 
2 spatial subdomains
3 spatial subdomains
6 spatial subdomains
12 spatial subdomains

er
ro
r

iteration k
0 10 20 30 40 50 60

10
−4

10
−3

10
−2

10
−1

10
0

 

 
Overlap 2h
Overlap 4h
Overlap 8h
Overlap 16h

er
ro
r

iteration k

Fig. 4 Dependence of the parareal Schwarz waveform relaxation algorithm on the number
of spatial subdomains on the left, and the overlap on the right

Figure 4 on the left that using more spatial subdomains makes the algorithm
converge more slowly. This can however be remedied by using smaller global
time intervals, for the Schwarz waveform relaxation algorithm, see [10].

We finally test the dependence on the overlap, using 2∆x, 4∆x, 8∆x and
16∆x for the overlap. We see on the right in Figure 4 that increasing the
overlap substantially improves the convergence speed of the algorithm. This
increases however also the cost of the method, since bigger subdomain prob-
lems need to be solved.

A better approach is to use optimized transmission conditions, see for
example [5, 1]. Using the same configuration as in the previous experiment,
and 2∆x overlap, we obtain with first order transmission conditions and
choosing the parameters p = 1, q = 1.75 (for terminology, see [1]) the result
shown in Figure 5. This illustrates well that using optimized transmission
conditions can lead to even better performance of the algorithm than very
generous overlap, at no additional cost, since the subdomain size and matrix
sparsity is the same as for the case of Dirichlet transmission conditions. In
addition we observe that now the convergence has become more linear, and
the algorithm does not depend significantly any more on the superlinear
convergence mechanism essential with Dirichlet transmission conditions.

4 Conclusion

We presented a general parareal Schwarz waveform relaxation algorithm,
which is based on a decomposition in space and time of a given evolution
problem, in order to increase parallelism. We stated a theoretical convergence
result, whose proof will appear elsewhere, and then illustrated the depen-
dence of the algorithm on the space-time decomposition configuration, which
revealed that for fast convergence, either short time intervals, large overlap,
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Fig. 5 Comparison of the parareal Schwarz waveform relaxation algorithm with Dirichlet
and optimized transmission conditions

or optimized transmission conditions need to be used. We are currently work-
ing on precise convergence factor estimates, a variant of the algorithm which
also uses a coarse spatial mesh, and the addition of a coarse propagation
mechanism over many spatial subdomains.
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