On algebraic bounds for POSM and MRAS

Martin J. Gander and Michal Outrata

1 Introduction and preliminaries

We consider the Poisson equation as our model problem, i.e.,
Au=f inQ:=(-a,a)x(0,b) and u=g ondQ, (D

where f and g are given. We decompose € into two subdomains Q; := (—a, L/2) X
(0,b) and €, := (-L/2,a) x (0,b) with interfaces I'; and I';, overlap O :=
(=L/2,L/2) x (0,b) (if L > 0) and complements @, := Q\Q; and O := Q\Q,.
Creating an equidistant mesh on & with mesh size &, we denote by N, + 1 the
number of grid rows and N, + 1 the number of grid columns, see Figure 1. We also
define the one-grid-column-prolonged subdomains Qﬁ’ :=(—a,L/2+h)x(0,b) and
Q) = (-=L/2 = h,a) X (0,b) and also their interfaces I'" := (L/2 + h) x (0,b)
and I’ 2’ := (=L/2 = h) x (0, D). We discretize (1) with a finite difference scheme,
obtaining the block tridiagonal system matrix

A®1 A@l,rz
Ar,e, Ar, Ano
Aor, Ao Ao . (2
Ar,.o Ar, Are,
AG)Z»FI A@z

We follow the notation of [3, Section 6.1] and introduce the parallel optimized
Schwarz method (POSM) with the transmission operators Pr, = Pr, = pZ and
Qr, = Qr, = I acting on the Dirichlet and Neumann data along the interfaces.
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Fig. 1 The physical domain (left), and the discrete mesh (right).

Hence POSM is given by the iteration operator 7~ : (ui"_l), uén—l)) — (ui"), ué")),

(n) ()
1 2

where 1., u, ’ are given as the solutions of the subdomain problems

AW =f inQ, u” =g ondQ\Iy,

i
E") =n; - Vu;."_l) +pu§n_1)

fori,j=1,2, li—j|=1.

n; - Vul(") + pu onT3,

The convergence factor of POSM (see [1, Proposition 2]) as a function of a, b, L/2
and the Fourier mode k € N is given by

%”coth (kT”(a - L/Z)) —p sinh (kTﬂ(a - L/Z))
’jT”coth(%”(a+L/2)) +p | Sinh(%’r(“*”z)).

3)

Writing (2) in its augmented form and modifying the interface block rows we get

Ag, Ae,.r;
Ar, e, Ar, Arn.o
Aor, Ao Aor 5
~ Aro Ar, Ar,r, Ar,e, (4)
Ar,0, A, Ar, Ar, 0
Aor, Ao Ao
Ar,.o Ar, Ar,e,
Ae,r, Ae, |

~AQ| A%l Q0
A0 Ag,

Agyg =

where we introduced the discrete transmission conditions in the last block row of
[Aq, Ag, q,] and the first block row of [Ag, o, Aq,], Which are now given by

A~r1 = Arl +D, A]‘l’rl :=—-D and Arz = Ar2 +D, Arz,rz =-D.

We are interested in the subdomain version of the modified restricted additive
Schwarz (MRAS!, see [2]), defined by its iteration matrix 7,

I MRAS was introduced in the so-called globally deferred correction form, where we iterate on the
global solution unknowns, in contrast to iterating on the subdomain solution unknowns here. This
is but a technicality and hence we keep the name; the equivalence is shown in [3, Section 6.1, 6.2].
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2
T=1- RE AgRo,Awg with Ro, = [lo, 0o,], R, = [0q, Io,].  (5)
i=1

1

Notice that the interface block structure of MRAS does not match the one in [3,
Algorithm 2] but the transmission matrix D is chosen to get fast convergence,
analogously to the parameter p in POSM. Setting

EP' = [06,Ir,000r,|" . Ef = [06,0r,001r,]" . Eg' 1= [Ar,.0,0r,000r,]" .
EIS}; = [Ir2000r10@2]T s EIEZIZ = [0r2001r10®2]T s Egzz = [OFZOOOFIA@L]‘I]T s

we can write
x Q o\l .
Ao, = Mg+ ER'D(ER) . i=12,

and formulate a convergence result for MRAS, analogue to [2, Theorem 3.2].

Theorem 1 ([2, Section 3])
The MRAS iteration matrix T in (5) has the structure

-1
. [0 K] K = A'E® [1+D(Aa)rl,rl] (—D(E?f)T + (Egj)T), ©

L0 - - -
L= AGER |14 DA | (-DER)T + (ES)T).

Moreover, the asymptotic convergence factor of MRAS is bounded by

\/!|M131||2 “|IM2B3 |2,
M = [1+D(Ag_gll)r1,rl] (—D - AF],@zAéiAG)z,Fl)v B = (Ag_zlz)rl,rz, (7)

-1
M, = [1+ D(Ag}l)rz,rz] (—D - Arz,@|Aé}A®|,r2)’ By = (Ag)rr-

Due to the symmetry of the model problem and the method we have B .= B} = B,
and M := M| = My, which in turn simplifies the bound in (7) to ||M B||,.

2 Analysis of the MRAS bound and its reformulation

First, we recall the sine series expansion in the y direction ¥, so that we have

() = 3 Tk sin (%ﬂy) = 3 e, Ry sin ("_”y) ,
k=1

k=1 b
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with? Fyu o= fob u(x,y) sin(kmy/b)dy. Next, we factor out (Agzl] )r,.r, and (Ale)l"z,l“z
on the left from M| 5, so that instead of (7) we focus on the asymptotically equivalent

-1

8= |((Aahrn)” +D| (-0 An o5 e ) (Abrr ((ARDer) - (®)

Numer Over
(TDenom)’l T T

The key question is whether the bound (7), which now becomes || M B||, is the discrete
analogue of (3) — piece by piece. Linking each of the blocks in (8) to a discrete
linear operator with a continuous counterpart, we analyze it using the Fourier series
expansion. Taking b € RM~! and interpolating it to a function y : Fﬁ’ — R, the
following problems are equivalent up to the FD discretization:

U I Au=0 inQp,

Ao
1 h2 T u=0 ondQNI", and u=y onIW

®)

Defining the solution operator by S; (y) = u|r1 where u is the solution of (9), we have

(up to the FD discretization) the equivalence of the linear operators —1/A> (AEZ'l )r,.r,
and S;. To calculate S; we expand in the y variable using ¥y, simplifying the
continuous problem in (9) to the semi-discrete problem

2
(axx - (%ﬂ) )ﬁ(x,k) =0 forxe(-a.l/2+m and kel o

i(—a,k)=0 and 4a(L/2+h,k)=79(k) for k eN,
and denote by S = FyS1 the Fourier symbol of Sj. A direct calculation yields

sinh(%”(a+x)))7(k) A sinh(kT”(a+L/2))

i(x, k) = S17(k) =

, y(k).
sinh(';,—”(a+L/2+h))) sinh(%’r(a+L/2+h)))y

Therefore, the eigenvalues of the linear operator —1/ hz(Aa)rl,rl approximate the

modes k =1,...,N,, — 1 of S'l given above, as we see in Figure 2. The rest of the
blocks in (8) are summarized in Table 1 and illustrated in Figure 2, see [4] for detailed
calculations. We see that the approximation is very accurate for the low-frequency
modes but not quite accurate for the high-frequency ones. If D diagonalizes in the
same basis as the rest of the blocks and we denote its eigenvalues by 01, ...,0n,-1,
then the eigenvalues of 7P¢nom, TNumer TOver approximate certain discrete (trun-
cated) Fourier symbols we present in Table 2 and illustrate in Figure 3. We see that
the inaccuracy on the high frequencies is still present. More importantly, comparing
Table 2 with (3) shows that the contraction factor due to the domain overlap in (3)

2 Using the sine series relies on the Dirichlet boundary conditions (BCs) along {y = 0} and
{y = b} in (1); for different BCs see [4].
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block | discrete LO |c0ntinuous LO| Fourier symbol
(Ag)rr (A, Sty el |Si= M—fljﬁ;’%
AF],@zAéIZAG)z,Fl —thrl,@)zAéle@z,rl Sty “|r1 S = %
(Alez)rl,r2 —#(Ag}]z)rl,rz S iy u|1-1 S = %
(Ag)r,.r, - (A, [|Siiy e M|r2 Sy = m—fgg%

Table 1 The blocks and corresponding linear operators (LO) from (8).

® eigs( —h—lz(Aall)r),r))

eigs( —h?Ar, 6,A5Ae,.r, )

(®e. S ®a . S
“‘ @ S “. ® %
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Fig. 2 Results obtained for the parameters a = b = 1, L = 2h, N, = 22.
Denom\~! Numer Qver
(T ) T T
_ 1 silh(BE (a+L/2+h)) o | sinh(EZ (a-L/2-h)) _ sinh(EE(a-L/2))
Mk = Ok th(b%"(T/z)) Gki==0k+ gz sinh(l"’T"(a—L/Z))) k= sinh(é(tﬁL/Z)))
(TDenom -1 TNumer TOver
— _ _lkn kx - _ _lkx kx — _ sinh(EE(a-L/2))
M =—7% b”coth( o (a+ L/Z)) = A |Ly =y b”coth( 7 (a— L/Z)) + A | O = 75“111(%(””4/2)))

Table 2 The matrices and their corresponding (truncated) Fourier symbols.

matches exactly 6; for each k, i.e., the one due to the continuous representation
of TO%¢" . However, this is clearly not the case for the contraction factor due to the
transmission condition induced by D. The ratio ny /{x shows that choosing 6, = p
(the naive choice) is not the correct one (see [4] for more details) and we continue
by reformulating Theorem 1 to reflect also the transmission part of (3).

The main tool used to obtain Theorem 1 is the Sherman-Morrison-Woodbury
formula for the inverse of a low-rank updated matrix, here the update was the corner
block D. We now show that using the same formula for a slightly different block
gives the “correct” result. We split the interface blocks as in [3, Section 5.2] and
write Ar, = A%l + Affl and Ar, = AII:2 + Allfz so that we have
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Fig. 3 Results obtained witha =b =1, L =2h, N, =21 and D = diag (7r2/h),

L R
_h(AFI,OUO + Arl“F]) ~ ux|l"19 _h(AF1,®2u®2 + Arl“Fl) ~ _ux|rla

an

R L
—h(Arz’ollo + Al—zllrz) ~ —I/tx|F2, —h(Arz,@lll@] + Arzqu) X th|r2.

This is natural for FD and FEM discretizations. Using the so-called ghost point trick
we get AL AR = ]Arl, AL AR = lAr2 Adopting this we rewrite Aaug as

[ Ao, Ae,.r,
Ar,e, Ar, An.o
Aor, Ao Aor 3
_ Ar0 AII:I+AF| Ar,r Are,
Ar,0, A, AR +Ar, A0 ’
Aor, Ao Aor,
Ar,o Ar, Are,
Ag,r, Ae,

Aé‘ + XQI A‘QI’QZ

Apug = pl
g "
AQz,Ql Agl +AQ2

with the transmission conditions kept the same as in (4) but reorganized with
Ar,:=Af +D, and Ar, :=A[ +D.
_ -l
As aresult, the Sherman-Morrison-Woodbury formula is now used for (A{‘21 + Ag, )
.|
and (AS] + AQZ) and analogously to [2, Lemma 3.1, Theorem 3.2] we obtain The-

orem 2 (we take advantage of the symmetry, for the general case see [4]).

Theorem 2 The MRAS iteration matrix T in (5) can also be written as

T= 0K ,  with
L0
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_ _ -1

K:= (Agl)_]Eﬁl (((Agl)_l)r,,rl) | (((A!’i])_l)rhr]) ]+ZF1 (~D(ELY + (B2,
- _ -1

L= (Agz)_] Egz (((ASZ)_I)Fz,Fz) ] (((ASZ)_I)Fz.Fz) ] +Ar, (—D(E?ZI)T + <E8;>T)-

Moreover, the asymptotic convergence factor of POSM is bounded by

|MB|,, where (12)

M= (T T

(7 Denom) 1 — Numer

-1
-1 - _
= (((Aél) )1"1,1"1) +An ((AISI _Aru@zA(:)iA@z,rl)_Arl)’

13)

B=T = (45) Hror (((Asz)fl)rz,rz)_1 :

Focusing on the first block in (13), we take b € RV~ ~! and interpolating it to a function
vy : T'1 — R, the following problems are equivalent up to the FD discretization:

L | -0 Au=0 1inQq,
Agu=-3E'b and (14)
1 ! u=0 ondQ\I';, and n;-Vu=vy onl].

Setting 32(7) = u\rl, where u is the solution of (14) we have the equivalence (up to
the FD discretization) of —1/ h(Aa)r1 o, and So. Considering

2
(6” - (an) ),;(x,k) =0 for x € (-a,L/2+h) and k €N, )
i(-a

,k)=0 and #4,(L/2+h,k)=7(k) for k e N,
we set 31 = ?'ygl and a direct calculation yields the solution of (15) and 31 as

sinh(%’r(a+x)) sinh(kT”(a+L/2))

. Sipk) =

i(x, k) =
™ EZ cosh (kT"(ll+L/2))) kTﬂCOSh(kTﬂ(a+L/2)))

y(k).

Therefore, the eigenvalues of —1/ h((Aé, )"Dr,.r, approximate the first N, — I modes
of 7—;31 with better accuracy in high-frequencies than we observed with Sy, see Fig-

ure 2 and Figure 4. For the other blocks see Table 3 and Figure 4. If —ZIIS , diagonalizes

in the Fourier discrete basis with eigenvalues A1, ..., AN, -1, then the eigenvalues

—Denom —Numer —QOver . . . .
of T ,T ,T approximate certain discrete (truncated) Fourier sym-

bols, presented in Table 2 and Figure 3. Notice that at the discrete level we have
MB = MB, i.c., the difference is in the representation of the bound (blue markers
in Figure 3) as we changed only the block organization in the Sherman-Morrison-
Woodbury formula. Comparing Table 2 with (3), we get the link between A, (and
hence also dx) and the Robin parameter p in (3). Calculating the optimal p now
directly translates to the optimal choice of D by
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block | discrete LO | continuous LO | Fourier symbol
= =1 — =~
L L[ AL . _ 1
((Asz,) Jrir % (Agl) Irery Sty o ul S = T (G /D))

—R
-1
AI‘. - AFI .0y A@z A®2,T1

—R
—h (Ar. - Arl.ezAéleez,r,)

32:’y»—>n1 ~Vu|rl

32 = %’colh (%‘(a

-1/2)

(

=T =T
Agz) )ry.r; —%((Aﬁz) )ri.r,

b
I

§3:y»—>u|rl

sinh (4% (a-L/2))
L2 cosh (K2 (a+L/2)))

q

=T =T
Agz) ). —%((Asz) ).

3
I

§4zyv—>u|rz

sinh (4% (a+L/2))
L2 cosh (K2 (a+L/2)))

Table 3 The blocks and corresponding linear operators (LO) from (8).
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Fig. 4 Results obtained for the parameters a = b = 1, L = 2h, N, = 21.

pl=-mW" (AR +D)W e, D
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