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1 Introduction and preliminaries

We consider the Poisson equation as our model problem, i.e.,

Δ𝑢 = 𝑓 in Ω := (−𝑎, 𝑎) × (0, 𝑏) and 𝑢 = 𝑔 on 𝜕Ω, (1)

where 𝑓 and 𝑔 are given. We decompose Ω into two subdomains Ω1 := (−𝑎, 𝐿/2) ×
(0, 𝑏) and Ω2 := (−𝐿/2, 𝑎) × (0, 𝑏) with interfaces Γ1 and Γ2, overlap 𝑂 :=
(−𝐿/2, 𝐿/2) × (0, 𝑏) (if 𝐿 > 0) and complements Θ2 := Ω\Ω1 and Θ1 := Ω\Ω2.
Creating an equidistant mesh on Ω with mesh size ℎ, we denote by 𝑁𝑟 + 1 the
number of grid rows and 𝑁𝑐 + 1 the number of grid columns, see Figure 1. We also
define the one-grid-column-prolonged subdomainsΩℎ

1 := (−𝑎, 𝐿/2+ ℎ) × (0, 𝑏) and
Ωℎ
2 := (−𝐿/2 − ℎ, 𝑎) × (0, 𝑏) and also their interfaces Γℎ

1 := (𝐿/2 + ℎ) × (0, 𝑏)
and Γℎ

2 := (−𝐿/2 − ℎ) × (0, 𝑏). We discretize (1) with a finite difference scheme,
obtaining the block tridiagonal system matrix

𝐴Θ1 𝐴Θ1 ,Γ2
𝐴Γ2 ,Θ1 𝐴Γ2 𝐴Γ2 ,𝑂

𝐴𝑂,Γ1 𝐴𝑂 𝐴𝑂,Γ1

𝐴Γ1 ,𝑂 𝐴Γ1 𝐴Γ1 ,Θ2
𝐴Θ2 ,Γ1 𝐴Θ2


. (2)

We follow the notation of [3, Section 6.1] and introduce the parallel optimized
Schwarz method (POSM) with the transmission operators PΓ1 = PΓ2 = 𝑝I and
QΓ1 = QΓ2 = I acting on the Dirichlet and Neumann data along the interfaces.
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Fig. 1 The physical domain (left), and the discrete mesh (right).

Hence POSM is given by the iteration operator T : (𝑢 (𝑛−1)1 , 𝑢
(𝑛−1)
2 ) ↦→ (𝑢 (𝑛)1 , 𝑢

(𝑛)
2 ),

where 𝑢 (𝑛)1 , 𝑢
(𝑛)
2 are given as the solutions of the subdomain problems

Δ𝑢
(𝑛)
𝑖

= 𝑓 in Ω𝑖 , 𝑢
(𝑛)
𝑖

= 𝑔 on 𝜕Ω𝑖\Γ𝑖 ,

n𝑖 · ∇𝑢 (𝑛)𝑖
+ 𝑝𝑢 (𝑛)

𝑖
= n𝑖 · ∇𝑢 (𝑛−1)𝑗

+ 𝑝𝑢 (𝑛−1)
𝑗

on Γ𝑖 ,
for 𝑖, 𝑗 = 1, 2, |𝑖 − 𝑗 | = 1.

The convergence factor of POSM (see [1, Proposition 2]) as a function of 𝑎, 𝑏, 𝐿/2
and the Fourier mode 𝑘 ∈ N is given by

𝑘 𝜋
𝑏
coth

(
𝑘 𝜋
𝑏
(𝑎 − 𝐿/2)

)
− 𝑝

𝑘 𝜋
𝑏
coth

(
𝑘 𝜋
𝑏
(𝑎 + 𝐿/2)

)
+ 𝑝

·
sinh

(
𝑘 𝜋
𝑏
(𝑎 − 𝐿/2)

)
sinh

(
𝑘 𝜋
𝑏
(𝑎 + 𝐿/2)

) . (3)

Writing (2) in its augmented form and modifying the interface block rows we get

𝐴aug :=
[
�̃�Ω1 �̃�Ω1 ,Ω2
�̃�Ω2 ,Ω1 �̃�Ω2

]
:=



𝐴Θ1 𝐴Θ1 ,Γ2
𝐴Γ2 ,Θ1 𝐴Γ2 𝐴Γ2 ,𝑂

𝐴𝑂,Γ2 𝐴𝑂 𝐴𝑂,Γ1

𝐴Γ1 ,𝑂 �̃�Γ1 �̃�Γ1 ,Γ1 𝐴Γ1 ,Θ2
𝐴Γ2 ,Θ1 �̃�Γ2 ,Γ2 �̃�Γ2 𝐴Γ2 ,𝑂

𝐴𝑂,Γ2 𝐴𝑂 𝐴𝑂,Γ1

𝐴Γ1 ,𝑂 𝐴Γ1 𝐴Γ1 ,Θ2
𝐴Θ2 ,Γ1 𝐴Θ2


, (4)

where we introduced the discrete transmission conditions in the last block row of
[𝐴Ω1 𝐴Ω1 ,Ω2 ] and the first block row of [𝐴Ω2 ,Ω1 𝐴Ω2 ], which are now given by

�̃�Γ1 := 𝐴Γ1 + 𝐷, �̃�Γ1 ,Γ1 := −𝐷 and �̃�Γ2 := 𝐴Γ2 + 𝐷, �̃�Γ2 ,Γ2 := −𝐷.

We are interested in the subdomain version of the modified restricted additive
Schwarz (MRAS1, see [2]), defined by its iteration matrix 𝑇 ,

1MRAS was introduced in the so-called globally deferred correction form, where we iterate on the
global solution unknowns, in contrast to iterating on the subdomain solution unknowns here. This
is but a technicality and hence we keep the name; the equivalence is shown in [3, Section 6.1, 6.2].
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𝑇 = 𝐼 −
2∑︁
𝑖=1

𝑅𝑇Ω𝑖
�̃�−1
Ω𝑖
𝑅Ω𝑖

�̃�aug with 𝑅Ω1 = [𝐼Ω1 0Ω2 ], 𝑅Ω2 = [0Ω1 𝐼Ω2 ] . (5)

Notice that the interface block structure of MRAS does not match the one in [3,
Algorithm 2] but the transmission matrix 𝐷 is chosen to get fast convergence,
analogously to the parameter 𝑝 in POSM. Setting

𝐸
Ω1
Γ2
:=

[
0Θ1 𝐼Γ20𝑂0Γ1

]𝑇
, 𝐸

Ω1
Γ1
:=

[
0Θ10Γ20𝑂 𝐼Γ1

]𝑇
, 𝐸

Ω1
Θ1
:=

[
𝐴Γ2 ,Θ10Γ20𝑂0Γ1

]𝑇
,

𝐸
Ω2
Γ2
:=

[
𝐼Γ20𝑂0Γ10Θ2

]𝑇
, 𝐸

Ω2
Γ1
:=

[
0Γ20𝑂 𝐼Γ10Θ2

]𝑇
, 𝐸

Ω2
Θ2
:=

[
0Γ20𝑂0Γ1𝐴Θ2 ,Γ1

]𝑇
,

we can write
�̃�Ω𝑖

= 𝐴Ω𝑖
+ 𝐸Ω𝑖

Γ𝑖
𝐷

(
𝐸
Ω𝑖

Γ𝑖

)𝑇
, 𝑖 = 1, 2,

and formulate a convergence result for MRAS, analogue to [2, Theorem 3.2].

Theorem 1 ([2, Section 3])
The MRAS iteration matrix 𝑇 in (5) has the structure

𝑇 =

[
0 𝐾
𝐿 0

]
,
𝐾 := 𝐴−1

Ω1
𝐸
Ω1
Γ1

[
𝐼 + 𝐷 (𝐴−1

Ω1
)Γ1 ,Γ1

]−1 (
−𝐷 (𝐸Ω2

Γ1
)𝑇 + (𝐸Ω2

Θ2
)𝑇

)
,

𝐿 := 𝐴−1
Ω2
𝐸
Ω2
Γ2

[
𝐼 + 𝐷 (𝐴−1

Ω2
)Γ2 ,Γ2

]−1 (
−𝐷 (𝐸Ω1

Γ2
)𝑇 + (𝐸Ω1

Θ1
)𝑇

)
.

(6)

Moreover, the asymptotic convergence factor of MRAS is bounded by√︁
‖𝑀1𝐵1‖2 · ‖𝑀2𝐵2‖2,

𝑀1 :=
[
𝐼 + 𝐷 (𝐴−1

Ω1
)Γ1 ,Γ1

]−1 (
−𝐷 − 𝐴Γ1 ,Θ2𝐴−1

Θ2
𝐴Θ2 ,Γ1

)
, 𝐵1 := (𝐴−1

Ω2
)Γ1 ,Γ2 ,

𝑀2 :=
[
𝐼 + 𝐷 (𝐴−1

Ω2
)Γ2 ,Γ2

]−1 (
−𝐷 − 𝐴Γ2 ,Θ1𝐴−1

Θ1
𝐴Θ1 ,Γ2

)
, 𝐵2 := (𝐴−1

Ω1
)Γ2 ,Γ1 .

(7)

Due to the symmetry of the model problem and the method we have 𝐵 := 𝐵1 = 𝐵2
and 𝑀 := 𝑀1 = 𝑀2, which in turn simplifies the bound in (7) to ‖𝑀𝐵‖2.

2 Analysis of the MRAS bound and its reformulation

First, we recall the sine series expansion in the 𝑦 direction F𝑦 , so that we have

𝑢(𝑥, 𝑦) =
+∞∑︁
𝑘=1

F𝑦𝑢(𝑥, 𝑘) sin
(
𝑘𝜋

𝑏
𝑦

)
≡

+∞∑︁
𝑘=1

�̂�(𝑥, 𝑘) sin
(
𝑘𝜋

𝑏
𝑦

)
,
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with2 F𝑦𝑢 :=
∫ 𝑏

0 𝑢(𝑥, 𝑦) sin(𝑘𝜋𝑦/𝑏)d𝑦. Next,we factor out (𝐴−1
Ω1
)Γ1 ,Γ1 and (𝐴−1

Ω2
)Γ2 ,Γ2

on the left from𝑀1,2, so that instead of (7) we focus on the asymptotically equivalent

𝑀𝐵 :=
[(
(𝐴−1

Ω1
)Γ1 ,Γ1

)−1
+ 𝐷

]−1
︸                         ︷︷                         ︸

(𝑇 𝐷𝑒𝑛𝑜𝑚)−1

(
−𝐷 − 𝐴Γ1 ,Θ2𝐴−1

Θ2
𝐴Θ2 ,Γ1

)
︸                           ︷︷                           ︸

𝑇 𝑁𝑢𝑚𝑒𝑟

(𝐴−1
Ω2
)Γ1 ,Γ2

(
(𝐴−1

Ω2
)Γ2 ,Γ2

)−1︸                           ︷︷                           ︸
𝑇𝑂𝑣𝑒𝑟

. (8)

The key question is whether the bound (7), which now becomes ‖𝑀𝐵‖, is the discrete
analogue of (3) – piece by piece. Linking each of the blocks in (8) to a discrete
linear operator with a continuous counterpart, we analyze it using the Fourier series
expansion. Taking b ∈ R𝑁𝑟−1 and interpolating it to a function 𝛾 : Γℎ

1 → R, the
following problems are equivalent up to the FD discretization:

𝐴Ω1u = − 1
ℎ2
𝐸
Ω1
Γ1

b and
Δ𝑢 = 0 in Ωℎ

1 ,

𝑢 = 0 on 𝜕Ωℎ
1 \Γ

ℎ
1 , and 𝑢 = 𝛾 on Γℎ

1 .
(9)

Defining the solution operator byS1 (𝛾) = 𝑢
��
Γ1
where 𝑢 is the solution of (9), we have

(up to the FD discretization) the equivalence of the linear operators −1/ℎ2 (𝐴−1
Ω1
)Γ1 ,Γ1

and S1. To calculate S1 we expand in the 𝑦 variable using F𝑦 , simplifying the
continuous problem in (9) to the semi-discrete problem(

𝜕𝑥𝑥 −
(
𝑘 𝜋
𝑏

)2)
�̂�(𝑥, 𝑘) = 0 for 𝑥 ∈ (−𝑎, 𝐿/2 + ℎ) and 𝑘 ∈ N,

�̂�(−𝑎, 𝑘) = 0 and �̂�(𝐿/2 + ℎ, 𝑘) = �̂�(𝑘) for 𝑘 ∈ N,
(10)

and denote by Ŝ1 := F𝑦S1 the Fourier symbol of S1. A direct calculation yields

�̂�(𝑥, 𝑘) =
sinh

(
𝑘 𝜋
𝑏
(𝑎 + 𝑥)

)
�̂�(𝑘)

sinh
(
𝑘 𝜋
𝑏
(𝑎 + 𝐿/2 + ℎ))

) , Ŝ1�̂�(𝑘) =
sinh

(
𝑘 𝜋
𝑏
(𝑎 + 𝐿/2)

)
sinh

(
𝑘 𝜋
𝑏
(𝑎 + 𝐿/2 + ℎ))

) �̂�(𝑘).
Therefore, the eigenvalues of the linear operator −1/ℎ2 (𝐴−1

Ω1
)Γ1 ,Γ1 approximate the

modes 𝑘 = 1, . . . , 𝑁𝑟 − 1 of Ŝ1 given above, as we see in Figure 2. The rest of the
blocks in (8) are summarized in Table 1 and illustrated in Figure 2, see [4] for detailed
calculations. We see that the approximation is very accurate for the low-frequency
modes but not quite accurate for the high-frequency ones. If 𝐷 diagonalizes in the
same basis as the rest of the blocks and we denote its eigenvalues by 𝛿1, . . . , 𝛿𝑁𝑟−1,
then the eigenvalues of 𝑇𝐷𝑒𝑛𝑜𝑚, 𝑇𝑁𝑢𝑚𝑒𝑟 , 𝑇𝑂𝑣𝑒𝑟 approximate certain discrete (trun-
cated) Fourier symbols we present in Table 2 and illustrate in Figure 3. We see that
the inaccuracy on the high frequencies is still present. More importantly, comparing
Table 2 with (3) shows that the contraction factor due to the domain overlap in (3)

2 Using the sine series relies on the Dirichlet boundary conditions (BCs) along {𝑦 = 0} and
{𝑦 = 𝑏} in (1); for different BCs see [4].
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block discrete LO continuous LO Fourier symbol

(𝐴−1
Ω1
)Γ1 ,Γ1 − 1

ℎ2
(𝐴−1

Ω1
)Γ1 ,Γ1 S1 : 𝛾 ↦→ 𝑢

��
Γ1

Ŝ1 =
sinh( 𝑘𝜋

𝑏
(𝑎+𝐿/2))

sinh( 𝑘𝜋
𝑏

(𝑎+𝐿/2+ℎ) ))
𝐴Γ1 ,Θ2 𝐴

−1
Θ2

𝐴Θ2 ,Γ1 −ℎ2𝐴Γ1 ,Θ2 𝐴
−1
Θ2

𝐴Θ2 ,Γ1 S2 : 𝛾 ↦→ 𝑢
��
Γ1

Ŝ2 =
sinh( 𝑘𝜋

𝑏
(𝑎−𝐿/2−ℎ))

sinh( 𝑘𝜋
𝑏

(𝑎−𝐿/2) ))
(𝐴−1

Ω2
)Γ1 ,Γ2 − 1

ℎ2
(𝐴−1

Ω2
)Γ1 ,Γ2 S3 : 𝛾 ↦→ 𝑢

��
Γ1

Ŝ3 =
sinh( 𝑘𝜋

𝑏
(𝑎−𝐿/2))

sinh( 𝑘𝜋
𝑏

(𝑎+𝐿/2+ℎ) ))
(𝐴−1

Ω2
)Γ2 ,Γ2 − 1

ℎ2
(𝐴−1

Ω2
)Γ2 ,Γ2 S4 : 𝛾 ↦→ 𝑢

��
Γ2

Ŝ4 =
sinh( 𝑘𝜋

𝑏
(𝑎+𝐿/2))

sinh( 𝑘𝜋
𝑏

(𝑎+𝐿/2+ℎ) ))
Table 1 The blocks and corresponding linear operators (LO) from (8).

1 5 10 15 20

10 1

eigs( 1
h2 (A 1

1 ) 1, 1)

1

1 5 10 15 20

10 1

eigs( h2A 1, 2A 1
2 A 2, 1 )

2

1 5 10 15 20
k

10 4

10 3

10 2

10 1

eigs( 1
h2 (A 1

2 ) 1, 2 )

3

1 5 10 15 20
k

10 1

eigs( 1
h2 (A 1

2 ) 2, 2 )

4

Fig. 2 Results obtained for the parameters 𝑎 = 𝑏 = 1, 𝐿 = 2ℎ, 𝑁𝑟 = 22.(
𝑇 𝐷𝑒𝑛𝑜𝑚

)−1
𝑇 𝑁𝑢𝑚𝑒𝑟 𝑇𝑂𝑣𝑒𝑟

[𝑘 := 𝛿𝑘 − 1
ℎ2
sinh( 𝑘𝜋

𝑏
(𝑎+𝐿/2+ℎ))

sinh( 𝑘𝜋
𝑏

(𝑎+𝐿/2)) Z𝑘 := −𝛿𝑘 + 1
ℎ2
sinh( 𝑘𝜋

𝑏
(𝑎−𝐿/2−ℎ))

sinh( 𝑘𝜋
𝑏

(𝑎−𝐿/2) )) \𝑘 :=
sinh( 𝑘𝜋

𝑏
(𝑎−𝐿/2))

sinh( 𝑘𝜋
𝑏

(𝑎+𝐿/2) ))(
𝑇

𝐷𝑒𝑛𝑜𝑚
)−1

𝑇
𝑁𝑢𝑚𝑒𝑟

𝑇
𝑂𝑣𝑒𝑟

[𝑘 := − 1
ℎ

𝑘𝜋
𝑏
coth

(
𝑘𝜋
𝑏

(𝑎 + 𝐿/2)
)
− _𝑘 Z 𝑘 := − 1

ℎ
𝑘𝜋
𝑏
coth

(
𝑘𝜋
𝑏

(𝑎 − 𝐿/2)
)
+ _𝑘 \𝑘 :=

sinh( 𝑘𝜋
𝑏

(𝑎−𝐿/2))
sinh( 𝑘𝜋

𝑏
(𝑎+𝐿/2) ))

Table 2 The matrices and their corresponding (truncated) Fourier symbols.

matches exactly \𝑘 for each 𝑘 , i.e., the one due to the continuous representation
of 𝑇𝑂𝑣𝑒𝑟 . However, this is clearly not the case for the contraction factor due to the
transmission condition induced by 𝐷. The ratio [𝑘/Z𝑘 shows that choosing 𝛿𝑘 = 𝑝

(the naive choice) is not the correct one (see [4] for more details) and we continue
by reformulating Theorem 1 to reflect also the transmission part of (3).
The main tool used to obtain Theorem 1 is the Sherman-Morrison-Woodbury

formula for the inverse of a low-rank updated matrix, here the update was the corner
block 𝐷. We now show that using the same formula for a slightly different block
gives the “correct” result. We split the interface blocks as in [3, Section 5.2] and
write 𝐴Γ1 = 𝐴𝐿

Γ1
+ 𝐴𝑅

Γ1
and 𝐴Γ2 = 𝐴𝐿

Γ2
+ 𝐴𝑅

Γ2
so that we have
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1 5 10 15 20

103

104

eigs( T Denom ) | k| | k|

1 5 10 15 20

101

102

eigs( T Numer ) | k| | k|

1 5 10 15 20
k

10 2

10 1

eigs( T Over ) | k| | k|

1 5 10 15 20
k

10 4

10 3

10 2

10 1
eigs( MB ) | k

k
k| | k

k
k| 

Fig. 3 Results obtained with 𝑎 = 𝑏 = 1, 𝐿 = 2ℎ, 𝑁𝑟 = 21 and 𝐷 = diag
(
𝜋2/ℎ

)
.

−ℎ(𝐴Γ1 ,𝑂u𝑂 + 𝐴𝐿
Γ1

uΓ1 ) ≈ 𝑢𝑥
��
Γ1
, −ℎ(𝐴Γ1 ,Θ2uΘ2 + 𝐴𝑅

Γ1
uΓ1 ) ≈ −𝑢𝑥

��
Γ1
,

−ℎ(𝐴Γ2 ,𝑂u𝑂 + 𝐴𝑅
Γ2

uΓ2 ) ≈ −𝑢𝑥
��
Γ2
, −ℎ(𝐴Γ2 ,Θ1uΘ1 + 𝐴𝐿

Γ2
uΓ2 ) ≈ 𝑢𝑥

��
Γ2
.

(11)

This is natural for FD and FEM discretizations. Using the so-called ghost point trick
we get 𝐴𝐿

Γ1
= 𝐴𝑅

Γ1
= 1
2 𝐴Γ1 , 𝐴

𝐿
Γ2

= 𝐴𝑅
Γ2

= 1
2 𝐴Γ2 . Adopting this we rewrite �̃�𝑎𝑢𝑔 as

𝐴aug :=

[
𝐴𝐿
Ω1

+ 𝐴Ω1 �̃�Ω1 ,Ω2

�̃�Ω2 ,Ω1 𝐴𝑅
Ω1

+ 𝐴Ω2

]
:=



𝐴Θ1 𝐴Θ1 ,Γ2
𝐴Γ2 ,Θ1 𝐴Γ2 𝐴Γ2 ,𝑂

𝐴𝑂,Γ2 𝐴𝑂 𝐴𝑂,Γ1

𝐴Γ1 ,𝑂 𝐴𝐿
Γ1

+ 𝐴Γ1 �̃�Γ1 ,Γ1 𝐴Γ1 ,Θ2

𝐴Γ2 ,Θ1 �̃�Γ2 ,Γ2 𝐴𝑅
Γ2

+ 𝐴Γ2 𝐴Γ2 ,𝑂

𝐴𝑂,Γ2 𝐴𝑂 𝐴𝑂,Γ1

𝐴Γ1 ,𝑂 𝐴Γ1 𝐴Γ1 ,Θ2
𝐴Θ2 ,Γ1 𝐴Θ2


,

with the transmission conditions kept the same as in (4) but reorganized with

𝐴Γ1 := 𝐴
𝑅
Γ1

+ 𝐷, and 𝐴Γ2 := 𝐴
𝐿
Γ2

+ 𝐷.

As a result, the Sherman-Morrison-Woodbury formula is nowused for
(
𝐴𝐿
Ω1

+ 𝐴Ω1

)−1
and

(
𝐴𝑅
Ω1

+ 𝐴Ω2

)−1
and analogously to [2, Lemma 3.1, Theorem 3.2] we obtain The-

orem 2 (we take advantage of the symmetry, for the general case see [4]).

Theorem 2 The MRAS iteration matrix 𝑇 in (5) can also be written as

𝑇 =

[
0 𝐾
𝐿 0

]
, with
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𝐾 :=
(
𝐴𝐿
Ω1

)−1
𝐸
Ω1
Γ1

(
(
(
𝐴𝐿
Ω1

)−1
)Γ1 ,Γ1

)−1 [(
(
(
𝐴𝐿
Ω1

)−1
)Γ1 ,Γ1

)−1
+ 𝐴Γ1

]−1 (
−𝐷 (𝐸Ω2

Γ1
)𝑇 + (𝐸Ω2

Θ2
)𝑇

)
,

𝐿 :=
(
𝐴𝑅
Ω2

)−1
𝐸
Ω2
Γ2

(
(
(
𝐴𝑅
Ω2

)−1
)Γ2 ,Γ2

)−1 [(
(
(
𝐴𝑅
Ω2

)−1
)Γ2 ,Γ2

)−1
+ 𝐴Γ2

]−1 (
−𝐷 (𝐸Ω1

Γ2
)𝑇 + (𝐸Ω1

Θ1
)𝑇

)
.

Moreover, the asymptotic convergence factor of POSM is bounded by

‖𝑀𝐵‖2, where (12)

𝑀 :=
(
𝑇

𝐷𝑒𝑛𝑜𝑚
)−1

𝑇
𝑁𝑢𝑚𝑒𝑟

=

[(
(
(
𝐴𝐿
Ω1

)−1
)Γ1 ,Γ1

)−1
+ 𝐴Γ1

]−1 ((
𝐴𝑅
Γ1

− 𝐴Γ1 ,Θ2𝐴−1
Θ2
𝐴Θ2 ,Γ1

)
− 𝐴Γ1

)
,

𝐵 := 𝑇 𝑂𝑣𝑒𝑟
= (

(
𝐴𝑅
Ω2

)−1
)Γ1 ,Γ2

(
(
(
𝐴𝑅
Ω2

)−1
)Γ2 ,Γ2

)−1
.

(13)

Focusing on the first block in (13),we takeb ∈ R𝑁𝑟−1 and interpolating it to a function
𝛾 : Γ1 → R, the following problems are equivalent up to the FD discretization:

𝐴𝐿
Ω1

u = − 1
ℎ
𝐸
Ω1
Γ1

b and
Δ𝑢 = 0 in Ω1,

𝑢 = 0 on 𝜕Ω1\Γ1, and n1 · ∇𝑢 = 𝛾 on Γ1.
(14)

Setting S2 (𝛾) = 𝑢
��
Γ1
, where 𝑢 is the solution of (14) we have the equivalence (up to

the FD discretization) of −1/ℎ(𝐴−1
Ω1
)Γ1 ,Γ1 and S2. Considering(

𝜕𝑥𝑥 −
(
𝑘 𝜋
𝑏

)2)
�̂�(𝑥, 𝑘) = 0 for 𝑥 ∈ (−𝑎, 𝐿/2 + ℎ) and 𝑘 ∈ N,

�̂�(−𝑎, 𝑘) = 0 and �̂�𝑥 (𝐿/2 + ℎ, 𝑘) = �̂�(𝑘) for 𝑘 ∈ N,
(15)

we set Ŝ1 := F𝑦S1 and a direct calculation yields the solution of (15) and Ŝ1 as

�̂�(𝑥, 𝑘) =
sinh

(
𝑘 𝜋
𝑏
(𝑎 + 𝑥)

)
𝑘 𝜋
𝑏
cosh

(
𝑘 𝜋
𝑏
(𝑎 + 𝐿/2))

) , Ŝ1�̂�(𝑘) =
sinh

(
𝑘 𝜋
𝑏
(𝑎 + 𝐿/2)

)
𝑘 𝜋
𝑏
cosh

(
𝑘 𝜋
𝑏
(𝑎 + 𝐿/2))

) �̂�(𝑘).
Therefore, the eigenvalues of−1/ℎ((𝐴𝐿

Ω1
)−1)Γ1 ,Γ1 approximate the first 𝑁𝑟 −1modes

of F𝑦S1 with better accuracy in high-frequencies than we observed withS1, see Fig-
ure 2 and Figure 4. For the other blocks see Table 3 and Figure 4. If−𝐴𝑅

Γ1 diagonalizes
in the Fourier discrete basis with eigenvalues _1, . . . , _𝑁𝑟−1, then the eigenvalues
of 𝑇𝐷𝑒𝑛𝑜𝑚

, 𝑇
𝑁𝑢𝑚𝑒𝑟

, 𝑇
𝑂𝑣𝑒𝑟 approximate certain discrete (truncated) Fourier sym-

bols, presented in Table 2 and Figure 3. Notice that at the discrete level we have
𝑀𝐵 = 𝑀𝐵, i.e., the difference is in the representation of the bound (blue markers
in Figure 3) as we changed only the block organization in the Sherman-Morrison-
Woodbury formula. Comparing Table 2 with (3), we get the link between _𝑘 (and
hence also 𝛿𝑘 ) and the Robin parameter 𝑝 in (3). Calculating the optimal 𝑝 now
directly translates to the optimal choice of 𝐷 by
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block discrete LO continuous LO Fourier symbol

(
(
𝐴𝐿
Ω1

)−1
)Γ1 ,Γ1 − 1

ℎ
(
(
𝐴𝐿
Ω1

)−1
)Γ1 ,Γ1 S1 : 𝛾 ↦→ 𝑢

��
Γ1

Ŝ1 = 1
𝑘𝜋
𝑏
coth( 𝑘𝜋

𝑏
(𝑎+𝐿/2) ))

𝐴
𝑅

Γ1 − 𝐴Γ1 ,Θ2 𝐴
−1
Θ2

𝐴Θ2 ,Γ1 −ℎ
(
𝐴
𝑅

Γ1 − 𝐴Γ1 ,Θ2 𝐴
−1
Θ2

𝐴Θ2 ,Γ1

)
S2 : 𝛾 ↦→ n1 · ∇𝑢

��
Γ1

Ŝ2 = 𝑘𝜋
𝑏
coth

(
𝑘𝜋
𝑏

(𝑎 − 𝐿/2))
)

(
(
𝐴𝑅
Ω2

)−1
)Γ1 ,Γ2 − 1

ℎ
(
(
𝐴𝑅
Ω2

)−1
)Γ1 ,Γ2 S3 : 𝛾 ↦→ 𝑢

��
Γ1

Ŝ3 =
sinh( 𝑘𝜋

𝑏
(𝑎−𝐿/2))

𝑘𝜋
𝑏
cosh( 𝑘𝜋

𝑏
(𝑎+𝐿/2) ))

(
(
𝐴𝑅
Ω2

)−1
)Γ2 ,Γ2 − 1

ℎ
(
(
𝐴𝑅
Ω2

)−1
)Γ2 ,Γ2 S4 : 𝛾 ↦→ 𝑢

��
Γ2

Ŝ4 =
sinh( 𝑘𝜋

𝑏
(𝑎+𝐿/2))

𝑘𝜋
𝑏
cosh( 𝑘𝜋

𝑏
(𝑎+𝐿/2) ))

Table 3 The blocks and corresponding linear operators (LO) from (8).

1 5 10 15 20

10 1

eigs( 1
h ((AL

1) 1) 1, 1)

1

1 5 10 15 20

101

eigs( h(AR
1 A 1, 2A 1

2 A 2, 1) )

2

1 5 10 15 20
k

10 4

10 3

10 2

10 1

eigs( 1
h ((AR

2) 1) 1, 2 )

3

1 5 10 15 20
k

10 1

eigs( 1
h ((AR

2) 1) 2, 2 )

4

Fig. 4 Results obtained for the parameters 𝑎 = 𝑏 = 1, 𝐿 = 2ℎ, 𝑁𝑟 = 21.

𝑝𝐼 = −ℎ𝑊𝑇
(
𝐴𝑅
Γ1

+ 𝐷
)
𝑊 , i. e., 𝐷 = − 𝑝

ℎ
𝐼 − 𝐴𝑅

Γ1
.
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